
Eastern Anatolian Journal of Science 
Volume X, Issue II, 2024, 27-36  Eastern Anatolian Journal of Science  

 

On the Fixed Point Property for Nonexpansive Mappings on Large Classes in Alpha-

duals of Certain Difference Sequence Spaces 
 

 

Veysel NEZİR1* and Nizami MUSTAFA2 

1 Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey, 

 veyselnezir@yahoo.com  
2 Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey,  

nizamimustafa@gmail.com 

 

 

 

Abstract 

 

 In 2000, Et and Esi introduced new type of generalized 

difference sequences by using the structure of Çolak’s 

work from 1989 where he defined new types of 

sequence spaces while Çolak was also inspired by 

Kızmaz’s idea about the difference operator he studied 

in 1981. Then, using Et and Esi’s structure, Ansari and 

Chaudhry, in 2012, introduced a new type of 

generalized difference sequence spaces. Changing 

Ansari and Chaudhry’s construction slightly, Et and 

Işık, in 2012, obtained a new type of generalized 

difference sequence spaces which have equivalent 

norm to that of Ansari and Chaudhry’s type Banach 

spaces. Then, Et and Işık found 𝛼-duals of the Banach 

spaces they got and investigated geometric properties 

for them. In this study, we consider Et and Işık’s work 

and study 𝛼-duals of their generalized difference 

sequence spaces. We take their study in terms of fixed 

point theory and find large classes of closed, bounded 

and convex subsets in those duals with fixed point 

property for nonexpansive mappings. 
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1. Introduction and Preliminaries 

 

Fixed point theory is a central area of study in 

functional analysis with wide-ranging implications for 

optimization, nonlinear analysis, and the theory of 

Banach spaces. A key concept in this field is the fixed 
point property (FPP), which states that every 

nonexpansive mapping on a closed, bounded, and 

convex (cbc) subset of a space has a fixed point.  

 

 

This property is known to hold in certain Banach 

spaces, such as Hilbert spaces, but fails in many 

classical non-reflexive Banach spaces like 𝑐0 and ℓ1. 

As a result, identifying large classes of cbc subsets 

within such spaces that retain the FPP has become an 

important line of inquiry. 

The work of Goebel and Kuczumow (1979) serves 
as a seminal contribution in this area. They 

demonstrated that while ℓ1 lacks the fixed point 

property in general, it is possible to identify specific 

large classes of cbc subsets where nonexpansive 

mappings do have fixed points. This discovery inspired 

subsequent research aimed at generalizing these results 

to broader classes of Banach spaces and larger families 

of subsets. Researchers such as Kaczor and Prus (2004) 

further extended these ideas by investigating affine 

asymptotically nonexpansive mappings on ℓ1. 

However, these works often required additional 

assumptions, such as the affinity condition, which 

limited the generality of their results. 
In this study, we introduce a new perspective by 

examining 𝛼-duals of certain generalized difference 

sequence spaces, which generalize the space of 

absolutely summable scalar sequences. Our approach 

differs from that of Kaczor and Prus, as we do not rely 

on the affinity hypothesis and instead work directly 

with nonexpansive mappings. Moreover, while Goebel 

and Kuczumow focused on ℓ1, our work considers a 

more general family of sequence spaces that are 

isometrically isomorphic to the absolutely summable 

scalar sequence space but also contain a richer 

mailto:veyselnezir@yahoo.com
mailto:nizamimustafa@gmail.com
mailto:veyselnezir@yahoo.com


28 |    V. Nezir and N. Mustafa EAJS, Vol. 10 Issue 2 

geometric structure. This generalization enables us to 

identify larger classes of cbc subsets with the FPP. 

Importantly, our approach extends beyond specific 

instances, as we are also developing our work for a 

general case of the space we study by taking 𝑚 ∈ ℕ 

arbitrarily respected to the general space. 

The primary objective of this paper is to identify 

large classes of closed, bounded, and convex subsets in 

𝛼-duals of generalized difference sequence spaces that 

satisfy the fixed point property for nonexpansive 

mappings. To achieve this, we build on concepts from 

Goebel and Kuczumow’s analogy while introducing 

new methods to avoid reliance on affinity assumptions. 

Our findings contribute to the broader effort of 

understanding the fixed point theory of Banach spaces 

and provide a new avenue for exploring the geometric 

properties of generalized difference sequence spaces. 

The paper is organized as follows. In Section 1, 

we introduce essential definitions and preliminary 
concepts. Section 2 presents our main results, 

including theorems and proofs regarding large classes 

of cbc subsets in 𝛼-duals with the FPP. We conclude 

with a discussion of the implications of our findings, 

highlighting potential directions for future research. 

In terms of looking more deeply into the literature, 

we can say that researches have shown that the fixed 

point exists for some function classes defined on 

certain classes of sets in some spaces, while it cannot 

be found at all in others. Fixed point theory has 

examined how this happens or does not happen.  

Then, researchers have made classifications and 

characterizations in this matter. In (Browder 1965a), it 

was proved that every Hilbert space has a property 

satisfying that every nonexpansive mapping defined on 

any closed, bounded, and convex (cbc) nonempty 

subset domain with the same range has a fixed point. 

Since that time, spaces with this property have been 

considered to have the fixed point property for 

nonexpansive mappings (fppne). Then, researchers 

considered looking for the spaces with the property and 

if the property still exists when larger classes of 

mappings are taken. Then also they have seen spaces 

failing the properties. For example, in (Browder 

1965b) and (Göhde 1965) with independent studies, 

they saw that uniform convex Banach spaces have the 

fppne. Then, Kirk (1965) generalized the result for the 

reflexive Banach spaces with normal structure. In fact, 

Goebel and Kirk (1973) noticed that Kirk’s result was 

able to extend for uniformly Lipschitz mappings and 

some researchers have studied estimating the Lipschitz 

coefficient satisfying the property for uniform 

Lipschitz mappings on different Banach spaces. For 

example, Goebel and Kirk (1990) showed that for 

Hilbert spaces, the best Lipschitz coefficient would be 

a scalar less than a number in the interval [√2  ,    
𝜋

2
], 

and Goebel and Kirk (1973) and Lim (1983) showed 

independently that for a Lebesgue space 𝐿𝑝 when 2 <

𝑝 < ∞, the coefficient is smaller by a scalar larger than 

or equal to (1 +
1

2𝑝
)

1

𝑝
 while Alspach (1981) showed 

that when 𝑝 = 2, there exists a fixed point free 

Lipschitz mapping with Lispchitz coefficient √2   

defined on a cbc subset. In fact, √2   is the smallest 

Lipschitz coefficient for Alspach’s mapping. We need 

to note that, similar to the definition of the Banach 

spaces satisfying the fppne, if a Banach space has a 

property that every uniformly Lipschitz mapping 

defined on any cbc nonempty subset domain with the 

same range has a fixed point, then that Banach space 

has the fixed point property for uniformly Lipschitz 

mapping (fppul). In terms of fixed point property for 

uniformly Lipschitz mappings, Dowling, Lennard, and 

Turett (2000) showed that if a Banach space contains 

an isomorphic copy of ℓ1, then it fails the fppul. It is a 

well-known fact by researchers that 𝑐0 or ℓ1 is almost 

isometrically embedded in every non-reflexive Banach 

space with an unconditional basis (Lindenstraus and 

Tzafriri 1977). For this reason, classical non-reflexive 

Banach spaces fail the fixed point property for non-

expansive mappings, that is, in these spaces, there can 

be a closed, convex and bounded subset and a non-

expansive invariant 𝑇 mapping defined on that set such 

that 𝑇 has no fixed point. This result is based on well-

known theorems in literature (see for example 

Theorem 1.c.12 in (Lindenstraus and Tzafriri 1977) 

and Theorem 1.c.5 in (Lindenstraus and Tzafriri 

2013)). These theorems state that for a Banach lattice 

or Banach space with an unconditional basis to be 

reflexive, it is necessary and sufficient that it does not 

contain any isomorphic copies of 𝑐0 or ℓ1. Therefore, 

this close relation to the reflexivity or nonreflexivity of 

Banach space, researchers have worked for years and 

questioned whether 𝑐0 or ℓ1 can be renormed to have a 

fixed point for nonexpansive mappings. Lin (2008) 

showed in his study that what was thought was not true 

and that at least ℓ1 could be renormed to have the fixed 

point property for nonexpansive mappings. Then, the 

remaining question was if the same could have been 

done for 𝑐0, but the answer still remains open. Since 

the researchers have considered trying to obtain the 



On the Fixed Point Property for Nonexpansive Mappings on Large Classes in Alpha- 

duals of Certain Difference Sequence Spaces 

EAJS, Vol. 10 Issue 2                                                                                                                                                                       | 29 

analogous results for well-known other classical 

nonreflexive Banach spaces, another experiment was 

done for Lebesgue integrable functions space 𝐿1[0,1] 

by Hernandes-Lineares and Maria (2012) but they 

were able to obtain the positive answer when they 

restricted the nonexpansive mappings by assuming 

they were affine as well. One can say that there is no 

doubt most research has been inspired by the ideas of 

the study (1979) where Goebel and Kuczumow proved 

that while ℓ1 fails the fixed point property since one 

can easily find a cbc nonweakly compact subset there 

and a fixed point free invariant nonexpansive map, it is 

possible to find a very large class subsets in target such 

that invariant nonexpansive mappings defined on the 

members of the class have fixed points. In fact, it is 

easy to notice the traces of those ideas in Lin’s (2008) 

work. Even Goebel and Kuczumow’s work has 

inspired many other researchers to investigate if there 

exist more example of nonreflexive Banach spaces 

with large classes satisfying fixed point property. For 

example, in (Kaczor and Prus 2004), they wanted to 

generalize Goebel and Kuczumow’s findings and they 

proved that affine asymptotically nonexpansive 

invariant mappings defined on a large class of cbc 

subsets in ℓ1 can have fixed points. Moreover, in 

(Everest 2013), Kaczor and Prus’ results were 

extended by having been found larger classes 

satisfying the fixed point property for affine 

asymptotically nonexpansive mappings. Thus, affinity 

condition became a tool for their works. In fact, 

another well-known nonreflexive Banach space, 

Lebesgue space 𝐿1[0,1], was studied in (Hernández-

Linares Japón 2012) and in their study they obtained 

an analogous result to (Lin 2008) as they showed that 

𝐿1[0,1] can be renormed to have the fixed point 

property for affine nonexpansive mappings. In this 

study, we will investigate some Banach spaces 

analogous to ℓ1. In the present work, we study Goebel-

Kuczumow analogy for 𝛼-duals of their generalized 

difference sequence spaces investigated by Et and Işık 

(2012). We prove that a very large class of closed, 

bounded and convex subsets in 𝛼-duals of their 

generalized difference sequence spaces investigated by 

Et and Işık has the fixed point property for 

nonexpansive mappings. Therefore, firstly we would 

like to give the definition of Cesàro sequence spaces 

which was defined by Shiue (1970), and next we 

present Kızmaz’s difference sequence space definition 

in (Kızmaz 1981) by noting that we work on a space 

which is derived from his ideas’ generalizations such 

that many researchers (see for example (Çolak 1989, 

Et 1996, Et and Çolak 1995, Et and Esi 2000, Orhan 

1983, Tripathy et al 2005) have generalized his work 

as well. 

In fact, we need to note that Et and Esi’s (2000) 

work and Et and Çolak’s (1995) work used a common 

difference sequence definition from Çolak’s (1989) 

work. 

Shiue (1970) defined the Cesàro sequence spaces 

by  

ces𝑝 = {(𝑥𝑛)𝑛 ⊂ ℝ |(∑

∞

𝑛=1

(
1

𝑛
∑

𝑛

𝑘=1

|𝑥𝑘|)

𝑝

)

1/𝑝

< ∞} 

such that ℓ𝑝 ⊂ ces𝑝 and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ |sup
𝑛

1

𝑛
∑

𝑛

𝑘=1

|𝑥𝑘|   < ∞} 

such that ℓ∞ ⊂ 𝑐𝑒𝑠∞ where 1 ≤ 𝑝 < ∞. Then, from 

the definition of Cesàro sequence spaces, Kızmaz 

(1981) defined difference sequence spaces for ℓ∞,  c, 

and c0 and symbolized them by ℓ∞(𝛥), c(𝛥), and 

c0(𝛥), respectively. In his introduction, he defined the 

difference operator 𝛥 applied to the sequence 𝑥 =

(𝑥𝑛)𝑛 using the formula 𝛥𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. In fact, 

he investigated Köthe-Toeplitz duals and their 

topological properties. 

As one of the researchers generalizing his ideas, 

Çolak (1989) introduced firstly a generalized 

difference sequence space by taking an arbitrary 

sequence of nonzero complex values 𝑣 = (𝑣𝑛)𝑛 and 

then denoting a new difference operator by 𝛥𝑣   such 

that for any sequence 𝑥 = (𝑥𝑛)𝑛, he defined the 

difference sequence of that 𝛥𝑣𝑥 = (𝑣𝑘𝑥𝑘 −

𝑣𝑘+1𝑥𝑘+1)𝑘. Then, Et and Esi (2000) generalized 

Çolak’s difference sequence space by defining  

𝛥𝑣(ℓ∞) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣𝑥 ∈ ℓ∞}, 

𝛥𝑣(c) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣𝑥 ∈ c}, 

 𝛥𝑣(c0) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣𝑥 ∈ c0}. 

Furthermore, their 𝑚𝑡ℎ order generalized 

difference sequence space is given for any 𝑚 ∈ ℕ by 

𝛥𝑣
0𝑥 = (𝑣𝑘𝑥𝑘)𝑘 , 𝛥𝑣

𝑚𝑥 = (𝛥𝑣
𝑚𝑥𝑘)𝑘 = (𝛥𝑣

𝑚−1𝑥𝑘 −

𝛥𝑣
𝑚−1𝑥𝑘+1)𝑘 with 𝛥𝑣

𝑚𝑥𝑘 = ∑𝑚
𝑖=0 (−1)𝑖 (

𝑚
𝑖

) 𝑣𝑘+𝑖𝑥𝑘+𝑖    

for each 𝑘 ∈ ℕ. 

Next Bektaş, Et and Çolak (2004) obtained the Köthe-

Toeplitz duals for the generalized difference sequence 

space of Et and Esi’s. We may recall here that their 
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𝑚𝑡ℎ order difference sequence space has the following 

norm for any 𝑚 ∈ ℕ:  

‖𝑥‖𝑣
(𝑚)

= ∑

𝑚

𝑘=1

|𝑣𝑘𝑥𝑘| + ‖𝛥𝑣
𝑚𝑥‖∞ 

Then, the corresponding Köthe-Toeplitz dual was 

obtained as in (Bektaş, Et and Çolak 2004) and (Et and 

Esi 2000) such that it is written as below:   

𝐷1
𝑚 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚𝑣𝑛

−1𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ:    ‖𝑎‖(𝑚) = ∑

∞

𝑘=1

𝑘𝑚|𝑎𝑘|

|𝑣𝑘|
< ∞}. 

 

Note that 𝐷1
𝑚 ⊂ ℓ1 if 𝑘𝑚|𝑣𝑘

−1| > 1 for each 

𝑘, 𝑚 ∈ ℕ and ℓ1 ⊂ 𝐷1
𝑚 if 𝑘𝑚|𝑣𝑘

−1| < 1 for each 

𝑘, 𝑚 ∈ ℕ. 

Ansari and Chaudhry (2012) introduced a new 

type of generalized difference sequence spaces by 

picking an arbitrary sequence of nonzero complex 

values 𝑣 = (𝑣𝑛)𝑛 as Çolak (1989) did and next by 

symbolizing the new difference sequence space as 

𝛥𝑣,𝑟
𝑚 (𝐸)   for arbitrary 𝑟 ∈ ℝ, 𝑚 ∈ ℕ and writing that 

space as below where 𝑋 is any of the sequence spaces 

ℓ∞, 𝑐 or 𝑐0.  

 𝛥𝑣,𝑟
𝑚 (𝑋) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣

𝑚𝑥 ∈ 𝑋} 

where Ansari and Chaudhry (2012) defined the norm 

by  

‖𝑥‖𝛥,𝑣
𝑚 = ∑

𝑚

𝑘=1

|𝑣𝑘𝑥𝑘| + sup
𝑘∈ℕ

|𝑘𝑟𝛥𝑣
𝑚𝑥𝑘| 

Then, by obtaining an equivalent norm to Ansari 

and Chaudhry’s Banach space, Et and Işık (2012) 

defined 𝑚𝑡ℎ order generalized type difference 

sequence for any 𝑚 ∈ ℕ given by  

𝛥𝑣,𝑟
(𝑚)(𝑋) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣

𝑚𝑥 ∈ 𝑋} 

where the norm is as follows:  

‖𝑥‖
𝛥,𝑣
(𝑚)

= sup
𝑘∈ℕ

|𝑘𝑟𝛥𝑣
𝑚𝑥𝑘| 

Then, Et and Işık found 𝛼-duals of the Banach 

spaces they got and investigated geometric properties 

for them such that 𝑚th order 𝛼-duals for their Banach 

spaces are written as   

𝑈1
𝑚 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚−𝑟𝑣𝑛

−1𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ:    ‖𝑎‖~
(𝑚) = ∑

∞

𝑘=1

𝑘𝑚−𝑟|𝑎𝑘|

|𝑣𝑘|
< ∞} 

 

Note that 𝑈1
𝑚 ⊂ ℓ1 if 𝑘𝑚−𝑟|𝑣𝑘

−1| > 1 for each 𝑘, 𝑚 ∈

ℕ and ℓ1 ⊂ 𝑈1
𝑚 if 𝑘𝑚−𝑟|𝑣𝑘

−1| < 1 for each 𝑘, 𝑚 ∈ ℕ. 

Before starting to introduce our work and results, 

we can also note that recent studies have explored the 

fixed point property (FPP) in Banach spaces, focusing 

on large classes of subsets and various mappings. One 

notable contribution is by Tim Dalby, who in 2024 

proved that uniformly nonsquare Banach spaces 

possess the FPP. This result provides a deeper 

understanding of the geometric conditions that ensure 

fixed points for nonexpansive mappings. Dalby's work 

highlights the importance of uniform nonsquareness as 

a sufficient condition for the FPP, offering new 

perspectives on the structure of Banach spaces (Dalby, 

2024). 

Another important development in this area is the 

work of Vasile Berinde and Mădălina Păcurar, 

published in 2021. They introduced the concept of 

saturated classes of contractive mappings and 

examined the applicability of enriched contractions. 

Their study provided new fixed point results for these 

enriched classes of mappings, broadening the scope of 

fixed point theorems. The authors demonstrated that 

these enriched contractions have unique fixed points, 

which can be approximated using Krasnoselskij 

iterative schemes. This contribution enriches the fixed 

point theory and extends its applicability to a wider 

range of contractive mappings in Banach spaces 

(Berinde & Păcurar, 2021). 

Izhar Oppenheim's 2022 work is another 

significant contribution to the field. He established that 

higher-rank simple Lie groups, such as 𝑆𝐿𝑛(ℝ) for n ≥ 

3, and their lattices have Banach property (T) with 

respect to all super-reflexive Banach spaces. This 

result implies that these groups have the FPP for 

actions on super-reflexive Banach spaces. 

Oppenheim's findings underscore the interplay 

between Banach property (T) and the fixed point 

property, offering new insights into the algebraic and 

topological properties that guarantee the existence of 

fixed points (Oppenheim, 2022). 

Research on large classes of Banach spaces with 

the fixed point property has also included 

investigations into the Prus–Szczepanik condition. 

Prus and Szczepanik introduced this condition to 

identify Banach spaces that satisfy the FPP for 

nonexpansive mappings. Subsequent studies have 

explored the relationship between the PSz condition 

and other geometric properties of Banach spaces, 

providing sufficient criteria for a space to satisfy the 

FPP. This line of research aims to broaden the 
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classification of Banach spaces that support the FPP, 

thereby offering new tools for functional analysts (Prus 

& Szczepanik, 2019). 

Further advancements were made by Berinde and 

Păcurar, who introduced the concept of enriched 

contractions. These contractions generalize Picard–

Banach contractions and certain nonexpansive 

mappings. Their work demonstrated that enriched 

contractions possess unique fixed points, which can be 

approximated using Krasnoselskij iterative schemes. 

This approach provides a broader framework for 

establishing fixed points for a wide range of mappings 

(Berinde & Păcurar, 2021). 

Additional contributions to the study of the FPP in 

Banach spaces include the work of Fetter Nathansky 

and Llorens-Fuster, who investigated the ℓ1 sum of the 

van Dulst space with itself. They demonstrated that 

this product space retains the FPP despite lacking 

several known conditions that typically imply this 

property. This finding illustrates how new 

combinations of Banach spaces can yield novel 

insights into fixed point theory, motivating further 

exploration of product spaces and their fixed point 

properties (Nathansky & Llorens-Fuster, 2020). 

Finally, Oppenheim's exploration of Banach 

property (T) and fixed point properties has established 

connections between algebraic structures and the FPP. 

His findings that higher-rank simple Lie groups 

possess Banach property (T) with respect to super-

reflexive Banach spaces reveal a deeper relationship 

between algebra, topology, and fixed point theory. 

These contributions collectively highlight the ongoing 

effort to understand the conditions under which fixed 

points exist in Banach spaces and to identify large 

classes of sets and mappings that satisfy the FPP 

(Oppenheim, 2022). 

 Now, we would like to give some well-known and 

important facts that are fundamentals for our work. 

One may see (Goebel and Kirk 1990) as a reference. 

 

Definition 1.1 Consider that (𝑋, ∥⋅∥) is a Banach 

space and let 𝐶 be a non-empty cbc subset. Let 𝑇: 𝐶 →

𝐶 be a mapping. We say that 

1. 𝑇 is an affine mapping if for every 𝑡 ∈ [0,1] and 

𝑎, 𝑏 ∈ 𝐶, 𝑇((1 − 𝑡)𝑎 + 𝑡𝑏) = (1 − 𝑡)𝑇(𝑎) + 𝑡  𝑇(𝑏). 

2. 𝑇 is a nonexpansive mapping if for every 𝑎, 𝑏 ∈ 𝐶, 

∥ 𝑇(𝑎) − 𝑇(𝑏) ∥≤∥ 𝑎 − 𝑏 ∥. 

 

Then, we will easily obtain an analogous key 

lemma from the below lemma in the work (Goebel and 

Kuczumow 1979). 

 

Lemma 1.2 Let {𝑢𝑛} be a sequence in ℓ1 converging 

to 𝑢 in weak-star topology. Then, for every 𝑤 ∈ ℓ1,   

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑤 − 𝑢‖1 

where  

   𝑄(𝑤) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑢𝑛 − 𝑤‖1. 

 

Note that our scalar field in this study will be real 

numbers although Çolak (1989) considered complex 

values of 𝑣 = (𝑣𝑛)𝑛 while introducing his structure of 

the difference sequence which is taken as the 

fundamental concept in this study. 

 

2. Main Results 

 

In this section, we will present our results. As 

mentioned in the first section, we investigate Goebel 

and Kuczumow analogy for the space 𝑈1
𝑚 for each 𝑚 ∈

ℕ. We aim to show that there is a large class of cbc 

subsets in 𝑈1
𝑚 such that every nonexpansive invariant 

mapping defined on the subsets in the class taken has 

a fixed point. Recall that the invariant mappings have 

the same domain and the range. Note that we will 

assume that 𝑟 ∈ ℝ is arbitrary due to the definition of 

the space. 

First, due to isometric isomorphism, using Lemma 

1.2, we will provide the straight analogous result as a 

lemma below which will be a key step as in the works 

such as (Goebel and Kuczumow 1979), and (Everest 

2013) and in fact the methods in the study (Everest 

2013) will be our lead in this work. 

 

Lemma 2.1 Fix 𝑚 ∈ ℕ and {𝑢𝑛} be a sequence in the 

Banach space 𝑈1
𝑚 and assume {𝑢𝑛} converges to 𝑢 in 

weak-star topology. Then, for every 𝑤 ∈ 𝑈1
𝑚,  

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑤 − 𝑢‖~
(𝑚) 

 where  

   𝑄(𝑤) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑢𝑛 − 𝑤‖~
(𝑚) . 

 

Then, we obtain our results by the following 

theorems. 

 

Theorem 2.2 Let 𝑚 ∈ ℕ, 𝑟 ∈ ℝ and 𝑡 ∈ (0,1). Let 

(𝑓𝑛)𝑛∈ℕ be a sequence defined by 𝑓1: = 𝑡  𝑣1  𝑒1, 𝑓2: =
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𝑡  𝑣2

2𝑚−𝑟   𝑒2, and 𝑓𝑛: =
𝑣𝑛

𝑛𝑚−𝑟 𝑒𝑛 for all integers 𝑛 ≥ 3 

where the sequence (𝑒𝑛)𝑛∈ℕ is the canonical basis of 

both 𝑐0 and ℓ1. Then, consider the cbc subset 𝐸(𝑚) =

𝐸𝑡
(𝑚)

 of 𝑈1
𝑚 by  

𝐸(𝑚) ≔ 

{∑

∞

𝑛=1

𝛼𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 = 1}  . 

Then, 𝐸(𝑚) has the fixed point property for 

‖  .  ‖~
(𝑚)-nonexpansive mappings.  

 

 

Proof. Let 𝑚 ∈ ℕ, 𝑟 ∈ ℝ and 𝑡 ∈ (0,1). Let 𝑇: 𝐸(𝑚) →

𝐸(𝑚) be a ‖  .  ‖~
(𝑚)-nonexpansive mapping. Then, 

there exists a sequence so called aproximate fixed 

point sequence (𝑢(𝑛))
𝑛∈ℕ

∈ 𝐸(𝑚) such that ‖𝑇𝑢(𝑛) −

𝑢(𝑛)‖
~

(𝑚)
→
𝑛

0. Due to isometric isomorphism, 𝑈1
𝑚 

shares common geometric properties with ℓ1 and so 

both 𝑈1
𝑚 and its predual have similar fixed point theory 

properties to ℓ1 and 𝑐0, respectively. Thus, considering 

that on bounded subsets the weak star topology on ℓ1 

is equivalent to the coardinate-wise convergence 

topology, and 𝑐0 is separable, in 𝑈1
𝑚, the unit closed 

ball is weak*-sequentially compact due to Banach-

Alaoglu theorem. Then, we can say that we may denote 

the weak* closure of the set 𝐸(𝑚) by  

𝐶(𝑚) ≔ 𝐸(𝑚)
𝑤∗

 

= {∑

∞

n=1

𝛼𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 ≤ 1} 

and without loss of generality, we may pass to a 

subsequence if necessary and get a weak* limit 𝑢 ∈

𝐶(m) of 𝑢(𝑛). Then, by Lemma 2.1, we have a function 

𝑟: 𝑈1
𝑚 → [0, ∞) defined by  

 𝑄(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
~

(𝑚)
  ,    ∀𝑤 ∈ 𝑈1

𝑚 

such that for every 𝑤 ∈ 𝑈1
𝑚,  

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑢 − 𝑤‖~
(𝑚) . 

 

Case 1. 𝑢 ∈ 𝐸(𝑚). 

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) and   

 𝑄(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
~

(𝑚)
 

≤ limsup
𝑛

‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖
~

(𝑚)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
~

(𝑚)
 

≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
~

(𝑚)
+ 0                                   

= 𝑄(𝑢).                                    (1) 

 

Thus, 𝑄(𝑇𝑢) = 𝑄(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) ≤ 𝑟(𝑢) 

and so ‖𝑇𝑢 − 𝑢‖~
(𝑚) = 0. Therefore, 𝑇𝑢 = 𝑢. 

Case 2. 𝑢 ∈ 𝐶(𝑚)\𝐸(𝑚). 

Then, we may find scalars satisfying 𝑢 =

∑∞
𝑛=1 𝛿𝑛𝑓𝑛    such  that    ∑∞

𝑛=1 𝛿𝑛 < 1    𝑎𝑛𝑑    𝛿𝑛 ≥

0, ∀𝑛 ∈ ℕ. 

Define 𝜉: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛽 ∈ [

−𝛿1

𝜉
,

𝛿2

𝜉
+ 1] 

define  

ℎ𝛽: = (𝛿1 + 𝛽𝜉)𝑓1 + (𝛿2 + (1 − 𝛽)𝜉)𝑓2 + ∑

∞

𝑛=3

𝛿𝑛𝑓𝑛. 

Then,  

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖𝛽𝑡𝜉𝑣1𝑒1 + (1 − 𝛽)𝜉

𝑡𝑣2𝑒2

2𝑚−𝑟
‖

~

(𝑚)

 

     = 𝑡|𝛽|𝜉 + 𝑡|1 − 𝛽|𝜉. 

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
 is minimized for 𝛽 ∈ [0,1] and its 

minimum value would be 𝑡𝜉. 

Now fix 𝑤 ∈ 𝐸(𝑚). Then, we may find scalars 

satisfying 𝑤 = ∑∞
𝑛=1 𝛼𝑛𝑓𝑛 such that ∑∞

𝑛=1 𝛼𝑛     = 1 

with 𝛼𝑛 ≥ 0,    ∀𝑛 ∈ ℕ. We may also write each 𝑓𝑘  

with coefficients 𝛾𝑘 for each 𝑘 ∈ ℕ where 𝛾1: = 𝑡  𝑣1, 

𝛾2: =
𝑡  𝑣2

2𝑚−𝑟, and 𝛾𝑛: =
𝑣𝑛

𝑛𝑚−𝑟 for all integers 𝑛 ≥ 3 such 

that for each 𝑛 ∈ ℕ, 𝑓𝑛 = 𝛾𝑛𝑒𝑛. 

Then,   

‖w − 𝑢‖~
(𝑚) = ‖∑

∞

𝑘=1

𝛼𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

~

(𝑚)

 

                        = ‖∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)𝑓𝑘‖

~

(𝑚)

         

                     = ∑

∞

𝑘=1

|(𝛼𝑘 − 𝛿𝑘)
𝑘𝑚−𝑟𝛾𝑘

𝑣𝑘

|. 

 

Hence,   

‖w − 𝑢‖~
(𝑚) ≥ ∑

∞

𝑘=1

𝑡  |𝛼𝑘 − 𝛿𝑘| 

                          ≥ 𝑡 |∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)| 

                    = 𝑡 |1 − ∑

∞

𝑘=1

𝛿𝑘| 

= 𝑡𝜉. 
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Hence,  

‖w − 𝑢‖~
(𝑚) ≥ 𝑡𝜉 = ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
 

and the equality is obtained if and only if (1 −

𝑡) ∑∞
𝑘=3 |𝛼𝑘 − 𝛿𝑘| = 0; that is, we have ‖w −

𝑢‖~
(𝑚) = 𝑡𝜉 if and only if 𝛼𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or 

say, ‖w − 𝑢‖~
(𝑚) = 𝑡𝜉 if and only if w = ℎ𝛽 for some 

𝛽 ∈ [0,1]. 

Then, there exists a continuous function 

𝜌:  [0,1] → 𝐸(𝑚) defined by 𝜌(𝛽) = ℎ𝛽  and Λ𝜌([0,1]) 

is a compact convex subset and so ‖w − 𝑢‖~
(𝑚) 

achieves its minimum value at w = ℎ𝛽 and for any 

h𝛽 ∈ Λ, we get   

𝑄(ℎ𝛽) = 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖
~

(𝑚)
             

    ≤ 𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
 

                            = 𝑄(𝑇ℎ𝛽) = limsup
𝑛

‖𝑇ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
 

 then, like the inequality (1), we get   

𝑄(ℎ𝛽) ≤ limsup
𝑛

‖𝑇ℎ𝛽 − 𝑇(𝑢(𝑛))‖
~

(𝑚)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
+ 0                                  

= 𝑄(ℎ𝛽).                                                                      

 

Hence, 𝑟(ℎ𝛽) ≤ 𝑄(𝑇ℎ𝛽) ≤ 𝑟(ℎ𝛽) and so 

𝑄(𝑇ℎ𝛽) = 𝑄(ℎ𝛽). 

Therefore,  

𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
. 

Thus, ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
 and so 

𝑇ℎ𝛽 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and using 

Schauder’s (1930) fixed point theorem, easily we get 

the result 𝑇 has a fixed point since 𝑇 is continuous; 

thus, ℎ𝛽 is the unique minimizer of ‖w − 𝑢‖~
(𝑚)    ∶

𝑤 ∈ 𝐸(𝑚) and 𝑇ℎ𝛽 = ℎ𝛽. 

Therefore, 𝐸(𝑚) has the fixed point property for 

nonexpansive mappings.  

 

Theorem 2.3 Let 𝑚 ∈ ℕ, 𝑟 ∈ ℝ and 𝑡 ∈ (0,1). Let 

(𝑓𝑛)𝑛∈ℕ be a sequence defined by 𝑓1: = 𝑡  𝑣1  𝑒1, 𝑓2: =
𝑡  𝑣2

2𝑚−𝑟   𝑒2, 𝑓3: =
𝑡  𝑣3

3𝑚−𝑟   𝑒3, and 𝑓𝑛: =
𝑣𝑛

𝑛𝑚−𝑟 𝑒𝑛 for all 

integers 𝑛 ≥ 4 where the sequence (𝑒𝑛)𝑛∈ℕ is the 

canonical basis of both 𝑐0 and ℓ1. Then, consider the 

cbc subset 𝐸(𝑚) = 𝐸𝑡
(𝑚) of 𝑈1

𝑚 by  

𝐸(𝑚) ≔                                                                                     

{∑

∞

𝑛=1

𝛼𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 = 1}  . 

Then, 𝐸(𝑚) has the fixed point property for ‖  .  ‖~
(𝑚)-

nonexpansive mappings.  

 

 

Proof. Let 𝑚 ∈ ℕ, 𝑟 ∈ ℝ and 𝑡 ∈ (0,1). Let 𝑇: 𝐸(𝑚) →

𝐸(𝑚) be a ‖  .  ‖~
(𝑚)-nonexpansive mapping. Then, 

there exists a sequence so called aproximate fixed 

point sequence (𝑢(𝑛))
𝑛∈ℕ

∈ 𝐸(𝑚) such that ‖𝑇𝑢(𝑛) −

𝑢(𝑛)‖
~

(𝑚)
→
𝑛

0. Due to isometric isomorphism, 𝑈1
𝑚 

shares common geometric properties with ℓ1 and so 

both 𝑈1
𝑚 and its predual have similar fixed point theory 

properties to ℓ1 and 𝑐0, respectively. Thus, considering 

that on bounded subsets the weak star topology on ℓ1 

is equivalent to the coardinate-wise convergence 

topology and 𝑐0 is separable, in 𝑈1
𝑚, the unit closed ball 

is weak*-sequentially compact due to Banach-Alaoğlu 

theorem. Then, we can say that we may denote the 

weak* closure of the set 𝐸(m) by  

𝐶(𝑚): = 𝐸(𝑚)
𝑤∗

=                                                                 

{∑

∞

n=1

𝛼𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 ≤ 1} 

and without loss of generality, we may pass to a 

subsequence if necessary and get a weak* limit 𝑢 ∈

𝐶(m) of 𝑢(𝑛). Then, by Lemma 2.1, we have a function 

𝑟: 𝑈1
𝑚 → [0, ∞) defined by  

 𝑄(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
~

(𝑚)
  ,    ∀𝑤 ∈ 𝑈1

𝑚 

such that for every 𝑤 ∈ 𝑈1
𝑚,  

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑢 − 𝑤‖~
(𝑚) . 

 Case 1. 𝑢 ∈ 𝐸(𝑚). 

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) and   

 𝑄(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
~

(𝑚)
 

≤ limsup
𝑛

‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖
~

(𝑚)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
~

(𝑚)
 

≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
~

(𝑚)
+ 0                                   

= 𝑄(𝑢).                                                                 (2) 
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Thus, 𝑄(𝑇𝑢) = 𝑄(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) ≤ 𝑟(𝑢) 

and so ‖𝑇𝑢 − 𝑢‖~
(𝑚) = 0. Therefore, 𝑇𝑢 = 𝑢. 

 Case 2. 𝑢 ∈ 𝐶(𝑚)\𝐸(𝑚). 

Then, we may find scalars satisfying 𝑢 =

∑∞
𝑛=1 𝛿𝑛𝑓𝑛    such  that    ∑∞

𝑛=1 𝛿𝑛 < 1    𝑎𝑛𝑑    𝛿𝑛 ≥

0, ∀𝑛 ∈ ℕ. 

Define 𝜉: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛽 ∈ [

−𝛿1

𝜉
,

𝛿2

𝜉
+ 1], 

define  

h𝛽: = (𝛿1 +
𝛽

2
𝜉) 𝑓1 + (𝛿2 +

𝛽

2
𝜉) 𝑓2

+ (𝛿3 + (1 − 𝛽)𝜉)𝑓3 + ∑

∞

𝑛=4

𝛿𝑛𝑓𝑛. 

 

Then,  

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖

𝛽

2
𝑡𝜉𝑣1𝑒1 +

𝛽

2
𝑡𝜉

𝑣2

2𝑚−𝑟
𝑒2

+(1 − 𝛽)𝜉
𝑡  𝑣3𝑒3

3𝑚−𝑟

‖

~

(𝑚)

 

= 𝑡 |
𝛽

2
| 𝜉 + 𝑡 |

𝛽

2
| 𝜉 + 𝑡|1 − 𝛽|𝜉. 

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
 is minimized for 𝛽 ∈ [0,1] and its 

minimum value would be 𝑡𝜉. 

Now fix 𝑤 ∈ 𝐸(𝑚). Then, we may find scalars 

satisfying 𝑤 = ∑∞
𝑛=1 𝛼𝑛𝑓𝑛 such that ∑∞

𝑛=1 𝛼𝑛     = 1 

with 𝛼𝑛 ≥ 0,    ∀𝑛 ∈ ℕ. We may also write each 𝑓𝑘  

with coefficients 𝛾𝑘 for each 𝑘 ∈ ℕ where 𝛾1: = 𝑡  𝑣1, 

𝛾2: =
𝑡  𝑣2

2𝑚−𝑟, 𝛾3: =
𝑡  𝑣3

3𝑚−𝑟, and 𝛾𝑛: =
𝑣𝑛

𝑛𝑚−𝑟 for all integers 

𝑛 ≥ 4 such that for each 𝑛 ∈ ℕ, 𝑓𝑛 = 𝛾𝑛𝑒𝑛. 

Then,   

‖w − 𝑢‖~
(𝑚) = ‖∑

∞

𝑘=1

𝛼𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

~

(𝑚)

 

= ‖∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)𝑓𝑘‖

~

(𝑚)

         

= ∑

∞

𝑘=1

|(𝛼𝑘 − 𝛿𝑘)
k𝑚−𝑟𝛾𝑘

𝑣𝑘

|        

≥ ∑

∞

𝑘=1

𝑡  |𝛼𝑘 − 𝛿𝑘|                       

≥ 𝑡 |∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)|                    

= 𝑡 |1 − ∑

∞

𝑘=1

𝛿𝑘|                           

      = 𝑡𝜉. 

Hence,  

‖w − 𝑢‖~
(𝑚) ≥ 𝑡𝜉 = ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
 

and the equality is obtained if and only if (1 −

𝑡) ∑∞
𝑘=4 |𝛼𝑘 − 𝛿𝑘| = 0; that is, we have ‖w −

𝑢‖~
(𝑚) = 𝑡𝜉 if and only if 𝛼𝑘 = 𝛿𝑘 for every 𝑘 ≥ 4; or 

say, ‖w − 𝑢‖~
(𝑚) = 𝑡𝜉 if and only if w = ℎ𝛽 for some 

𝛽 ∈ [0,1]. 

Then, there exists a continuous function 𝜌:  [0,1] →

𝐸(𝑚) defined by 𝜌(𝛽) = ℎ𝛽 and Λ𝜌([0,1]) is a 

compact convex subset and so ‖w − 𝑢‖~
(𝑚) achieves its 

minimum value at w = ℎ𝛽 and for any h𝛽 ∈ Λ, we get   

 𝑄(ℎ𝛽) = 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖
~

(𝑚)
 

 ≤ 𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
   

 = 𝑄(𝑇ℎ𝛽) = limsup
𝑛

‖𝑇ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
 

 then same as the inequality (2), we get   

𝑄(ℎ𝛽) ≤ limsup
𝑛

‖𝑇ℎ𝛽 − 𝑇(𝑢(𝑛))‖
~

(𝑚)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)

+ limsup
𝑛

‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖
~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
+ 0                                 

= 𝑄(ℎ𝛽).                                                                    

 

Hence, 𝑟(ℎ𝛽) ≤ 𝑄(𝑇ℎ𝛽) ≤ 𝑟(ℎ𝛽) and so 

𝑄(𝑇ℎ𝛽) = 𝑄(ℎ𝛽). 

Therefore,  

𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
. 

Thus, ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
 and so 𝑇ℎ𝛽 ∈ Λ 

but this shows 𝑇(Λ) ⊆ Λ and using Schauder’s (1930) 

fixed point theorem, we can easily we get the result 𝑇 

has a fixed point since 𝑇 is continuous. Thus, ℎ𝛽 is the 

unique minimizer of ‖w − 𝑢‖~
(𝑚)    ∶ 𝑤 ∈ 𝐸(𝑚) and 

𝑇ℎ𝛽 = ℎ𝛽. 

Therefore, 𝐸(𝑚) has the fixed point property for 

nonexpansive mappings. 

 

3. Discussion 

 

The present study introduces novel advancements 

in the field of fixed point theory by establishing large 

classes of cbc subsets in 𝛼-duals of certain generalized 
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difference sequence spaces that satisfy the FPP for 

nonexpansive mappings. This work addresses a 

previously unexplored area, as no prior studies have 

examined these spaces with the goal of identifying 

such large classes with the FPP. Notably, while Goebel 

and Kuczumow (1979) achieved analogous results for 

the space of absolutely summable scalar sequences, 

our work generalizes and extends these findings to 

broader spaces. Our space is isometrically isomorphic 

to the absolutely summable scalar sequence space but 

incorporates a more general framework, thereby 

broadening the scope of applicable classes. 

An essential distinction of our approach lies in the 

elimination of the additional affinity condition 

required by Kaczor and Prus (2004), as we work 

directly with nonexpansive mappings rather than 

asymptotically nonexpansive mappings. This 

adjustment simplifies the theoretical foundation while 

still achieving stronger results. Moreover, our methods 

are not limited to specific instances, as we are 

developing a more general case for arbitrary \(m\), 

which opens new possibilities for future research in 

this domain. 

Recent studies have demonstrated the existence of 

large classes with the fixed point property under 

specific conditions. Our results build on this 

momentum, further advancing the field by identifying 

and characterizing classes of sets that satisfy the FPP 

in a broader family of Banach spaces. These results 

offer a valuable perspective on the geometric structure 

of generalized difference sequence spaces and their 

fixed point properties, with implications for further 

studies on nonexpansive mappings, Banach space 

theory, and related areas in functional analysis. 

As has been mentioned above and in earlier 

sections of the study, investigating and looking for 

large classes of closed, bounded and convex subsets in 

Banach spaces alike the Banach spaces of absolutely 

summable scalars are center of interests for many fixed 

point theorists. One can investigate to get larger classes 

for more general spaces than those in the present study 

and due to isometry, that would not be hard by 

following the ideas of Goebel and Kuczumow’s. 

However, trying to generalize their ideas and looking 

for different examples of the sets and spaces would be 

valuable studies.  
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