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Abstract. In the present work, we propose a two-phase fourth-order method for the approximate numerical
solution for second-order non-linear two-point boundary value problems with Dirichlet boundary conditions. Our
numerical approach is based on a finite difference and the solution of the problem at discrete points. Our method
generates a system of equations, and the solution of the system of equations is considered an approximate solution
to the problem. An essential analysis of the method is considered to ensure the performance of the method. A
numerical experiment is carried out with model problems to test the performance in terms of efficiency and accuracy
of the proposed method.
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1. Introduction

Second order differential equations and corresponding boundary value problems are governing equations for several
model problems in science and technology, to describe and verify the observation in physical phenomena. In this article
we consider following second order BVPs, which occurs in studies of applied mathematics, physics and engineering,

u′′(x) = f (x, u(x), u′(x)), a < x < b, (1.1)

subject to the Dirichlet boundary conditions

u(a) = β, u(b) = β1,

where β, and β1 are real constant. Source function f (x, u, u′) is real and continuous on [a, b] × R × R.

In literature, there are some problems close to considered problem (1.1) posses exact closed analytical solution [2].
Generally, we face a difficult task in finding the closed analytical solution of the considered problem (1.1) under pre-
scribed condition if it is nonlinear. Usually, we use approximation techniques for an acceptable numerical solution of
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the problem (1.1).

There are many methods reported in the literature for the approximate numerical solution of problems (1.1) us-
ing different mathematical approaches. The usually applied mathematical approaches among these methods are finite
difference method [5, 6, 8, 17], spline method [4, 16, 18], finite element method [3, 9, 19], Adomian decomposition
method [7, 12], and references therein. In the literature, there is evidence of the advantages and disadvantages of all
these methods [6]. We prefer to use a finite difference method since it is easy to improve or modify this approach in
many cases and problems.

The continuous problem (1.1) posses unique solution if the forcing function f (x, u, u′), ∂ f
∂u and ∂ f

∂u′ satisfies the fol-
lowing conditions,

(i) Continuous on set S = {(x, u, u′) : x ∈ [a, b], u, u′ ∈ (−∞,∞)}
(ii) There exist δ > 0 such that ∂ f

∂u′ ≥ 0 on S and
(iii) There exist constants K, L such that

K = max
(x,u,u′)∈S

∣∣∣∣∣∂ f
∂u

∣∣∣∣∣ and L = max
(x,u,u′)∈S

∣∣∣∣∣ ∂ f
∂u′

∣∣∣∣∣.
In the present article, for the approximate solution of the problem (1.1), we consider the finite difference method,

which involves replacing each of the derivatives in the problem (1.1) with an appropriate difference. The method in-
volving finite differences transfers the continuous problem (1.1) into the discrete problem. In the literature, it is well
established by the researchers [1, 10] that discrete problems may either admit spurious solutions or no solutions corre-
sponding to continuous problems (1.1). Hence, we assume that the property of existence and uniqueness of the solution
transfer from the continuous problem (1.1) to the discrete problem. So, we will not consider under which condition
or any specific assumption on forcing function f (x, u, u′) to ensure the existence and uniqueness of the solution to the
discrete problem and may refer literature [6, 11] issues related to existence and uniqueness.

In this article, we will consider the development of an approximation technique for the numerical solution of the
(1.1). We will define the difference approximation for the derivative term in problem (1.1) and reduce the continuous
problem to a discrete problem. We will approximate the solution of the problem using adjacent values of the solution
and the forcing function. Finally, we will develop a fourth order method for the approximate numerical solution of the
problem (1.1).

We have divided our work and presented it in different sections as follows: in the next section we present difference
approximations and technique; the numerical convergence and results in the model test problems in Section 3; and
discussion and concluding remarks on the performance and efficiency of the method in Section 4.

2. Two Phase Finite DifferenceMethod

The domain of the problem (1.1) is [a, b], hence the computational domain remains [a, b], with the analytical solution
is prescribed at end points of the domain as the boundary conditions. The step length h is described by h = (b − a)/N
where N is number of the nodal points in the computation domain. We define the nodal points xi = a + ih, i =
0, 1, 2, .....,N and we determine the solution u(x) of the (1.1) at the nodal points. The numerical approximation of
solution u(x) and forcing function f (x, u(x), u′(x)) at node x = xi, we denote as ui and fi respectively for i =
0, 1, 2, .....,N. We will follow similar notations in the present article. Thus, the continuous problem (1.1) reduced to
the following discrete problem at node x = xi,

u′′i = fi, (2.1)

subject to the boundary conditions
u0 = β, uN+1 = β1.

Let us define following approximations:

u′i =
ui+1 − ui−1

2h
, (2.2)
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u′i+1 =
3ui+1 − 4ui + ui−1

2h
, (2.3)

u′i−1 =
−ui+1 + 4ui − 3ui−1

2h
, (2.4)

ui =
1
2

(ui+1 + ui−1) −
h2

4
( f i+1 + f i−1), (2.5)

where
f i±1 = f (xi±1, ui±1, u

′
i±1),

u
′

i+1 =
1
2h

(ui+1 − ui−1) + h f i, (2.6)

u
′

i−1 =
1
2h

(ui+1 − ui−1) − h f i, (2.7)

where
f i = f (xi, ui, u

′
i),

u
′

i = u′i −
h

20
( f i+1 − f i−1), (2.8)

where
f i±1 = f (xi±1, ui±1, u

′

i±1)
Following the ideas in [5, 13–15] and using above approximations (2.2)-(2.8) we discretize the problem (2.1)

ui+1 − 2ui + ui−1 =
h2

12
( f i+1 + 10 f i + f i−1), (2.9)

where
f i = f (xi, ui, u

′

i).
Thus, we discretized (2.1) at each nodal point xi, i = 1, 2, ...,N in the domain of the problem. The solution of the
system of equations (2.9) is the approximate numerical solution of the problem (1.1).

3. Derivation of theMethod and Truncation Error

In this section, we shall outline the procedure for the derivation and development of the method. Also, we shall
estimate local truncation errors in our proposed method. The approximations (2.3) and (2.4) enable us to conclude the
following:

u′i±1 = u′i±1 −
2
3

h2u(3)
i±1 + O(h3), (3.1)

i.e., u′i±1 provide O(h2) approximations for u′i±1. Hence, using (3.1) and Taylor’s series expansion method, we have
found the following approximations:

f i±1 = fi±1 + O(h2) (3.2)

i.e., f i±1 provide O(h2) approximations for fi±1. Let us expand each term in (2.6) in Taylor’s series about node xi.
Using the approximations (3.2) in expansion and simplify, we have obtained the following approximation:

ui = ui + O(h4). (3.3)

Using approximation (3.3) in (2.2), we have obtained following approximation for the source function f (x, u, u′) at the
node xi,

f i = fi + O(h2). (3.4)
Using approximations (2.1),(3.4) and in (2.6),(2.7). Hence, we obtained the following approximations:

u
′

i±1 = u′i±1 + O(h2). (3.5)

Using approximations (3.5), we have found following approximations for the source function:

f i±1 = fi±1 + O(h2), (3.6)
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i.e.,

f i±1 = fi±1 +
h2

6
(−2u(3)

i±1 ± hu(4)
i±1 ± h(u(3) ∂ f

∂u′
)i)(
∂ f
∂u′

)i±1 + O(h4).

Using approximations (3.6) and (2.1), we have obtained following approximations for solution function and source
function at node xi;

u
′

i = u′i + O(h2) and f i = fi + O(h2), (3.7)

i.e.,

f i = fi +
h2

60
(4u(3)

i − h(u(3)(
∂ f
∂u′

)2)i)(
∂ f
∂u′

)i + O(h4).

Using approximations (3.6) and (3.7), we have obtained following approximation;

f i+1 + 10 f i + f i−1 = fi+1 + 10 fi + fi−1 + O(h4), (3.8)

i.e., the expression f i+1 + 10 f i + f i−1 provides O(h4) for the expression fi+1 + 10 fi + fi−1. Using approximation (3.8),
we have established that our proposed method (2.9),

ui+1 − 2ui + ui−1 =
h2

12
( f i+1 + 10 f i + f i−1)

has truncated remainder term of at least fourth order. Following similar algorithms in [5], it is easy to establish the
property of convergency of the finite difference method (2.9) under appropriate conditions and simple manipulations.
The approximations used in the development and discussion of the algorithm suggest that the order of accuracy of the
proposed method is at least O(h4).

4. Numerical Results

To test the computational efficiency of our proposed method (2.9), we have considered linear and nonlinear model
problems. In each model problem, we took a uniform step size h. In Table 1 - Table 6, we have shown MAE the
maximum absolute error in the solution u(x) of the problem (1.1) for different values of N. In computation following
formulas were used,

MAE = max
1≤i≤N

|U(xi) − u(xi)|,

where U(xi) and u(xi) are respectively exact and computed solution of the problem. Since the solution u(xi) of the
problem (2.9) approximates the solution u of the problem (1.1) up to order of the accuracy of the discretization which
is four in present case. So, in many cases it does not make much sense to solve the problem (2.9) exactly. Hence,
we have used Gausss-Seidel and Newton-Raphson iteration method to solve respectively the system of linear and non-
linear equations arise from equation (2.9). All computations were performed on a Windows 7 Home Basic operating
system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 Ghz PC.
The solutions are computed on N nodes and iteration is continued until either the maximum difference between two
successive iterates is less than 10−10 or the number of iteration reached 103.

Problem 1. The model non-linear problem in [5] given by

u′′(x) =
1
2

(exp (2u(x)) + (u′(x))2), 0 < x < 1

subject to boundary conditions
u(0) = 0 , u(1) = − ln(2).

The analytical solution of the problem is u(x) = ln( 1
1+x ). The MAE computed by method (2.9) for different values of

N. In Table 1, there are numerically computed order of convergence and elapsed time needed to converge presented.
For the sake of comparison, numerical results using other methods are found in the literature presented by us.

Problem 2. The model non-linear problem in [6] given by

u′′(x) = −(1.0 + a2(u′(x))2), 0 < x < 1
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subject to boundary conditions
u(0) = 0 , u(1) = 1.0.

The analytical solution of the problem is u(x) =
ln(

cos(a(x− 1
2 ))

cos( a
2 ) )

a2 and a is parameter. The MAE computed by method (2.9)
for different values of N, and a are presented in Tables 2-4. In Tables 2-4, we have presented numerical results MAE
obtained using finite difference method [6] in our numerical experiment.
Problem 3. The model non-linear problem in [5] given by

u′′(x) =
(u(x) + x(u′(x))2)

1 + x
, 0 < x < 1

subject to boundary conditions
u(0) = 1 , u(1) = exp(2).

The analytical solution of the problem is u(x) = exp(x). The MAE computed by method (2.9) for different values of
N are presented in Table 5. In Table 5, there are numerically computed order of convergence and elapsed time needed
to converge presented. For the sake of comparison, numerical results using other methods are found in the literature
presented by us.
Problem 4. The model non-linear problem in [6] given by

u′′(x) = − sin(u′(x)) − cos(u(x)) + cos(x(4x2 − 1)) − sin(1 − 12x2) + 24x,
−1
2
< x <

1
2

subject to boundary conditions

u(−
1
2

) = 0 , u(
1
2

) = 0.

The constructed analytical solution of the problem is u(x) = x(4x2 − 1). The MAE computed by method (2.9) for
different values of N are presented in Table 6. In Table 6, we have presented numerical results MAE obtained using
finite difference method [6] in our numerical experiment.

Table 1. Maximum absolute error (Problem 1).

(2.9) [5]
h MAE Etime Order MAE Etime Order

2−6 .66232991e -9 .2808 - .15459572e -9 .2028 -

2−7 .41349257e -10 2.3088 4.0016 .96124773e -11 .7488 4.0076

2−8 .24006424e -11 5.0700 4.1064 .41843677e -12 .1185 4.5218

2−9 .19141874e -13 1.0296 6.9705 .70672363e -15 .1248 9.2096

2−10 .18594067e -15 .0468 6.6857 .18594067e -15 .0312 1.9263

In order to develop the an efficient finite difference method, it is necessary to consider at both, its convergence
and its costs. In practice, the most interesting quantity to solve the problem is the time needed. In Table 1, we show
the elapsed times for the convergence of the two different finite difference method and the order of convergence. The
numerically measured convergence of the finite difference method should be independent of the nodes or step size in
the method in absence of discretization error. But, we have the discretization error there always. Hence, the order of
convergence varies in some extent and this characteristic property is observed by the results in Table 1. Our method
has at least biquadratic order of convergence. Our method has higher elapsed time than other considered method. So,
higher cost but better rate of convergent there in proposed method. Our mission in developing algorithms is to provide a
good approximation to the solution of the continuous problem (1.1). In numerical result presented in Table 1, proposed
method (2.9) confirmed the mission.
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Table 2. Maximum absolute error and a = 0.5
7 (Problem 2).

h
2−3 2−4 2−5 2−6 2−7

(2.9).35306137e -10.21969826e -11.15350240e -12.30836770e -13.27048134e -13

[6] .16615182e -5 .41538120e -6 .10384539e -6 .25961344e -7 .64903154e -8

Table 3. Maximum absolute error and a = 1
7 (Problem 2).

h
2−3 2−4 2−5 2−6 2−7

(2.9).56552662e -9.35348278e -10.22125898e -11.13844342e -12.79465988e -14

[6] .66544525e -5 .16636394e -5 .41591149e -6 .103977974e -6 .25994492e -7

Table 4. Maximum absolute error and a = 2
7 (Problem 2).

h
2−3 2−4 2−5 2−6 2−7

(2.9).90779412e -8.56731552e -9.35454074e -10.22112489e -11.12095439e -12

[6] .26752456e -4.66885232e -5 .16721563e -5 .41804067e -6 .10451025e -6

Table 5. Maximum absolute error (Problem 3).

(2.9) [5]
h MAE Etime Order MAE Etime Order

2−4 .21853300e -6 .0312 - .47419998e -7 .0156 -

2−5 .13617942e -7 .0468 4.0046 .29678280e -8 .0624 3.9980

2−6 .85060907e -9 .1248 4.0009 .18540482e -9 .1560 4.0007

2−7 .52898551e -10 .6396 4.0072 .11314300e -10 .3900 4.0345

2−8 .24274390e -11 1.0452 4.4457 .94673618e -14 .0156 10.2229

It is observed in the tabulated results for the model linear problem in Table 5 that our method converges, and the
order of the convergence is O(h4). The order of convergence does not vary substantially as the number of nodes in-
creases. The proposed method has a comparable elapsed time to other finite difference methods for the convergence.
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Table 6. Maximum absolute error (Problem 4).

h
2−4 2−5 2−6 2−7 2−8

(2.9).17349783e -4.10890199e -5.68136124e -7.42611526e -8.26627359e -9

[6] .14097179e -2.35085561e -3.87579349e -4.21889093e -4.54717447e -5

The approximate solution of the system of equations (2.9) is an approximation to the solution of the continuous
problem (1.1). The maximum absolute errors in the approximate solution are computed and presented in Tables. The
order of accuracy increases with a decrease in step size h, i.e., the number of nodes in the domain of the solution. The
tabulated results confirm the order of accuracy is at least biquadratic.

5. Conclusion

We considered a second-order differential equation and the corresponding two-point boundary value problem for the
approximate numerical solution. The technique developed for the approximate solution of the problem with Dirichlet’s
boundary conditions employed the method of finite difference. The finite difference method developed in two stages,
and each stage is an algorithm. The continuous derivatives are replaced by the difference approximations. Hence, a
continuous problem transformed into a discrete problem, and finally a system of algebraic equations (2.9) was solved
for the approximate solution of the considered problem. The numerical results presented in tables approve that the
proposed method provides a good approximation to the solution of the continuous problem (1.1). Hence, the proposed
method is computationally efficient, and the order of accuracy is at least biquadratic. There are possibilities to apply
thoughts in the present article to develop and improve the order of finite difference methods for other boundary value
problems. Works in these directions are in progress.
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