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 ABSTRACT  

 

In this study, numerical solutions of stochastic differential equation (SDE) systems have 

been analyzed and three different numerical methods used for solving these systems, the 

Milstein method, the Simplified Second-Order Taylor Scheme, and the Stochastic Runge-Kutta 

(SRK) method, have been compared. The Kubo oscillator model has been considered and the 

stochastic dynamics of this model have been solved using numerical methods. Initially, the 

general structure of SDEs is introduced, and the theoretical foundations of the methods used for 

solving these systems are explained. 

In the study, the stochastic model of the Kubo oscillator was solved numerically using the 

Milstein method, the Simplified Second-Order Taylor Scheme, and the SRK method. The results 

obtained were compared with exact solutions. In the numerical computations, the accuracy of 

all three methods is analyzed for different discretization counts and the results were supported 

by graphs and error tables. The comparisons revealed that the Simplified Second-Order Taylor 

Scheme provided more accurate solutions compared to the Milstein method. It is observed that 

the Taylor method and the SRK 2-stage method gave close results. Additionally, it was observed 

that increasing the number of discretizations brought both methods closer to the exact solution. 
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1 INTRODUCTION 

Stochastic differential equations (SDEs) are mathematical tools developed and widely 

used to model the effects of uncertainty in various fields. These equations are employed in 

disciplines such as physics, biology, engineering, and economics to understand how systems 

respond to random variables. For instance, SDEs can enhance the realism of modeling changes 

in population dynamics in biological systems under uncertainty [1]. Similarly, in finance, 

effective risk management approaches have been developed by modeling market fluctuations 

using SDEs [2]. 

The Kubo oscillator is a well-known model used to study uncertainties and random 

effects when modeling with stochastic differential equations [3]. This model is particularly 

suitable for evaluating the dynamics of stochastic processes and the performance of various 

numerical methods applied to these processes. 

The Kubo oscillator is a cornerstone model in stochastic dynamics, blending 

deterministic behavior with random fluctuations to describe systems influenced by noise. 

Initially introduced by Kubo to model spectral diffusion and line broadening in nuclear 

magnetic resonance (NMR), it has since evolved into a versatile tool used across various 

scientific and engineering disciplines [4]. The oscillator’s dynamics, governed by the interplay 

between a damping term and stochastic forcing, enable it to capture the complexity of processes 

ranging from molecular interactions in fluctuating environments [5].  

The Kubo oscillator, a fundamental example of a stochastic Hamiltonian system, is a 

subject of extensive study for the purpose of comprehending the interplay between 

deterministic Hamiltonian dynamics and stochastic noise. Its structural characteristics offer 

insights into the influence of random fluctuations on physical and mathematical systems, thus 

establishing it as a pivotal model in the field of stochastic dynamics [6]. 

In addition, the Kubo oscillator effectively models systems affected by high-frequency 

oscillations and multiplicative noise, making it a cornerstone in the study of stochastic dynamics 

[7]. 

The Milstein method is frequently used for solving stochastic differential equations and 

provides higher accuracy as an extension of the Euler-Maruyama method [8]. This method is 

especially preferred for reducing the error rate in stochastic models. On the other hand, the 

Simplified Second-Order Taylor Scheme aims to provide more precise solutions by considering 

higher-order terms of stochastic equations [9]. 
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The fact that analytical solutions for SDEs are often not feasible increases the 

importance of numerical solution methods. In fields such as biology and ecology, modeling 

using these equations provides essential insights into understanding the impact of uncertainties 

in the real world [10]. However, in such modeling, ensuring accuracy and optimizing 

computational costs are equally important. Comparing numerical approaches in terms of 

computational complexity and accuracy is therefore essential [11]. 

Previous studies on the Kubo oscillator have shown that this model effectively 

represents the dynamics of stochastic oscillations and provides a suitable foundation for testing 

numerical methods. Fox, Roy, and Yu (1987) demonstrated that different simulation algorithms, 

including those for white and colored noise, can be effectively tested using the Kubo oscillator, 

and that the use of colored noise significantly enhances the accuracy of the numerical solutions 

compared to white noise simulations, reducing spurious decays in the oscillator amplitude [12]. 

In this study, the Milstein method, the Simplified Second-Order Taylor Scheme and 

Stochastic Runge-Kutta method are applied to the Kubo oscillator model, and the obtained 

numerical results are compared with exact solutions. Additionally, different discretization 

strategies are used to analyze the accuracy and computational efficiency of both methods. 

In conclusion, this study aims to compare the performance of three different numerical 

methods used for SDEs within the context of the Kubo oscillator model. This comparison 

highlights the advantages and disadvantages of these methods, providing valuable insights into 

determining the most suitable method for solving SDEs. 

2 MATERIAL AND METHOD 

2.1 Systems of Stochastic Differential Equations 

Systems of stochastic differential equations are used for vector-valued states or high-

order stochastic differential equations. The general form of a 𝑑-dimensional stochastic 

differential equation is described by [9] as following: 

𝑑𝑋𝑡 = 𝑓(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑋𝑡)𝑑𝑊𝑡 (1) 

where 𝑊 = {𝑊𝑡, 𝑡 ≥ 0} Wiener process is m-dimensional and its components 𝑊𝑡
1, 𝑊𝑡

2, … , 𝑊𝑡
𝑚 

are independent Wiener processes with respect to a common family of 𝜎 − algebras {𝐴𝑡, 𝑡 ≥ 0}, 

𝑑-dimensional vector function is 𝑓: [0, 𝑇] × ℝ𝑑 → ℝ𝑑 and  𝑑 × 𝑚-matrix function is 

𝑔: [0, 𝑇] × ℝ𝑑 → ℝ𝑑×𝑚. Stochastic integral equation form of (1) is 



G. Orucova Büyüköz, T. Partal, M. Bayram / BEU Fen Bilimleri Dergisi, 14 (1), pp. 260-272, 2025 

 

 

263 

𝑋𝑡 = 𝑋𝑡0
+ ∫ 𝑓(𝑟, 𝑋𝑟)𝑑𝑟 +

𝑡

𝑡0

∫ 𝑔(𝑟, 𝑋𝑟)𝑑𝑊𝑟

𝑡

𝑡0

 (2) 

𝑖.th component of (2) is 

𝑋𝑡
𝑖 = 𝑋𝑡0

𝑖 + ∫ 𝑓𝑖(𝑟, 𝑋𝑟)𝑑𝑟

𝑡

𝑡0

+ ∑ ∫ 𝑔𝑖,𝑘(𝑟, 𝑋𝑟)𝑑𝑊𝑟
𝑘

𝑡

𝑡0

𝑚

𝑘=1

 (3) 

where 𝑖 = 1,2, … , 𝑑. 

The existence and uniqueness for strong solutions of (1) are proven in [9]. There is a 

relation between the Ito stochastic differential equation and the Stratonovich stochastic 

differential equation as follows: 𝑋𝑡 solution of (1) is also a solution of the Stratonovich 

differential equation as; 

𝑑𝑋𝑡 = 𝑓(̅𝑡, 𝑋𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑋𝑡)𝑜𝑑𝑊𝑡 (4) 

where 

𝑓 �̅�(𝑡, 𝑋𝑡) = 𝑓𝑖(𝑡, 𝑋𝑡) − ℎ𝑖(𝑡, 𝑋𝑡) (5) 

and 

ℎ𝑖(𝑡, 𝑋𝑡) =
1

2
∑ ∑ 𝑔𝑛,𝑘(𝑡, 𝑋𝑡)

𝜕𝑔𝑖,𝑘

𝜕𝑥𝑛

(𝑡, 𝑋𝑡)

𝑚

𝑘=1

𝑑

𝑛=1

 (6) 

for 𝑖 = 1,2, … , 𝑑. 

The general form of 𝑑-dimensional linear stochastic differential equations is 

𝑑𝑋𝑡 = [𝐹(𝑡)𝑋𝑡 + 𝑓(𝑡)]𝑑𝑡 + ∑[𝐺𝑙(𝑡)𝑋𝑡 + 𝑔𝑙(𝑡)]

𝑚

𝑙=1

𝑑𝑊𝑡
𝑙  (7) 

where 𝐹(𝑡), 𝐺1(𝑡), 𝐺2(𝑡), … , 𝐺𝑚(𝑡) are 𝑑 × 𝑑-matrix function and 

𝑓(𝑡), 𝑔1(𝑡), 𝑔2(𝑡), … , 𝑔𝑚(𝑡) are 𝑑-dimensional vector functions. Solution of (7) is 

𝑋𝑡 = 𝛹𝑡,𝑡0
{𝑋𝑡0

+ ∫ 𝛹𝑟,𝑡𝑜
−1 (𝑓(𝑟) − ∑ 𝐺𝑙(𝑟)𝑔𝑙(𝑟)

𝑚

𝑙=1

) 𝑑𝑟 + ∑ ∫ 𝛹𝑟,𝑡0
−1 𝑔𝑙(𝑟)𝑑𝑊𝑟

𝑙

𝑡

𝑡0

𝑚

𝑙=1

𝑡

𝑡0

} (8) 

where 𝛹𝑡,𝑡0
 is 𝑑 × 𝑑-fundamental matrix which satisfying 𝛹𝑡0,𝑡0

= 𝐼 and the homogeneous 

matrix stochastic differential equation 
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𝑑𝛹𝑡,𝑡0
= F(t)𝛹𝑡,𝑡0

𝑑𝑡 + ∑ 𝐺𝑙(𝑡)

𝑚

𝑙=1

𝛹𝑡,𝑡0
𝑑𝑊𝑡

𝑙  (9) 

Because the systems of linear stochastic differential equations cannot be solved 

analytically. Therefore, we need numerical solutions which are given in [10], [13], [14]. 

2.2 Numerical Methods for Stochastic Differential Equations 

We use in our study three numerical methods named with the Milstein method, the 

Simplified order 2 Taylor scheme, and the SRK method. 

2.2.1 Milstein Method 

The Milstein method is a numerical method used to approximate solutions to stochastic 

differential equations (SDEs). It is particularly well-known for achieving strong order 1 

convergence under certain conditions, making it more accurate than the other simple methods 

(which has strong order 0.5). The Milstein scheme has the following recurrence formula for 𝑑-

dimensional stochastic differential equations when 𝑚 = 1.   𝑖.th component of the Milstein 

scheme for (1) given in [8] as 

𝑋𝑘+1
𝑖 = 𝑋𝑘

𝑖 + 𝑓𝑖(𝑡, 𝑋𝑡)∆𝑡 + 𝑔𝑖(𝑡, 𝑋𝑡)∆𝑊𝑘 +
1

2
(∑ 𝑔𝑛

𝜕𝑔𝑖

𝜕𝑥𝑛

𝑑

𝑛=1

(𝑡, 𝑋𝑡)) [(∆𝑊𝑘)2 − ∆𝑡] (10) 

where 

∆𝑊𝑘 = 𝑊𝑡𝑘+1
− 𝑊𝑡𝑘

, 𝑖 = 1,2, … , 𝑑, 𝑘 = 1,2, … , 𝑁 .  

2.2.2 Simplified Order 2 Taylor Scheme 

The Simplified Second-Order Taylor Scheme provides significant advantages in solving 

stochastic differential equations (SDEs) by incorporating higher-order terms that improve 

accuracy and reduce errors. Unlike first-order methods such as Euler-Maruyama, which have a 

strong convergence rate of (O(∆t1/2)) or the Milstein Method, which has a strong convergence 

rate of (O(∆t)), the Second-order scheme achieves a faster convergence rate of (O(∆t2)). This 

improvement allows for more precise approximations, especially in systems with nonlinear 

dynamics and significant stochastic influences. By accounting for higher-order interactions, the 

method effectively captures the interplay between deterministic and stochastic components, 
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ensuring a more faithful representation of the system’s behavior. Additionally, this scheme 

mitigates accumulated errors in long-term simulations, enhancing stability and reliability over 

time [9]. 

In the  𝑑-dimensional case, the 𝑖.th component of the Simplified Order 2 Taylor scheme 

for (1) is given in [15] as follows: 

𝑋𝑘+1
𝑖 = 𝑋𝑘

𝑖 + ∑ 𝑔𝑖,𝑙∆𝑊𝑘
𝑙 + 𝑓𝑖∆𝑡

𝑚

𝑙=1

+
1

2
∑ (∑ 𝑔𝑛,𝑝

𝜕𝑔𝑖,𝑙

𝜕𝑥𝑛

𝑑

𝑛=1

) (∆𝑊𝑘
𝑝∆𝑊𝑘

𝑙 + 𝑈𝑝𝑙,𝑘)

𝑚

𝑝,𝑙=1

 

+
1

2
∑ (∑ 𝑔𝑗,𝑙

𝜕𝑓𝑖

𝜕𝑥𝑗

𝑑

𝑗=1

+
𝜕𝑔𝑖,𝑙

𝜕𝑡
+ ∑ 𝑓𝑗

𝜕𝑔𝑖,𝑙

𝜕𝑥𝑗

𝑑

𝑗=1

𝑚

𝑙=1

+
1

2
∑ ℎ𝑛,𝑗

𝜕2𝑔𝑖,𝑙

𝜕𝑥𝑛𝜕𝑥𝑗
) ∆𝑡∆𝑊𝑘

𝑙

𝑑

𝑛,𝑗=1

 (11) 

+
1

2
(

𝜕𝑓𝑖

𝜕𝑡
+ ∑ 𝑓𝑛

𝜕𝑓𝑖

𝜕𝑥𝑛
+

1

2

𝑑

𝑛=1

∑ ℎ𝑛,𝑗
𝜕2𝑓𝑖

𝜕𝑥𝑛𝜕𝑥𝑗

𝑑

𝑛,𝑗=1

) (∆𝑡)2 

where 𝑘 = 1,2, … , 𝑁 and 𝑈𝑝𝑙,𝑘 ,𝑝, 𝑙 = 1,2, … , 𝑚 are independent two-point distributed random 

variables with 

𝑃(𝑈𝑝𝑙,𝑘 = ∆) =
1

2
= 𝑃(𝑈𝑝𝑙,𝑘 = −∆)      𝑖𝑓 𝑙 < 𝑝 

𝑈𝑝𝑝,𝑘 = −∆ 

𝑈𝑝𝑙,𝑘 = −𝑈𝑙𝑝,𝑘      𝑖𝑓 𝑙 > 𝑝 

2.2.3 Two Stage Stochastic Runge-Kutta Method 

The scheme of the Stochastic Runge-Kutta (SRK) method for a system of stochastic 

differential equations according to the 𝑠 −stage (𝑠 ≥ 1) is as follows [15]: 

𝑋𝑘+1 = 𝑋𝑘 + ∑ 𝛼𝑗

𝑠

𝑗=1

𝑓(𝑡𝑘 + 𝜇𝑗∆𝑡, 𝜂𝑗)∆𝑡 + ∑ 𝛽𝑗

𝑠

𝑗=1

𝑔(𝑡𝑘 + 𝜇𝑗∆𝑡, 𝜂𝑗)∆𝑊𝑘 (12) 

where 𝑘 = 1,2, … , 𝑁 and 𝜇1 = 0, 𝜂1 = 𝑋𝑘   for 𝑗 = 1,2, … 𝑠 

𝜂𝑗 = 𝑋𝑘 + ∑ 𝜆𝑗𝑙

𝑗−1

𝑙=1

𝑓(𝑡𝑘 + 𝜇𝑙∆𝑡, 𝜂𝑙)∆𝑡 + ∑ 𝛾𝑗𝑙

𝑗−1

𝑙=1

𝑔(𝑡𝑘 + 𝜇𝑙∆𝑡, 𝜂𝑙)∆𝑊𝑘 

and 𝛼𝑗 , 𝛽𝑗 are to provide  ∑ 𝛼𝑗
𝑠
𝑗=1 = ∑ 𝛽𝑗 = 1𝑠

𝑗=1 .  
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The coefficients occurring in (12) can be displayed by generalising Butcher arrays; 

𝜇2 

𝜇3 

⋮ 

𝜇𝑠 

𝜆21 

𝜆31      𝜆32 

⋮            ⋮       ⋱ 

𝜆𝑠1      𝜆𝑠2   ⋯     𝜆𝑠,𝑠−1 

𝛾21 

𝛾31     𝛾32 

⋮            ⋮       ⋱ 

𝛾𝑠1     𝛾𝑠2   ⋯     𝛾𝑠,𝑠−1 

 𝛼1        𝛼2   ⋯     𝛼𝑠−1       𝛼𝑠 𝛽1       𝛽2   ⋯     𝛽𝑠−1       𝛽𝑠 

In our study, the SRK method for 2-stage is used and coefficients are taken from [16] 

1 1 1 

 1

2
        

1

2
    

1

2
       

1

2
 

The algorithms of the Milstein, the Simplified Order 2 Taylor, and the SRK methods are 

given in Figure 1. 

Our aim in this paper is to compare these numerical methods. We compare the exact 

solution with numerical solutions that we obtain using the MATLAB program. We aim to 

demonstrate the errors between the exact solution and each numerical solution. We support our 

work with graph and error tables. 

 
Figure 1. Flowchart of the Milstein, the Simplified Order 2 Taylor, and the SRK methods. 
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3 NUMERICAL EXPERIMENTS AND RESULTS 

Consider the Kubo oscillator in our study. This oscillator is used in many works to 

demonstrate the efficiency of numerical methods. The general form of the Kubo oscillator, 

which is given in [1], is 

(
𝑑𝑋𝑡

1

𝑑𝑋𝑡
2) = (

0 −𝛼
𝛼 0

) (
𝑋𝑡

1

𝑋𝑡
2) 𝑑𝑡 + (

0 −𝛾
𝛾 0

) (
𝑋𝑡

1

𝑋𝑡
2) 𝑜𝑑𝑊𝑡 (13) 

with 𝑋0
1 = 𝑥1, 𝑋0

2 = 𝑥2 where 𝛼 ,  𝛾 are real and  𝑡 ∈ [0, 𝑇]. For initial values 𝑋0
1 = 1 , 𝑋0

2 = 0, 

the exact solution of (13) is 

𝑋𝑡
1 = cos(𝛼𝑡 + 𝛾𝑊𝑡) (14) 

𝑋𝑡
2 = sin(𝛼𝑡 + 𝛾𝑊𝑡) 

Coefficients 𝛼 = 2, 𝛾 = 0.3 and exact solutions are taken from [3] (David Cohen who 

used these coefficients for testing his method) and initial values are 𝑋0
1 = 1, 𝑋0

2 = 0 , 𝑇 = 10. 

Using (5) and (6) formulas we obtain Ito stochastic differential equation system for (13) as 

follow; 

𝑑𝑋𝑡
1 = (−2𝑋𝑡

2 −
(0.3)2

2
𝑋𝑡

1) 𝑑𝑡 − 0.3𝑋𝑡
2𝑑𝑊𝑡 (15) 

𝑑𝑋𝑡
2 = (2𝑋𝑡

1 −
(0.3)2

2
𝑋𝑡

2) 𝑑𝑡 + 0.3𝑋𝑡
1𝑑𝑊𝑡 

where 𝑑 = 2, 𝑚 = 1. 

We solve numerically (15), using the Milstein scheme (10) for 𝑋0
1 = 1, 𝑋0

2 = 0, 𝑇 = 10 

and 𝑁 = 10000 discretization by the MATLAB program. There is numerical approximation 

and an exact solution in the same graph in Figure 2. In this figure, the exact solution is plotted 

with a red line, and the Milstein approximation is plotted with a blue line. As seen in Figure 2, 

the approximate solution and the exact solution are very close to each other. 
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Figure 2. The exact solution with the Milstein Approximation of the Kubo Oscillator for 

𝑵 = 𝟏𝟎𝟎𝟎𝟎, T=10, 𝜶 = 𝟐, 𝜸 = 𝟎. 𝟑. 

Analogously, using the simplified order 2 Taylor scheme (11) for solving (15), we obtain 

Figure 3, where the exact solution is plotted with a red line and the Simplified Order 2 Taylor 

Scheme approximation is plotted with a blue line. It is seen that the solutions are very close. 

 

Figure 3. The exact solution and the Simplified 2 order Taylor Approximation of the Kubo 

Oscillator for 𝑵 = 𝟏𝟎𝟎𝟎𝟎, T=10, 𝜶 = 𝟐, 𝜸 = 𝟎. 𝟑. 
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In addition, using the SRK method for 2-stage solving (15), we obtain Figure 4, where 

the exact solution is plotted with a red line and the SRK approximation is plotted with a blue 

line. 

 

Figure 4. The exact solution and the SRK for 2-Stage Approximation of the Kubo 

Oscillator for 𝑵 = 𝟏𝟎𝟎𝟎𝟎, T=10, 𝜶 = 𝟐, 𝜸 = 𝟎. 𝟑. 

For efficiency both approximations are given in the same graph in Figure 5. There the 

exact solution is plotted with a red line, the Milstein approximation is plotted with a green line, 

the simplified order 2 Taylor scheme approximation is plotted with a blue line, and the SRK 

approximation is plotted with a magenta line. 

 

Figure 5. The exact solution with the Milstein Approximation Simplified 2 Order Taylor 

Approximation and the SRK Approximation of the Kubo Oscillator for 𝑵 = 𝟏𝟎𝟎𝟎𝟎, T=10, 

𝜶 = 𝟐, 𝜸 = 𝟎. 𝟑. 
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To compare the solutions obtained by the Milstein, the Simplified 2 Order Taylor 

methods, and the SRK methods, the mean absolute error and mean relative error were 

calculated. For different 𝑁 discretizations, there are the mean absolute errors (MAE) obtained 

with the Milstein Simplified 2 Order Taylor and SRK methods using following scheme; 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑋𝑘 − �̃�𝑘|

𝑁

𝑘=1

 (16) 

where 𝑋𝑘 and �̃�𝑘 represent the exact and approximate solutions, respectively, in iteration 𝑘. 

Table 1. Mean absolute errors of the Milstein, Simplified 2 Ordet Taylor and SRK methods 

for different discretizations. 

𝑵 Milstein Method 
Simplified 2 Order 

Taylor Method 

SRK Method for  

2-Stage 

 𝑋𝑡
1 𝑋𝑡

2 𝑋𝑡
1 𝑋𝑡

2 𝑋𝑡
1 𝑋𝑡

2 

104 0.0059 0.0057 0.0036 0.0035 0.00357 0.00362 

105 6.8179e-04 7.6157e-04 1.6650e-04 2.0252e-04 1.6650e-04 2.0252e-04 

106 6.6710e-05 7.5789e-05 6.5196e-05 7.2913e-05 6.5197e-05 7.2911e-05 

 

Table 1 shows the mean absolute errors of the three methods for different 𝑁 

discretizations. It is observed that the solutions obtained by the Simplified 2 Order Taylor 

method are more effective than the solutions obtained by the Milstein method. Runge-kutta 2-

stage and Simplified 2 Order Taylor solutions are close to each other. 

In addition, for different 𝑁 discretizations, there are the mean relative errors (MRE) 

obtained with the three methods using the following scheme: 

𝑀𝑅𝐸 =
1

𝑁
∑ |

𝑋𝑘 − �̃�𝑘

𝑋𝑘
|

𝑁

𝑘=1

 (17) 

where 𝑋𝑘 and �̃�𝑘 represent the exact and approximate solutions, respectively, in iteration 𝑘. 

Table 2. Mean relative errors of the Milstein, Simplified 2 Ordet Taylor and SRK method 

for different discretizations. 

𝑵 Milstein Method 
Simplified 2 Order 

Taylor Method 

SRK Method for  

2-Stage 

       𝑋𝑡
1        𝑋𝑡

2 𝑋𝑡
1 𝑋𝑡

2 𝑋𝑡
1 𝑋𝑡

2 

104 2.0440e-05 9.4782e-06 2.1132e-08 7.7765e-09 2.1135e-08 7.7769e-09 

105 3.4300e-07 1.1335e-06 5.4836e-10 1.6983e-09 5.4839e-10 1.6988e-09 

106 1.8974e-09 1.4597e-09 2.1355e-12 1.5529e-12 2.1357e-12 1.5531e-12 
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Table 2 shows the mean relative errors of the three methods for different 𝑁 

discretizations. It can be seen that the solutions obtained with the simplified 2 Ordet Taylor 

method are better than the solutions obtained with the Milstein method. 

4 RESULTS AND DISCUSSION 

In this paper we compare the Milstein scheme and the Simplified 2 Order Taylor scheme 

for the Kubo oscillator. For each scheme we show the approximate solution and the exact 

solution. We also calculate the mean absolute error and the mean relative error between the 

numerical solutions and the exact solution. According to our results, we can say that the 

numerical solution obtained from the Simplified 2 Order Taylor scheme is closer to the exact 

solution than the numerical solution obtained from the Milstein method. From the error table, 

we can say that the numerical solutions get closer to the exact solution as the number of 

discretizations increases for each numerical scheme. It is also observed that the mean relative 

error is smaller than the mean absolute error for both methods. The reason is that Simplified 2 

Order Taylor’s strong convergence order is greater than Milstein’s strong convergence order. 

The errors obtained from the SRK 2-stage and Simplified 2 Order Taylor solutions are lower 

than the Milstein solution. The Taylor and SRK 2-stage solutions are very close to each other. 
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