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Abstract   Öz 

The preference of a comprehensive method usage is as 

important as less hardware usage on digital device-

based implementations. The mathematical series 

expansions have a widespread usage in the 

transformation of expressions into simpler forms. The 

exponential, trigonometric, logarithmic, etc. functions 

are usually converted to simpler expressions for digital 

implementation easiness. In these implementations, it is 

an expected output that as the operands of the series 

increases, the revised model converges to the original 

one. However, the most appropriate number 

determination of these operands is important for 

hardware efficiency. In here, the exponential expression 

of the Adaptive Exponential Integrate and Fire (ADEX) 

neuron model is expanded up to the tenth operand of the 

Taylor series. Then, an optimum operand number is 

identified for getting both hardware utilization 

efficiency and neuronal meaningfulness. The 

differences between the original and revised models are 

compared with the error calculations and the neuronal 

observations. Lastly, the revised ADEX neuron model 

is realized by FPGA device to prove the efficiency of 

the proposed adaptation.  

 Dijital cihaz tabanlı gerçekleştirimlerde kapsamlı bir 

yöntemin kullanılmasının tercihi, az donanım kullanımı 

kadar önemlidir. Matematiksel seri açılımları, ifadelerin 

daha basit biçimlere dönüştürülmesinde yaygın bir 

kullanıma sahiptir. Üstel, trigonometrik, logaritmik vb. 

işlevler genellikle dijital uygulama kolaylığı için daha 

basit ifadelere dönüştürülür. Bu uygulamalarda, serinin 

işlenenleri arttıkça, revize edilmiş modelin orijinal 

modele yakınsaması beklenen bir çıktıdır. Bununla 

birlikte, bu işlenenlerin en uygun sayısını belirlenmesi 

donanım verimliliği için önemlidir. Burada, 

Uyarlanabilir Üstel Entegre ve Ateşlemeli (ADEX) 

nöron modelinin üstel ifadesi, Taylor serisinin onuncu 

işlenenine kadar genişletilmiştir. Daha sonra, hem 

donanım kullanım verimliliği hem de nöronal anlamlılığı 

elde etmek için optimum bir işlenen sayısı belirlenmiştir. 

Orijinal ve revize edilmiş modeller arasındaki farklar, 

hata hesaplamaları ve nöronal gözlemlerle 

karşılaştırılmıştır. Son olarak, revize edilmiş ADEX 

nöron modeli, önerilen adaptasyonun verimliliğini 

kanıtlamak için FPGA cihazı tarafından 

gerçekleştirilmiştir.  

Keywords: Adaptive exponential integrate and fire 

(ADEX) neuron model, Field Programmable Gate 

Array (FPGA), Digital implementation, Neuromorphic 

engineering. 

 Anahtar kelimeler: Uyarlanabilir üstel entegre ve 

ateşlemeli (ADEX) nöron modeli, Alan Programlanabilir 

Kapı Dizisi (FPGA), Dijital gerçekleştirim, Nöromorfik 

mühendislik. 

 
1 Introduction 

The recent scientific studies focus on the brain 

functionality from enlightened of its neuronal behavior and 

structure. Its functionality and morphological structure are 

based on a collaborative working of the neurons. Thus, the 

investigation of a single neuron becomes important research 

issue for understanding the structure of the brain and nervous 

system. The dynamic behaviors of a real neuron are expressed 

by the various neuron model and these models are usually 

represented by the interrelated ordinary differential equations 

(ODEs) [1-5]. When any biological neuron model defines the 

response of a neuron, the scope of this model can be classified 

according to the reflection level of the real neurons’ 

biophysical functionalities to the mathematical definitions. 

These model definitions can be generalized into three 

categories [6]: The models, which reflect the trans-inductance 

definitions such as Hodgkin-Huxley (HH) and Morris-Lecar 

(ML) models, are in the first category and they describe the 

details about the biophysical functionalities [4, 5]. The second 

category involves the connectionist models such as FitzHugh–

Nagumo and Hindmarsh-Rose models [7, 8]. These type 

models focus on the production of the membrane potential 

rather than the biological functionalities. The last category is 

neural networks such as Wilson-Cowan model that take into 

account the synaptic connections between the neuronal 

populations [9]. This study dwells on the Adaptive 
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Exponential Integrate and Fire (ADEX) neuron model. This 

model is a connectionist neuron model, and it is derived from 

the Integrate&Fire (IF) type model that is one of the basic 

neuron models [10]. After IF model, its spike-triggered 

adaptation integrate and fire mechanism version was 

introduced by Fuortes and Mantegazzini [11]. Subsequently, 

the leaky-IF model with quadratic descriptions has been 

introduced for spike-triggered adaptation and they were 

combined by Treves [12] and Latham et al. [13]. Then, the 

reset parameter has been added to these definitions as the 

second state variable Izhikevich [1] and Richardson [14]. 

Lastly, the parabolic expression in the Izhikevich model is 

changed by an exponential function in the ADEX neuron 

model and finally, the ADEX neuron model is presented to the 

literature [15]. 

On the other hand, several studies about the hardware 

emulator circuits of the biological structure, especially 

biological neuron models are available in literature [17–20]. It 

has been recently uttered that the bio-inspired structures take 

place in the information processing process and the control 

structure in the near future [21]. Thus, the cost-effective 

hardware implementations of the neurons in a network 

structure attract the attention. The neuronal structures, which 

are implemented by the analog [22-28] and the digital [16], 

[29-31] hardware, are introduced to literature. The processing 

capacities and the realization speeds of the used hardware, the 

achieving sufficient accuracy and the providing a 

comprehensive solution are their desired features. However, 

the specifying of hardware that offers all these features 

together is a hard problem. While it is preferred to usages of 

biological neuron model that has the detailed descriptions of 

the biological processes in the numerical simulations, two 

important key points should be considered in the electronic 

hardware realization process: i) There should be no change in 

the model dynamics in the realization process, and ii) the used 

hardware should supply a reasonable part of the mentioned 

features [32]. While the hardware capacity problems are 

encountered in the analog programmable platforms-based 

implementations, the realization complicacy of the non-linear 

expressions arises in the digital programmable platforms. The 

mentioned problem about analog platforms is solved by 

increasing the number of used elements. The mentioned 

problem with digital platforms is generally tried to be solved 

by simplifying the nonlinear expression in the model [33-36]. 

For example, in Ref [33], the parabolic expression in the 

Izhikevich neuron model has been transformed into piecewise-

linear functions for realization easiness on the digital 

environments. After this transformation, stochastic methods 

have been used successfully to identify the optimum values of 

some parameters process in Ref [34]. In Ref [35], two coupled 

HR neurons have been modified for digital implementation 

expediency and a low-cost hardware realization. The 

mathematical definition of the chemical synaptic connection 

between HR neurons have been transport a approximate 

function in Ref [36] and the chemical synaptic connection 

between neurons have been able to embedded to the digital 

hardware. Additionally, the exponential expression of the 

ADEX Neuron model has been simplified by utilizing the 

successful approaches for digital implementation easiness in 

literature [37-39]. This paper presents also an alternative 

approach for digital implementation of the ADEX neuron 

model with the programmable digital hardware. The 

mathematical series expansion method offers a general 

solution for contractions of the nonlinear expressions on the 

digital platforms. The exponential, trigonometric, logarithmic 

etc. functions have been converted to the addition and 

multiplication operations.  The number of multiplexer is 

limited in digital hardware, so it is generally preferable to use 

as little as possible. However, i) if the converting expression 

is consistent with the characteristic of the original model, ii) 

unless the model accuracy is compromised, iii) if it has been 

used a reasonable number of multiplexer, and iv) most 

importantly, if the proposed alternative approach has a 

comprehensive application field, it is considered that the 

discussing of this alternative approach makes significant 

contributions to literature. In here, the exponential expression 

of the ADEX neuron model has been re-constructed by 

utilizing from the Taylor series expansion for realization 

easiness on digital platform. As the number of operands of the 

series expansion increases, it is an expected output that the 

error between modified and original models decreases. Thus, 

the exponential expression is expanded up to the tenth operand 

in the Taylor series. As the order of Taylor series increases, it 

is required to use the more multiplexer. Thus, both the error 

calculations have been reported and the neuronal dynamics of 

the modified and original systems are observed with the 

numerical simulations. According to these error calculation 

and the numerical simulation results, the fourth order 

expansion is suitable for the simplification process of this 

exponential nonlinear expression. As a verification of 

efficiency of this conversion, the ADEX neuron model, which 

consists of four operands-Taylor series instead of the 

exponential function, is realized with Field Programmable 

Gate Array (FPGA) platform, successfully.  

This paper is organized as follows: After the introducing 

of the ADEX definition and Taylor series expansion, the 

numerical simulation results, the error calculation and the 

correlation analyses of original and modified systems are 

presented in Section II. The hardware verification results of 

the proposed process are given by using FPGA-based 

implementations results in Section-III. The obtained outcomes 

are discussed in the last section.   

2 Adaptive Exponential Integrated and Fire (ADEX) 

Neuron Model  

The ADEX neuron model is in the connectionist neuron 

models category and it is based on the IF type model that is 

one of the simplest neuron models. The ADEX neuron is 

derived from the Izhikevich neuron model by changing the 

nonlinear expressions. The Izhikevich neuron model points 

out with its computational efficiency and modeling 

achievement in terms of ability to exhibit the rich neural 

dynamics. Similar to Izhikevich’s one, the ADEX neuron 

model is a successful neuron model and it is defined by ODEs 

in Equation 1: 
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𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿∆𝑇 exp (

𝑉 − 𝑉𝑇

∆𝑇
) + 𝐼𝑖𝑛𝑗 − 𝜔 

𝜏𝜔

𝑑𝜔

𝑑𝑡
= 𝛼(𝑉 − 𝐸𝐿) − 𝜔 

(1) 

 

In Equation 1, the {𝑉, 𝐶, 𝜔, 𝛼, 𝜏𝑤 , 𝐼, 𝑔𝐿 , 𝐸𝐿 , 𝑉𝑇 , ∆𝑇} 

symbols represents the membrane potential and capacitance, 

the adaptation variable, adaptation coupling parameter and the 

adaptation time constant, the input current, leak conductance 

and the leak reversal potential, the threshold voltage and the 

slope factor, respectively. The working process in this neuron 

model is as follows: The external input current (𝐼) is induced 

the membrane potential (𝑉) by exceeding the threshold 

voltage (𝑉𝑇). The exponential term provides positive feedback 

and it causes the occurrence of the spike behavior.  

Additionally, the exponential term corresponds to the 

sodium channel and the sodium channel causes spike 

formation in the Hodgkin-Huxley-type neuron model. The 

positive feedback causes the membrane potential to go to 

infinity and the reset conditions in Equation 2 are applied in 

order to prevent infinitive definitions when the membrane 

potential reaches a finite value. 

 
 𝑉 > 0 ⟹ 𝑉 →  𝑉𝑅&  𝜔 → 𝜔𝑅 = 𝜔 + 𝑏 (2) 

 

The reset value of the membrane potential is equalized to 

𝑉𝑅 and the 𝜔 reset value is determined by utilizing the constant 

𝑏 value. The substantial neuronal patterns form by the setting 

these variables to the optimum values [40]. The list of 

neuronal dynamics and the values of these parameters are 

given in Table 1 [41]. 

As mentioned in introduction part, the digital device-based 

implementations of the nonlinear expressions (as the 

exponential function in Equation 1) are difficult. The 

mathematical series expansion methods offer a general 

solution for contractions of these nonlinear expressions on the 

digital platforms. Not only the exponential expression in 

Equation 1, but many more functions (trigonometric, 

logarithmic, etc.) can be also converted to a combination of 

addition/subtraction and multiplication/division operations. 

Taylor series expansion method is the most well-known of 

them [42-44]. Taylor series expanses a mathematical function 

to the infinitive sums of the converted function that is 

calculated from the derivative at a single point of the original 

functions. When this single point is equal to zero, this series is 

named a Maclaurin series [44]. It is common practice to use a 

finite number of operands to extend a function to a series. The 

partial sum of the 𝑛 + 1 operands of the Taylor series is an 𝑛𝑡ℎ 

-order polynomial. The approximate function converges to the 

original one at the higher 𝑛 orders. The Taylor series is a 

power series (𝑚) and its general expansion is as in Equation 

3 [42, 43]:  

𝑓(𝑚) +
𝑓′(𝑚)

1!
(𝑥 − 𝑚) +

𝑓′′(𝑚)

2!
(𝑥 − 𝑚)2        

            +
𝑓′′′(𝑚)

3!
(−𝑚)3+. . . +

𝑓𝑛(𝑚)

𝑛!
(𝑥 − 𝑚)𝑛 

 

(3) 

 

These expressions can be rewritten in a generalized form 

as in Equation 4: 

 

∑
𝑓(𝑛)(𝑚)

𝑛!

∞

𝑛=0

(𝑥 − 𝑚)𝑛 , (4) 

 

The Euler's number-based exponential function is 

calculated as the sum of the infinite Taylor- Maclaurin series 

as in Equation 5 [44]: 

 

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

= 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
 (5) 

 

The error calculation between original and modified 

models is provided insight their compatibleness. Root mean 

square error (RMSE) is a common preferred error calculation 

method and represents the quadratic mean of the differences 

between these data. In fact, the RMSE is an accuracy 

measurement method for comparing error calculations of 

datasets (𝑁) of different models [45]. The RMSE calculation 

always yields a positive result and its lower values means less 

erroneous. The calculated error values changes by depending 

on the number of the used data. RMS error is calculated by 

Equation 6 [46].  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑖(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎) − 𝑥𝑖(𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑑𝑎𝑡𝑎))

2
𝑁

𝑖=1

 
 

(6) 

 

The RMSE calculations usually provide information about 

the difference in the amplitudes of the datasets. However, 

when investigating the similarities of the original and 

modified biological neuron models, it is very important to 

determine their phase relationships. Thus, the calculations of 

the phase error between two neuronal dynamics are also 

recorded in the literature. One of the phase error calculation 

methods is given in Equation 7 [47]:  

 

∅(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑠1(𝑡) − 𝑠1(0)

𝑠2(𝑡) − 𝑠2(0)
 

(7) 

 

 

Table 1. The values of the parameters in the ADEX neuron model for substantial neural dynamics [41]. 

Neural Dynamics 
𝐶  

(pF) 

𝑔𝐿  

(nS) 

𝐸𝐿  

(mV) 

𝑉𝑇  

(mV) 

∆𝑇  

(mV) 

𝛼  

(nS) 

𝑏  

(pA) 

𝜏𝑤  

(ms) 

𝑉𝑅  

(mV ) 

𝐼 

(pA) 

Regular Spiking 200 10 -70 -50 2 2 0 30 -58 500 
Tonic Spiking 200 12 -70 -50 2 2 60 300 -58 500 

Intrinsic Bursting 130 18 -58 -50 2 4 120 150 -50 400 

Bursting 200 10 -58 -50 2 2 30 120 -46 210 
Inhibition Spiking 200 12 -70 -50 2 -10 0 120 -58 110 

Inhibition Bursting 200 12 -70 -50 2 -10 30 300 -47 110 
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If the biological neuron model is identified as �̇� = 𝑓(𝑥) , 

𝑠1(𝑡) = 𝑠1(𝑥, �̇�, �̈� … ) and 𝑠2(𝑡) = 𝑠2(𝑥, �̇�, �̈� … ) are arbitrary 

combinations of the state variables. The phase 

synchronizations of two neuronal dynamics are provided in 

the ∅1(𝑡) ≅ ∅2(𝑡) situation. According to this situation, the 

phase differences between these dynamics can be represented 

by utilizing the Equation 8.  

 

𝑃ℎ𝑎𝑠𝑒 𝐸𝑟𝑟𝑜𝑟 = √
1

𝑁
∑ |∅1(𝑖) − ∅2(𝑖)

𝑁

𝑖=1

| (8) 

 

On the other hand, the correlation analysis is another 

statistical method [48]. This method provides information 

about the direction and amount of the relationship between 

different datasets. The correlation coefficient (ρ𝑋,𝑌) is a 

measure of the linear relationship between two independent 

variables(𝑋, 𝑌) and this coefficient is between the −1 ≤
ρ𝑋,𝑌 ≤ 1 range. When the correlation coefficient approaches 

zero, it indicates the existence of a weak relationship between 

these variables. If these variables increase or decrease 

together, there is a positive relationship. If one variable 

increases while the other decreases (or vice versa), there is a 

negative relationship. The correlation calculation is as in 

Equation 9 for two independent variables.  
 

ρ𝑋,𝑌 =
(𝑁 ∑ 𝑋𝑖𝑌𝑖

𝑁
𝑖=1 ) − ((∑ 𝑋𝑖)(∑ 𝑌𝑖

𝑁
𝑖=1 ))𝑁

𝑖=1

(√(𝑁 ∑ 𝑋𝑖
2𝑁

𝑖=1 ) − (∑ 𝑋𝑖
𝑁
𝑖=1 )2)(√(𝑁 ∑ 𝑌𝑖

2𝑁
𝑖=1 ) − (∑ 𝑌𝑖

𝑁
𝑖=1 )2)

 
(9) 

 

where, while the 𝑋𝑖 independent variable represents the 

dataset of the original ADEX neuron model, the 𝑌𝑖 

independent variable is the dataset of the modified neuron 

model.  

These mentioned error calculations have been executed for 

determining the compatibility between the original and the 

modified ADEX models. In these calculations, the exponential 

expression in the modified neuron model is extended to the 

tenth operand of the Taylor series. In this process, the error 

calculation results, which are calculated for N=3000 term, are 

recorded to Table 2. This table includes both the RMSE and 

phase error results. Additionally, the correlation results, which 

are a measure of their linear relationships, have been also 

calculated and recorded in the same table. 

 

Table 2. Error calculation results for Taylor- Maclaurin Serial Expansion based ADEX Neuron Model 

Characteristic Dynamic 
2nd Order  

Taylor-Maclaurin Series Expansion 

3rd Order  

Taylor-Maclaurin Series Expansion 

4th Order  

Taylor-Maclaurin Series Expansion 

 
RMS 
Error 

Correlation 
Phase 
Error 

RMS 
Error 

Correlation 
Phase 
Error 

RMS 
Error 

Correlation 
Phase 
Error 

Regular Spiking 14.8123 0.0031 0.4903 9.8007 0.0054 0.3071 8.5729 -0.0022 0.2732 

Tonic Spiking 8.2946 0.022 0.1001 NaN* NaN* NaN* 3.5627 0.0527 0.0587 

Intrinsically Bursting 5.9038 0.0278 0.1307 NaN* NaN* NaN* 3.1829 0.4271 0.0825 

Bursting 12.5658 0.0036 0.2956 8.3172 0.037 0.3039 6.0215 0.0741 0.2809 

Inhibition Spiking 11.6437 0.1014 0.29 NaN* NaN* NaN* 6.3721 0.1221 0.1869 

Inhibition Bursting 8.253 0.351 0.3741 NaN* NaN* NaN* 4.5509 0.2711 0.4002 

Irregular Spiking 9.236 -0.0012 0.3037 5.0977 -0.0101 0.2765 3.9316 0.033 0.2854 

Characteristic Dynamic 
5th Order  

Taylor-Maclaurin Series Expansion 

6th Order  

Taylor-Maclaurin Series Expansion 

7th Order  

Taylor-Maclaurin Series Expansion 

 
RMS 
Error 

Correlation 
Phase 
Error 

RMS 
Error 

Correlation 
Phase 
Error 

RMS 
Error 

Correlation 
Phase 
Error 

Regular Spiking 7.6211 0.0097 0.243 7.8061 0.0286 0.2441 7.4223 0.0321 0.237 

Tonic Spiking NaN* NaN* NaN* 1.7611 0.8759 0.0372 3.0816 0.6367 0.0439 

Intrinsically Bursting 2.5757 0.602 0.0522 1.7762 0.7857 0.0289 1.7723 0.7933 0.0224 

Bursting 4.1496 0.5419 0.2092 0.1756 0.7233 0.1428 2.9733 0.7589 0.105 

Inhibition Spiking NaN* NaN* NaN* 5.7537 0.1735 0.1646 NaN* NaN* NaN* 

Inhibition Bursting NaN* NaN* NaN* 3.5862 0.4993 0.3401 NaN* NaN* NaN* 

Irregular Spiking 3.6423 0.353 0.2944 3.4187 0.0606 0.2957 3.2985 0.0668 0.2897 

Characteristic Dynamic 
8th Order  

Taylor-Maclaurin Series Expansion 

9th Order  

Taylor-Maclaurin Series Expansion 

10th Order  

Taylor-Maclaurin Series Expansion 

 
RMS 
Error 

Correlation 
Phase 
Error 

RMS 
Error 

Correlation 
Phase 
Error 

RMS 
Error 

Correlation Phase Error 

Regular Spiking 7.4141 0.0245 0.2347 7.3945 0.0247 0.2347 7.5104 0.0536 0.2315 

Tonic Spiking 2.0661 0.8388 0.0251 2.3628 0.7887 0.0265 1.3587 0.9263 0.0147 

Intrinsically Bursting 1.7032 0.8129 0.02 0.1126 0.9994 0.0049 0.0562 0.9999 0.0034 

Bursting 2.4044 0.8267 0.0668 2.2663 0.8493 0.0506 0.2353 0.9985 0.0101 

Inhibition Spiking 6.3542 -0.0342 0.1748 NaN* NaN* NaN* 5.0804 0.3368 0.1248 

Inhibition Bursting 2.5547 0.7503 0.2696 NaN* NaN* NaN* 1.5395 0.9122 0.1906 

Irregular Spiking 3.24 0.0533 0.2939 3.2104 0.0966 0.276 3.0803 0.1197 0.2648 

*Not a Number 
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(c) 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(3), 990-1000 

B. Şıvga, N. Korkmaz 

 

995 

 
(d) 

 
(e) 

 
(f) 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(3), 990-1000 

B. Şıvga, N. Korkmaz 

 

996 

 

(g) 

Figure 1. The numerical simulation results, which are includes the membrane potentials in millivolts versus time in 

milliseconds of the ADEX neuron models, for a) the regular spiking, b) the tonic spiking, c) the intrinsic bursting, d) the 

bursting, e) the inhibition spiking, f) the inhibition bursting, and g) the irregular spiking neuronal behaviors. 

From Table 2, as the operands of the series expansion 

increases, the error values decrease. This result is in line with 

the expected output. However, some uncalculated results (Not 

a Numbers-NaNs) are founded in the odd-order operands of 

the Taylor series and this expression occurs when a 

mathematically undefined or invalid operation is performed in 

the calculations. Accordingly, it is an incomplete practice to 

evaluate the results by calculating just the error values. For this 

reason, the numerical simulations studies have also been made 

in here. Their results allow the observation of both the 

modified ADEX neuron model and the original one, 

simultaneously. In these simulations, the original and 

modified ADEX neuron models are discretized by using the 

Euler method for ∆ℎ = 0.1 step size. After that, the initial 

conditions of both models are set to the same values. Their 

parameters are set to the values in Table 1. The exponential 

function of the original ADEX neuron model are converted to 

second, fourth, sixth, eighth and tenth-order Taylor 

expansions and the numerical simulations are executed these 

modified structures. The numerical simulation results in 

MATLAB™ Simulink are presented in Figures 1.a-e for the 

regular spiking, the tonic spiking, the intrinsic bursting, the 

bursting, the inhibition spiking, the inhibition bursting, and the 

irregular spiking neuronal behaviors, respectively.  

According to both these error calculations in Table 2 and 

the numerical simulation results in Figure 1, the fourth order 

expansion of the Taylor series is suitable for the simplification 

process of this exponential nonlinear expression. As an 

efficiency verification of this conversion, the ADEX neuron 

model, which consists of four operands-Taylor series instead 

of the exponential function, is implemented with Field 

Programmable Gate Array (FPGA) platform.  

3 The digital implementation of the fourth-order taylor 

expansion-based ADEX neuron model with FPGA 

device 

An electronic signal has a spatiotemporal quantity and it is 

continuous (analog) or discrete (digital) characteristic. 

Although the real world has an analog nature, most of today's 

information processing technologies are based on digital 

systems. The membrane potentials measured from real 

biological neurons are also in analog form. However, the 

usage of digital equipment is also common when transferring 

the biological patterns to bio-inspired systems. In this transfer 

process, it is not always possible to directly perform some 

continuous form defined nonlinear functions with digital 

equipment. Thus, it is tried to make these nonlinear terms 

suitable for digital systems. As mentioned before, the usage of 

the comprehensive conversions such as the Taylor series is a 

source of inspiration for further studies.  

The modifying process of the exponential function in the 

ADEX with the Taylor series has been discussed in the 

previous section. The FPGA-based realization details of the 

ADEX neuron model defined by the Taylor series element are 

presented in this section. The FPGA device is a prominent 

hardware with the following features in the literature: i) ability 

to process in parallel, ii) re-programmability, iii) reaching high 

frequencies, iv) enable hardware update with software, and v) 

resource usage efficiency, etc. Here, the ADEX neuron model 

is realized by using the SPARTAN-3AN board produced by 

XILINXTM Company [49]. The System Generator for DSP 

tool, which allows programming visually, has been used and 

the calculations have been executed by the fixed-point 

arithmetic Q (32, 18). A configuration for the ADEX neuron 

model built on this tool is shown in Figure 2.  

 

 

 

 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(3), 990-1000 

B. Şıvga, N. Korkmaz 

 

997 

 

 

Figure 2. A configuration for the ADEX neuron model built on the System Generator for DSP tool. 

 

 

Figure 3. The used predefined-blocks in the System Generator for DSP tool for conversion the exponential function to the 

fourth-order Taylor series expansion. 
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(c) (d) 

  
(e) (f) 

 
(g) 

Figure 4. The realization results of the ADEX on FPGA, which is constructed the fourth-order Taylor series, for a) the 

regular spiking, b) the tonic spiking, c) the intrinsic bursting, d) the bursting, e) the inhibition spiking, f) the inhibition 

bursting, and g) the irregular spiking neuronal behaviors.  

 

The predefined-blocks, which are used to perform the 

exponential function conversion to the fourth-order Taylor 

series expansion, are presented in Figure 3. After the 

constructed model in Figure 2 has been converted to VHDL, 

this model has been transferred to the FPGA board. The 

obtained outputs have been measured through a digital-analog 

convertor (DAC) module. The FPGA-based implementation 

results of the modified ADEX neuron model are recorded by 

an oscilloscope and they are shown in Figure 4. The 

experimental implementation results are given in Figures 4.a-

e for the regular spiking, the tonic spiking, the intrinsic 

bursting, the bursting, the inhibition spiking, the inhibition 

bursting, and the irregular spiking neuronal behaviors, 

respectively. In Figures 4.a-e, the top pattern is the (𝑉) 

potential and the bottom pattern is the (𝜔) adaptation variable. 

The exponential expression of the ADEX neuron model 

has been built by utilizing from the Taylor series expansion 

for realization easiness on digital platform. As a verification 

of efficiency of this conversion, the ADEX neuron model, 

which consists of four operands-Taylor series instead of the 

exponential function, is realized with FPGA platform. As seen 

from the results in Figure .4, this process has been completed 

successfully. 

4 Conclusion 

This study focuses on the digital device based-

implementation of the ADEX neuron model. There are several 

studies on the implementation of this neuron model in the 

literature. However, the proposed approach in here constitutes 

an inspiration for the further studies in terms of providing a 

comprehensive approach. In fact, the nonlinear exponential 

term in the definition of the ADEX has been expanded to the 

Taylor- Maclaurin series and this serial expansion can be 

applied most of any other nonlinear systems. In this context, 
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the serial expansions of the nonlinear term of the ADEX have 

been continued until the tenth term. In this process, the 

amplitude error, the phase error and the correlation analysis 

between the original and the modified models have been 

calculated and the calculation results have been recorded to 

tables. Moreover, the numerical simulation responses of the 

original and the modified models have been gotten for seven 

characteristic dynamic patterns of this neuron model. Excess 

term usage in the serial expansion means the excessive 

hardware usage. For this reason, the optimum serial expansion 

degree has been determined as fourth expansion by depending 

on the numerical simulation observations as well as the 

calculated errors and correlation results. In the last part of this 

study, the FPGA-based implementations of the modified 

ADEX neuron model have been performed for determining 

the efficiency of this conversion process in a digital system 

and the fourth-order Taylor expansion have been used in these 

implementations. The results of the obtained real-time signals 

have been presented by using an oscilloscope. The element 

consumption results and the map report are as follows in these 

FPGA-based implementations: While 1399 of 11776 the 4-

LUT inputs are used (11%), 695 of 5888 the SLICEs are 

occupied (16%). Additionally, 12 of 20 the MULT18X18SIO 

multipliers are used (60%) and the maximum delay in the 

system is 1.058 nanoseconds. 
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