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Abstract
In the present manuscript, we elucidate a comprehensive framework for the generalized interpolative
α−(ψ,φ)Z−contractive mapping, thereby extending the foundational theoretical constructs to augment its
utility within the domain of advanced mathematical analysis. The investigation encompasses a meticulous
examination of fixed point results within the context of non-Archimedean modular metric spaces, which
are characterized by their distinctive structural properties that diverge from those of conventional metric
spaces. Moreover, we apply the results attained to substantiate the existence and uniqueness of solutions
pertaining to nonlinear Fredholm integral equations. This aspect of our inquiry underscores the practical
implications of our theoretical advancements and provides a rigorous framework for the resolution of
complex integral equations through the principles of established contractive mappings.
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1. Introduction
This study designates the symbol N to represent the set of all positive natural numbers. Additionally, the sets of

positive and non-negative real numbers are represented by R+ and R+
0 , respectively.

The simulation function, introduced by Khojasteh et al. [1], has emerged as an invaluable innovative control
function in metric spaces. Its application in defining a ζ−contraction has not only facilitated the proof of pivotal
fixed point theorems but also marks a noteworthy advancement in the discipline. Following this groundbreaking
work, numerous researchers have expanded and refined this concept across various abstract spaces, as evidenced in
[2–6] and [7].

Recently, Karapınar [8] made significant advancements in the field of fixed point theory by modifying the
classical concept of Kannan contractions. He introduced an interpolative Kannan contraction, which was designed
to enhance the convergence rate of operators toward a unique fixed point. This innovation aimed to refine the
existing understanding of how operators behave in mathematical spaces. However, subsequent work by Karapınar
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and Agarwal [9] revealed a critical flaw in the assumptions laid out in Karapınar’s initial paper. They presented a
counter-example that highlighted the problematic assumption that the fixed point must be unique. Their findings
showed that it is possible for fixed points to exist without uniqueness, thereby challenging the validity of this
central premise in the original theory. Following this important correction, the researchers provided a revised
framework that better accommodates situations where fixed points are not unique. This development opened
the door to further exploration and prompted the investigation of various results related to different types of
interpolative mappings. Consequently, a plethora of results for both single-valued and multivalued mappings have
been established across diverse abstract spaces [10–13].

There is extensive interest in metric fixed point theory due to its compelling structural properties and broad
applications across various fields, including mathematics, computer science, and economics. Within this theoretical
framework, the Banach contraction mapping theorem, first introduced by Banach in 1922, occupies a pivotal
position owing to its foundational significance and versatility. This seminal work provided a robust method for
establishing the existence and uniqueness of fixed points in complete metric spaces, laying the groundwork for
countless subsequent research efforts aimed at expanding and refining the understanding of this profound mapping.

The Banach contraction mapping theorem has not only deepened theoretical insights but also inspired practical
applications, from solving differential equations to optimization problems. Over the years, the development of
this field has witnessed a notable emergence of innovative structures concerning generalized metric spaces. These
generalized spaces relax some of the traditional constraints, allowing for a broader class of mappings and facilitating
the exploration of fixed point theorems within varied contexts [14–19].

Among the significant advancements in this domain is the introduction of the modular metric space. This
new structure, which incorporates a modular function to define distance and convergence, offers a more flexible
approach to analyzing fixed points and contracts. Its unique properties enable researchers to address more complex
problems that may not fit within the confines of classical metric spaces. Consequently, modular metric spaces
serve as a fertile ground for further theoretical exploration and practical application, potentially leading to new
discoveries in fixed point theory and beyond.

In 2010, Chistyakov [20, 21] made a significant advancement by establishing the concept of a modular metric
space. This innovative framework not only extends the traditional metric space but also integrates the principles of
modular linear space, paving the way for newfound research opportunities and applications in mathematical theory.

Let X be a nonempty set and Λ : (0,∞) × X × X → [0,∞] be a function. For the sake of brevity, we will de-
note the relationship as follows:

Λχ (ι, ȷ) = Λ (χ, ι, ȷ)

for all χ > 0 and ι, ȷ ∈ X.

Definition 1.1. [20] Let X be nonempty set and Λ : (0,∞)× X× X → [0,∞] be a function satisfying the subsequent
circumstances:

(Λ1) ι = ȷ if and only if Λχ (ι, ȷ) = 0 for all χ > 0 and and ι, ȷ ∈ X;

(Λ2) Λχ (ι, ȷ) = Λχ (ȷ, ι) for all χ > 0 and ι, ȷ ∈ X;

(Λ3) Λχ+n (ι, ȷ) ≤ Λχ (ι, z) + Λn (z, ȷ) for all χ, n > 0 and ι, ȷ, z ∈ X.

Then, Λ is called modular metric in X, and so Λχ is modular metric space. If the condition (Λ1) is replaced by

(Λ4) Λχ (ι, ι) = 0 for all χ > 0 and ι ∈ X,

then Λ is referred to as a pseudomodular metric on X. A modular metric Λ defined on X is termed regular if it
satisfies a weaker formulation of the condition denoted as (Λ1).

(Λ5) ι = ȷ if and only if Λχ (ι, ȷ) = 0 for some χ > 0.

Moreover, Λ is called convex if for χ, n > 0 and ι, ȷ, z ∈ X, the inequality holds:

(Λ6) Λχ+n (ι, ȷ) ≤ χ
χ+nΛχ (ι, z) + n

χ+nΛn (z, ȷ) .

If we replace (Λ3) by

(Λ7) Λmax{χ,n} (ι, ȷ) ≤ Λχ (ι, z) + Λn (z, ȷ)



56 E. Girgin

for all χ, n > 0 and ι, ȷ, z ∈ XΛ. Thus, we assert that XΛ represents non-Archimedean modular metric space.

Definition 1.2. [20] Let XΛ be a modular metric space, S be a subset of XΛ and (ιn)n∈N be a sequence in XΛ. Then,

(i) A sequence (ιn)κ∈N is called Λ−convergent to ι ∈ XΛ if and only if Λχ (ιn, ι) → 0 as n→ ∞ for all χ > 0, ι is
said to be the Λ−limit of (ιn).

(ii) A sequence (ιn)κ∈N is called Λ−Cauchy if Λχ (ιn, ιp) → 0, as p, n→ ∞ for all χ > 0.

(iii) A subset S is called Λ−closed if the Λ−limit of Λ−convergent sequence of S always belongs to S.

(iv) A subset S is called Λ−complete if any Λ−Cauchy sequence in S is Λ−convergent to a point of S.

(v) A subset S is called Λ−bounded if for all χ > 0, we have

δΛ (S) = sup {Λχ (ι, ȷ) ; ι, ȷ ∈ S} <∞.

Definition 1.3. [20] Let XΛ be a modular metric space and
∐

: XΛ → XΛ be a mapping. It is said that
∐

is a
Λ−continuous when Λχ (ιn, ι) → 0 ⇒ Λχ (

∐
ιn,

∐
ι) → 0, as n→ ∞.

In recent years, the field of fixed point theory in modular metric spaces has witnessed significant developments
and applications [22–25].

Khan et.al. [26] introduce the concept of altering distance function as follows.

Definition 1.4. [26] A continuous function φ : [0,∞) → [0,∞) is called an altering distance function if it is
non-decreasing and φ (r) = 0 if and only if r = 0.

It is obvious that φ (r) ≥ 0, for all r ≥ 0. We denote Φ, the set of all altering distance functions.

Definition 1.5. [27] A function ψ : [0,∞) → [0,∞) is said to be a comparison function if it is monotonically
increasing and ψn (t) → 0 as n→ ∞ for all t > 0.

If ψ is comparison function, then ψ(t) < t for all t > 0 and ψ(0) = 0. The symbol Ψ denotes the set of all
comparison functions.

Let X be a nonempty set and α : X × X → R. We collect the following concepts which are necessary for our
subsequent discussion.

Definition 1.6. [28] A mapping
∐

: X → X is said to be a α−admissible if

(α1) α (ι, ȷ) ≥ 1 implies α (
∐
ι,
∐
ȷ) ≥ 1, for all ι, ȷ ∈ X.

Definition 1.7. [29] A mapping
∐

: X → X is called triangular α−admissible if it satisfies (α1) and

(α2) α (ι, z) ≥ 1 and α (z, ȷ) ≥ 1 imply α (ι, ȷ) ≥ 1 for all ι, ȷ, z ∈ X.

In light of the aforementioned considerations, this study aims to integrate concepts such as interpolative
contraction, simulation functions, admissible mappings, and modified distance functions to establish novel fixed
point theorems within non-Archimedean modular metric spaces. Furthermore, we provide a comprehensive
illustration demonstrating both the existence and uniqueness of a solution for a nonlinear Fredholm integral
equation.

2. Main results
Definition 2.1. Let XΛ be a non-Archimedean modular metric space and

∐
: XΛ → XΛ be a given mapping. It is

said that
∐

is a generalized interpolative α − (ψ,φ)Z−contractive mapping if there exist α : XΛ × XΛ → [0,∞),
ψ ∈ Ψ, φ ∈ Φ and ζ ∈ Z and µ1, µ2 ∈ (0, 1) such that φ (t) > ψ (t) , t > 0 and µ1 + µ2 < 1 providing the subsequent
inequality

ζ (α (i, j)φ (Λχ(
∐
i,
∐
j)) , ψ (Ξ(i, j))) ≥ 0,

Ξ (i, j) = Λχ(i, j)
µ1 .Λχ(i,

∐
i)µ2 .Λχ(j,

∐
j)1−µ1−µ2

(2.1)

for all i, j ∈ XΛ.
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Theorem 2.1. Let XΛ be a complete non-Archimedean modular metric space. Let
∐

be a generalized interpolative α −
(ψ,φ)Z−contractive mapping satisfying the following conditions:

(i)
∐

is a triangular α−admissible mapping,

(ii) there exists i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1,

(iii)
∐

is a continuous mapping.

Then,
∐

admits a fixed point in XΛ.

Proof. Let i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1. Construct the sequence {iκ} in XΛ by iκ+1 =

∐
iκ, for all κ ∈ N. If

iκ+1 = iκ, for some κ ∈ N, then i∗ = iκ is a fixed point for
∐

and the proof completed. Hence, we presume that
iκ+1 ̸= iκ, for all κ ∈ N. Due to the fact that

∐
is triangular α− admissible, we have:

α (i0, i1) = α
(
i0,

∐
i0

)
≥ 1 ⇒ α

(∐
i0,

∐
i1

)
= α

(
i1,

∐
i2

)
≥ 1.

By induction, we get
α (iκ, iκ+1) ≥ 1, (2.2)

for all κ ∈ N. Regarding (2.1), we derive that

0 ≤ ζ (α (iκ−1, iκ)φ (Λχ (
∐
iκ−1,

∐
iκ)) , ψ (Ξ (iκ−1, iκ)))

= ζ (α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , ψ (Ξ (iκ−1, iκ)))

< ψ (Ξ (iκ−1, iκ))− α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) ,

(2.3)

where
Ξ (iκ−1, iκ) = Λχ(iκ−1, iκ)

µ1 .Λχ(iκ−1,
∐
iκ−1)

µ2 .Λχ(iκ,
∐
iκ)

1−µ1−µ2

= Λχ(iκ−1, iκ)
µ1 .Λχ(iκ−1, iκ)

µ2 .Λχ(iκ, iκ+1)
1−µ1−µ2 .

Consequently, we arrive at

φ (Λχ (iκ, iκ+1)) ≤ α (iκ−1, iκ)φ (Λχ (iκ, iκ+1))

< ψ (Ξ (iκ−1, iκ))

= ψ
(
Λχ(iκ−1, iκ)

µ1 .Λχ(iκ−1, iκ)
µ2 .Λχ(iκ, iκ+1)

1−µ1−µ2

)
.

(2.4)

Suppose that Λχ (iκ−1, iκ) < Λχ (iκ, iκ+1) for all κ ∈ N, then from (2.4), we obtain

φ (Λχ (iκ, iκ+1)) ≤ ψ (Λχ (iκ, iκ+1)) < φ (Λχ (iκ, iκ+1)) ,

which causes a contradiction. Accordingly, we obtain

Λχ (iκ, iκ+1) ≤ Λχ (iκ−1, iκ) , (2.5)

for all κ ∈ N. Hence, {Λχ (iκ, iκ+1)} is a monotone decreasing sequence of positive real numbers and bounded
below by zero. So, there exists r ≥ 0 such that lim

n→∞
Λχ (iκ, iκ+1) = r. We claim that r > 0, otherwise from (2.3), (2.4)

together with (2.5) we procure

0 ≤ ζ (α (iκ−1, iκ)φ (Λχ (
∐
iκ−1,

∐
iκ)) , ψ (Ξ (iκ−1, iκ)))

= ζ (α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , ψ (Ξ (iκ−1, iκ)))

< ψ (Ξ (iκ−1, iκ))− α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) .

(2.6)
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Consequently, we achieve
φ (Λχ (iκ, iκ+1)) ≤ α (iκ−1, iκ)φ (Λχ (iκ, iκ+1))

≤ ψ (Ξ (iκ−1, iκ))

≤ φ (Ξ (iκ−1, iκ))

≤ φ (Λχ (iκ−1, iκ)) .

(2.7)

Taking the limit as n→ ∞ in (2.7), we attain

lim
n→∞

α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) = lim
n→∞

ψ (Ξ (iκ−1, iκ)) = φ (r) . (2.8)

Setting sn = α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , tn = ψ (Ξ (iκ−1, iκ)) in (2.3), then by the property of simulation function
and (2.8), it is yielded that

0 ≤ lim sup
n→∞

ζ (α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , ψ (Ξ (iκ−1, iκ))) < 0.

This is a contradiction and thus we have lim
n→∞

Λχ (iκ, iκ+1) = 0.

Now, we show that {iκ} is a Λ−Cauchy sequence. Suppose that, there exist ε > 0, for which one can find two
sequences {mρ} and {κρ} , for all ρ ≥ 1 with imρ > iκρ ≥ ρ such that Λχ

(
iκρ , imρ

)
≥ ε. Further, we assume that

mρ is the smallest number greater than κρ, then Λχ

(
iκρ
, imρ−1

)
< ε. By triangular inequality of non-Archimedean

quasi modular metric space, we gain

ε ≤ Λχ

(
iκρ
, imρ

)
= Λmax{χ,χ}

(
iκρ
, imρ

)
≤ Λχ

(
iκρ
, imρ−1

)
+ Λχ

(
imρ−1, imρ

)
< ε+ Λχ

(
imρ−1, imρ

)
.

Taking the limit as ρ→ ∞, we get
lim
ρ→∞

Λχ

(
iκρ
, imρ

)
= ε. (2.9)

Again by triangular inequality of non-Archimedean quasi modular metric space, we have

Λχ

(
iκρ
, imρ

)
= Λmax{χ,χ}

(
iκρ
, imρ

)
≤ Λχ

(
iκρ
, iκρ+1

)
+ Λχ

(
iκρ+1, imρ

)
= Λχ

(
iκρ
, iκρ+1

)
+ Λmax{χ,χ}

(
iκρ+1, imρ

)
≤ Λχ

(
iκρ
, iκρ+1

)
+ Λχ

(
iκρ+1, imρ+1

)
+ Λχ

(
imρ+1, imρ

)
.

(2.10)

Also, we get
Λχ

(
iκρ+1, imρ+1

)
= Λmax{χ,χ}

(
iκρ+1, imρ+1

)
≤ Λχ

(
iκρ+1, iκρ

)
+ Λχ

(
iκρ
, imρ+1

)
= Λχ

(
iκρ+1, iκρ

)
+ Λmax{χ,χ}

(
iκρ
, imρ+1

)
≤ Λχ

(
iκρ+1, iκρ

)
+ Λχ

(
iκρ
, imρ

)
+ Λχ

(
imρ

, imρ+1

)
.

(2.11)

Combining the expressions (2.10) and (2.11) and taking the limit as ρ→ ∞ together with (2.9), we attain

lim
ρ→∞

Λχ

(
iκρ+1, imρ+1

)
= ε. (2.12)

As
∐

is a triangular α−admissible mapping, we obtain α
(
iκρ
, imρ

)
≥ 1, for all numbers mρ, κρ such that

mρ > κρ, where ρ ≥ 1. From (2.1), we get
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0 ≤ ζ
(
α
(
iκρ , imρ

)
φ
(
Λχ

(∐
iκρ ,

∐
imρ

))
, ψ

(
Ξ
(
iκρ , imρ

)))
= ζ

(
α
(
iκρ
, imρ

)
φ
(
Λχ

(
iκρ+1, imρ+1

))
, ψ

(
Ξ
(
iκρ
, imρ

)))
< ψ

(
Ξ
(
iκρ
, imρ

))
− α

(
iκρ
, imρ

)
φ
(
Λχ

(
iκρ+1, imρ+1

))
.

Consequently, it can be inferred that

φ
(
Λχ

(
iκρ+1, imρ+1

))
≤ α

(
iκρ
, imρ

)
φ
(
Λχ

(
iκρ+1, imρ+1

))
≤ ψ

(
Ξ
(
iκρ
, imρ

))
≤ φ

(
Ξ
(
iκρ
, imρ

))
,

where
Ξ
(
iκρ
, imρ

)
= Λχ

(
iκρ
, imρ

)µ1
.Λχ

(
iκρ
,
∐
iκρ

)µ2
.Λχ

(
imρ

,
∐
imρ

)1−µ1−µ2

= Λχ

(
iκρ , imρ

)µ1
.Λχ

(
iκρ , iκρ+1

)µ2
.Λχ

(
imρ , imρ+1

)1−µ1−µ2
.

Taking the limit as ρ→ ∞ with (2.9), (2.10), (2.11) and (2.12), we have

0 ≤ φ (ε) < φ (0) = 0 iff ε = 0.

This situation presents a contradiction, thereby establishing that the sequence {iκ} qualifies as a Cauchy sequence.
Since XΛ is complete non-Archimedean modular metric space, there exists i∗ ∈ XΛ such that iκ → i∗ as κ → ∞.
Based on the continuity of

∐
, it can be deduced that the sequence defined by iκ+1 =

∐
iκ →

∐
i∗ as κ → ∞. By

virtue of the uniqueness of limits, we conclude that, i∗ =
∐
i∗, that is, i∗ is a fixed point of

∐
.

In the subsequent theorem, it is possible to dispense with the continuity of
∐

by introducing an alternative
condition.

Theorem 2.2. Let XΛ be a complete non-Archimedean modular metric space and
∐

be a generalized interpolative α −
(ψ,φ)Z−contractive mapping satisfying the following conditions:

(i)
∐

is a triangular α−admissible mapping,

(ii) there exists i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1,

(iii) If {iκ} is a sequence in XΛ such that α (iκ, iκ+1) ≥ 1 for all κ and iκ → i ∈ SΛ as κ→ ∞, then α (iκ, i) ≥ 1 for all
κ.

Then,
∐

admits a fixed point in XΛ.

Proof. In light of the proof of Theorem 2.1, we can conclude that {iκ} is a Cauchy sequence. Then, i∗ ∈ XΛ exits
such that iκρ

→ i∗ as ρ→ ∞. From (2.2) and the hypothesis (iii), we have

α
(
iκρ , i

∗) ≥ 1, (2.13)

for all ρ. From (2.1) and (2.13), we get

0 ≤ ζ
(
α
(
iκρ
, i∗

)
φ
(
Λχ

(∐
iκρ
,
∐
i∗
))
, ψ

(
Ξ
(
iκρ
, i∗

)))
= ζ

(
α
(
iκρ
, i∗

)
φ
(
Λχ

(
iκρ+1,

∐
i∗
))
, ψ

(
Ξ
(
iκρ
, i∗

)))
< ψ

(
Ξ
(
iκρ
, i∗

))
− α

(
iκρ
, i∗

)
φ
(
Λχ

(
iκρ+1,

∐
i∗
)) (2.14)

which is equivalent to
φ
(
Λχ

(
iκρ+1,

∐
i∗
))

≤ α
(
iκρ
, i∗

)
φ
(
Λχ

(
iκρ+1,

∐
i∗
))

< ψ
(
Ξ
(
iκρ
, i∗

))
< φ

(
Ξ
(
iκρ
, i∗

))
,

(2.15)
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where
Ξ
(
iκρ
, i∗

)
= Λχ

(
iκρ
, i∗

)µ1
.Λχ

(
iκρ
,
∐
iκρ

)µ2
.Λχ(i

∗,
∐
i∗)

1−µ1−µ2

= Λχ

(
iκρ
, i∗

)µ1
.Λχ

(
iκρ
, iκρ+1

)µ2
.Λχ(i

∗,
∐
i∗)

1−µ1−µ2 .

(2.16)

Now letting ρ → ∞, from the property of φ, we get φ (Λχ (i∗,
∐
i∗)) = 0 implying Λχ (i∗,

∐
i∗) = 0. This can be

concluded that i∗ is a fixed point of
∐
.

We suggest the following hypotheses for the uniqueness of the fixed point of
∐

.

(U) For all i, j ∈ Fix {
∐
} , we get α (i, j) ≥ 1.

Theorem 2.3. Adding the condition (U) to the hypotheses of the Theorem 2.1 (resp. Theorem 2.2), we attain the uniqueness of
the fixed point of

∐
.

Proof. We assume that j∗ is an another fixed point of
∐

, that is, Λχ (i∗, j∗) ̸= 0. From the condition (U), we get
α (i∗, j∗) ≥ 1. Owing to

∐
is a generalized interpolative α− (ψ,φ)Z−contractive mapping, we derive that

0 ≤ ζ (α (i∗, j∗)φ (Λχ (
∐
i∗,

∐
j∗)) , ψ (Ξ (i∗, j∗)))

= ζ (α (i∗, j∗)φ (Λχ (i∗, j∗)) , ψ (Ξ (i∗, j∗)))

< ψ (Ξ (i∗, j∗))− α (i∗, j∗)φ (Λχ (i∗, j∗)) ,

(2.17)

which is equivalent to
φ (Λχ (i∗, j∗)) ≤ α (i∗, j∗)φ (Λχ (i∗, j∗))

< ψ (Ξ (i∗, j∗))

< φ (Ξ (i∗, j∗)) ,

(2.18)

where
Ξ (i∗, j∗) = Λχ(i

∗, j∗)
µ1 .Λχ

(
i∗,

∐
i∗
)µ2

.Λχ

(
j∗,

∐
j∗
)1−µ1−µ2

= 0. (2.19)

This results in a contradiction. Hence,
∐

has a unique fixed point in XΛ.

Example 2.1. Let XΛ = R, Λχ(i, j) = 1
χ |i− j|, for all i, j ∈ XΛ, χ > 0 and

∐
i = i

2 . Presume the mapping
α : XΛ × XΛ → [0,∞) is defined by

α (i, j) =

{
1, i, j ∈ [0, 1]
0, otherwise.

Consider the mapping as ζ (t, s) = s− t, thus we get

α (i, j)φ
(
Λχ(

∐
i,
∐

j)
)
≤ ψ (Ξ(i, j)) . (2.20)

Also, if we take φ (t) = t
5 , ψ (t) = t

3 , µ1 = 1
2 , µ2 = 1

3 , χ = 3 and (i, j) ∈ [0, 1], then we demonstrate as in the figure
below that the left side of inequality is less than or equal to the right side. Thus, all the hypotheses of Theorem 2.1
are satisfied, and 0 is a unique fixed point of

∐
.

Figure 1. 3D representation of the inequality (2.20).
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Corollary 2.1. Consider XΛ to be a complete non-Archimedean modular metric space. Presume
∐

be a self mapping on XΛ

satisfying the following conditions:

(i)
∐

is a triangular α−admissible mapping,

(ii) there exists i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1,

(iii)
∐

is a continuous mapping,

(iv) if there exist α : XΛ × XΛ → [0,∞), ψ ∈ Ψ, φ ∈ Φ and µ1, µ2 ∈ (0, 1) such that φ (t) > ψ (t) , t > 0 and
µ1 + µ2 < 1 satisfying the inequality

α (i, j)φ
(
Λχ(

∐
i,
∐

j)
)
≤ ψ (Ξ(i, j)) (2.21)

for all i, j ∈ XΛ.

Then,
∐

admits a unique fixed point in XΛ.

Corollary 2.2. Let
∐

be a self-mapping on a complete non-Archimedean modular metric space XΛ. If there exist ψ ∈ Ψ and
µ1, µ2 ∈ (0, 1) such that φ (t) > ψ (t) , t > 0 and µ1 + µ2 < 1 satisfying the inequality

Λχ(
∐

i,
∐

j) ≤ ψ (Ξ(i, j)) (2.22)

for all i, j ∈ XΛ. Then,
∐

admits a unique fixed point in XΛ.

3. An application to a nonlinear Fredholm integral equation

In this part, we investigate the nonlinear Fredholm integral equation in the setting of a non-Archimedean
modular metric space. Let X = C[τ, υ] be a set of all real continuous function on [τ, υ] with a non-Archimedean
modular metric Λχ (γ, δ) = 1

χ |γ − δ| = 1
χmaxt∈[τ,υ] |γ − δ| , for all γ, δ ∈ C[τ, υ] and χ ∈ (0, 1). Then XΛ is a

non-Archimedean modular metric space. Now, we consider the nonlinear Fredholm integral equation

ι (a) = u (a) +
1

υ − τ

υ∫
τ

K (a, b, ι (b))db, (3.1)

where a, b ∈ [τ, υ]. Assume that K : [τ, υ] × [τ, υ] × X → R and u : [τ, υ] → R continuous where u(a) is a given
function in X.

Theorem 3.1. Suppose XΛ be a complete non-Archimedean modular metric space with

Λχ (γ, δ) =
1

χ
|γ − δ| = 1

χ
max
t∈[τ,υ]

|γ − δ| ,

for all γ, δ ∈ C[τ, υ], χ ∈ (0, 1) and
∐

: XΛ → XΛ be an operator defined by

∐
ι (a) = u (a) +

1

υ − τ

υ∫
τ

K (a, b, ι (b))db. (3.2)

If there exist ℘ ∈ [0, 1) , µ1, µ2 ∈ (0, 1) with µ1 + µ2 < 1 such that for all ι, ȷ ∈ XΛ, a, b ∈ [τ, υ] satisfying the following
inequality

|K (a, b, ι (a))−K (a, b, ȷ (a))| ≤ ℘Ξ (ι (a) , ȷ (a)) ,

Ξ (ι (a) , ȷ (a)) = |ι (a)− ȷ (a)|µ1 .|ι (a)−
∐
ι (a)|µ2 .|ȷ (a)−

∐
ȷ (a)|1−µ1−µ2 .

(3.3)

Then, the integral equation (3.1) has a unique solution in XΛ.
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Proof. From (3.1) and (3.2), we have

|
∐
ι (a)−

∐
ȷ (a)| ≤ 1

|υ−τ |

∣∣∣∣ υ∫
τ

K (a, b, ι (a)) db−
υ∫
τ

K (a, b, ȷ (a)) db

∣∣∣∣
≤ 1

|υ−τ |

υ∫
τ

|K (a, b, ι (a))−K (a, b, ȷ (a))| db

≤ ℘
|υ−τ |

υ∫
τ

Ξ (ι (a) , ȷ (a)) db

≤ ℘
|υ−τ |

υ∫
τ

|ι (a)− ȷ (a)|µ1 .|ι (a)−
∐
ι (a)|µ2 .|ȷ (a)−

∐
ȷ (a)|1−µ1−µ2db.

(3.4)

Taking maximum on both sides for all a ∈ [τ, υ], we get

Λχ (
∐
ι,
∐
ȷ) = 1

χ max
a∈[0,1]

|
∐
ι (a)−

∐
ȷ (a)|

≤ ℘
|υ−τ | max

a∈[τ,υ]

υ∫
τ

1
χ |ι (a)− ȷ (a)|µ1 . 1χ |ι (a)−

∐
ι (a)|µ2 . 1χ |ȷ (a)−

∐
ȷ (a)|1−µ1−µ2db

≤ ℘
|υ−τ | max

a∈[τ,υ]

[
1
χ |ι (a)− ȷ (a)|µ1 . 1χ |ι (a)−

∐
ι (a)|µ2 . 1χ |ȷ (a)−

∐
ȷ (a)|1−µ1−µ2

] υ∫
τ

db

= ℘
[
Λχ(ι, ȷ)

µ1 .Λχ(ι,
∐
ι)

µ2 .Λχ(ȷ,
∐
ȷ)

1−µ1−µ2

]
= ℘Ξ (ι, ȷ) .

(3.5)

Thus, all the conditions of Corollary 2.2 are satisfied by setting ψ (t) = ℘t for all t > 0, where ℘ ∈ [0, 1) and hence
the integral equation (3.2) has a unique solution in XΛ.
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3, 3-9 (1993).

[28] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α− ψ−contractive type mappings. Nonlinear Analysis. 75,
2154-2165 (2012).

[29] Karapınar, E., Kumam, P., Salimi, P.: On a α − ψ−Meir-Keeler contractive mappings. Fixed Point Theory and
Applications. 2013, 94 (2013).



64 E. Girgin

Affiliations

EKBER GIRGIN
ADDRESS: Sakarya University of Applied Sciences, Department of Engineering Fundamental Sciences, 54187,
Sakarya-Türkiye
E-MAIL: ekbergirgin@subu.edu.tr
ORCID ID:0000-0002-8913-5416


	Introduction
	Main results
	An application to a nonlinear Fredholm integral equation

