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Abstaract − We introduce the concept of Path Laplacian Matrix for a graph and explore the
eigenvalues of this matrix. The eigenvalues of this matrix are called the path Laplacian eigenvalues
of the graph. We investigate path Laplacian eigenvalues of some classes of graph. Several results
concerning path Laplacian eigenvalues of graphs have been obtained.
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1 Introduction

For a graph G the eigenvalues of G are the eigenvalues of its adjacency matrix. The
spectrum of of a graph G is the set of its eigenvalues. Several properties and appli-
cations of eigenvalues of graph are useful. For undefined terminology and notations
we refer to Lowel W. Beineke [1] and West [2]. For an extensive survey on graph
spectra we refer to R. B. Bapat [3], Brouwer A. E. [4] and Verga R. S. [5].

We have defined the path matrix [6, 7] of the graph G as follows. Let G be a
graph without loops and let V (G) = {v1, v2, ..., vn} be the vertex set of G.
Define the matrix P = (pij) of size n× n such that

pij =

{
maximum number of vertex disjoint paths from vi to vj if i 6= j
0 if i = j

We call P as Path Matrix of G. The matrix P is real symmetric matrix. Therefore,
its eigenvalues are real. We call eigenvalues of P as path eigenvalues of G.

*Corresponding Author.
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2 Preliminary

We define the path Laplacian matrix of G, PL(G) as follows.

Definition 2.1. The rows and columns of PL(G) are indexed by V (G). If i 6= j
then the (i, j)- entry of PL(G) is 0 if there is no path between i and j, and it is −k if
the maximum number of vertex disjoint paths between i and j is k. The (i, i) entry
of PL(G) is di, the degree of the vertex i, i = 1, 2, 3, ..., n.

Thus PL(G) is an n×n matrix. The path Laplacian matrix of G can be defined
in an alternative way. Let D(G) be the diagonal matrix of vertex degrees. If P (G)
is the path matrix of G, then PL(G) = D(G)− P (G). We call the path eigenvalues
of PL(G) as path Laplacian eigenvalues of G.

Example 2.2. Consider the graph G as shown in the following figure.
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Then the path Laplacian matrix of G is

PL(G) =




2 −2 −2 −1 −1
−2 2 −2 −1 −1
−2 −2 4 −2 −2
−1 −1 −2 2 −2
−1 −1 −2 −2 2




.

The characteristic polynomial of the matrix PL(G) is
CPL(G)(x) = |PL−xI| = (x+4)(x−2)(x−4)2(x−6). The path Laplacian eigenvalues
of G are −4, 2, 4, 4 and 6. The ordinary Laplacian eigenvalues of G are 0, 1, 3, 3 and
5.

The ordinary Laplacian spectrum of the graph G, consisting of the numbers
µ1, µ2, ..., µn is the spectrum of its Laplacian matrix [8, 9, 10, 11]. In analogy, the
path Laplacian spectrum of a graph G is defined as the spectrum of the corresponding
path Laplacian matrix.

3 Path Laplacian Eigenvalues of Graphs

In this section, we investigate path Laplacian eigenvalues of some special classes of
graphs. In this paper, we define path Laplacian matrix of a graph and investigate
the eigenvalues (called path Laplacian eigenvalues) of this matrix. We obtain several
properties concerning the path Laplacian eigenvalues. A notion of path Laplacian
energy has been introduced and some of its basic properties have been obtained.
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Proposition 3.1. Let Sn be a star with n vertices. Then the path Laplacian eigen-
values of Sn are 2 with multiplicity n− 2, 1 +

√
n2 − 3n + 3 with multiplicity 1 and

1−√n2 − 3n + 3 with multiplicity 1.

Proof. We can write the path Laplacian matrix of Sn as

PL(Sn) =




n− 1 −1 −1 ... −1 −1
−1 1 −1 ... −1 −1
−1 −1 1 ... −1 −1
...

...
...

. . .
...

...
−1 −1 −1 ... 1 −1
−1 −1 −1 ... −1 1




The characteristic polynomial of PL(Sn) is

CPL(Sn)(x) = (x− 2)n−2(x− 1−
√

n2 − 3n + 3)(x− 1 +
√

n2 − 3n + 3).

Consequently the path Laplacian eigenvalues of Sn are 2 with multiplicity n − 2,
1 +

√
n2 − 3n + 3 with multiplicity 1 and 1−√n2 − 3n + 3 with multiplicity 1.

Proposition 3.2. Let Pn be a path graph with n vertices. Then the path Laplacian

eigenvalues of Pn are 2 with multiplicity 1, 3 with multiplicity n−3, (−n+5)+
√

n2−2n+9
2

with multiplicity 1 and (−n+5)−√n2−2n+9
2

with multiplicity 1.

Proof. The path Laplacian matrix of Pn is

PL(Pn) =




1 −1 −1 ... −1 −1
−1 2 −1 ... −1 −1
−1 −1 2 ... −1 −1
...

...
...

. . .
...

...
−1 −1 −1 ... 2 −1
−1 −1 −1 ... −1 1




The characteristic polynomial of PL(Pn) is CPL(Pn)(x) =

(x− 2)(x− 3)n−3(x− (−n + 5) +
√

n2 − 2n + 9

2
)(x− (−n + 5)−√n2 − 2n + 9

2
).

Consequently the path Laplacian eigenvalues of Pn are 2 with multiplicity 1, 3 with

multiplicity n − 3, (−n+5)+
√

n2−2n+9
2

with multiplicity 1 and (−n+5)−√n2−2n+9
2

with
multiplicity 1.

Proposition 3.3. Let Wn be a wheel graph with n vertices. Then the path Laplacian
eigenvalues of Wn are 6 with multiplicity n − 2, −(n− 4) +

√
4n2 − 11n + 16 with

multiplicity 1 and
−(n− 4)−√4n2 − 11n + 16 with multiplicity 1.

Proof. The path Laplacian matrix of Wn is
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PL(Wn) =




n− 1 −3 −3 ... −3 −3
−3 3 −3 ... −3 −3
−3 −3 3 ... −3 −3
...

...
...

. . .
...

...
−3 −3 −3 ... 3 −3
−3 −3 −3 ... −3 3




The characteristic polynomial of PL(Wn) is CPL(Wn)(x) = (x− 6)n−2(x + (n− 4)−√
4n2 − 11n + 16)(x+(n−4)+

√
4n2 − 11n + 16). Consequently the path Laplacian

eigenvalues of Wn are 6 with multiplicity n − 2, −(n− 4) +
√

4n2 − 11n + 16 with
multiplicity 1 and
−(n− 4)−√4n2 − 11n + 16 with multiplicity 1.

Proposition 3.4. The path Laplacian eigenvalues of the complete bipartite graph
Km,n (1 < m ≤ n) are m with multiplicity n − 1, n with multiplicity m − 1,

(m + n−mn) +
√

[m + n−mn]2 + mn[1 + 3(m− 1)] with multiplicity 1 and (m +

n−mn)−
√

[m + n−mn]2 + mn[1 + 3(m− 1)] with multiplicity 1.

Proof. The path Laplacian matrix of Km,n is

PL(Km,n) =




n −n ... −n −m −m ... −m
−n n ... −n −m −m ... −m
...

...
. . .

...
...

...
...

...
−n −n ... n −m −m ... −m
−m −m ... −m m −m ... −m
−m −m ... −m −m m ... −m

...
...

...
...

...
...

. . .
...

−m −m ... −m −m −m ... m




=

[
2nIm − nJm B

B′ 2mIn −mJn

]
.

where B is m× n matrix with all entries −m and B′ is the transpose of the matrix
B. Therefore the path Laplacian eigenvalues of Km,n are 2m with multiplicity n−1,

2n with multiplicity m − 1, (m + n − mn) +
√

[m + n−mn]2 + mn[1 + 3(m− 1)]

with multiplicity 1 and (m + n−mn)−
√

[m + n−mn]2 + mn[1 + 3(m− 1)] with
multiplicity 1.

Remark: Let G be a graph on n vertices with m edges. Then the sum of the
path Laplacian eigenvalues of G is 2m. For instance, let G be a graph with ver-
tex degrees d1, d2, ..., dn and with path Laplacian eigenvalues µ1, µ2, ..., µn. Then
tracePL(G) =

∑n
i=1 di = 2m, also tracePL(G) =

∑n
i=1 µi. Thus

∑n
i=1 µi = 2m.

The following theorem gives path Laplacian eigenvalues of r-regular, r-connected
graph.

Theorem 3.5. Let G be a r- regular, r-connected graph with n vertices. Then the
path Laplacian matrix PL(G) of G is of the form 2rIn− rJn and the path Laplacian
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eigenvalues of G are of the form 2r−nr with multiplicity 1 and 2r with multiplicity
n− 1.

Proof. We can write PL(G) as

PL(G) =




r −r ... −r
−r r ... −r
...

...
. . .

...
−r −r ... r




= 2rIn − rJn.

Consequently the path Laplacian eigenvalues of a graph G are r(2 − n) with
multiplicity 1 and 2r with multiplicity n− 1.

Corollary 3.6. Let G1 be a r1-regular, r1-connected graph with n1 vertices and
G2 be a r2-regular, r2-connected graph with n2 vertices. Then the path Laplacian
eigenvalues of their cartesian product are (r1 + r2)(2 − n) with multiplicity 1 and
2(r1 + r2) with multiplicity n− 1, where n = n1.n2.

Proof. Let G denote the cartesian product of G1 and G2. Then G is r1 + r2-regular,
r1 + r2-connected with n vertices. By Theorem 3.5, the path Laplacian eigenvalues
of G are (r1 +r2)(2−n) with multiplicity 1 and 2(r1 +r2) with multiplicity n−1.

Remark: Let G be an r-regular, r-connected graph with n vertices. Then PL(G)+
P (G) = rIn.

Proposition 3.7. Let G be a r-regular, r-connected graph with n vertices and m
edges. Let µ1, ..., µn and d1, ..., dn be the path Laplacian eigenvalues and degrees of
vertices of G, respectively. Then

n∑
i=1

µ2
i =

n∑
i=1

d2
i + n(n− 1)r2 =

n∑
i=1

d2
i +

4m2(n− 1)

n
.

Proof. Let PL(G) be the path Laplacian matrix of G. Then

PL(G)2 =




nr2 (n− 4)r2 ... (n− 4)r2

(n− 4)r2 nr2 ... (n− 4)r2

...
...

. . .
...

(n− 4)r2 (n− 4)r2 ... nr2




Since G is r-regular, di = r = 2m
n

, i = 1, 2, ..., n and
∑n

i=1 d2
i = nr2.

n∑
i=1

µ2
i = trPL(G)2 = n2r2 = nr2 + n2r2 − nr2 =

n∑
i=1

d2
i + n(n − 1)r2 =

n∑
i=1

d2
i +

4m2(n− 1)

n
.

In the following Proposition, we give the relation between path Laplacian eigen-
values and maximum vertex degree ∆.
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Proposition 3.8. Let G be a graph on n vertices with degrees di and PL(G) be
its path Laplacian matrix. Let ∆ = maxi di and µ1, µ2, ..., µn be the path Laplacian
eigenvalues of PL(G). Then

∑
i µi ≤ n∆.

Proof. We know that
∑

i µi =
∑

i di and
∑

i di ≤ n∆. Therefore we conclude that∑
i µi ≤ n∆.

Proposition 3.9. (Bounds for µ1 and µn:) Let G be a graph on n vertices,
m edges with degrees of vertices di and PL(G) be its path Laplacian matrix. Let
µ1 ≥ µ2 ≥ ... ≥ µn be the path Laplacian eigenvalues of PL(G). Then µn ≤ 2m

n
≤ µ1.

Proof. We know,
∑

i µi = 2m and nµn ≤
∑

i µi ≤ nµ1. This implies that µn ≤ 2m
n

and µ1 ≥ 2m
n

. Thus µn ≤ 2m
n
≤ µ1.

4 Path Laplacian Energy of Graphs

In this section, we find path Laplacian energy of some graphs.
Definition: Let G be a graph with n vertices and m edges. Let µ1, µ2, ..., µn be
the path Laplacian eigenvalues of G. We define the path Laplacian energy as

PLE(G) =
n∑

i=1

|µi − 2m/n|.

In the following table, we explore the path Laplacian energy of some classes of
graphs which have just two distinct path Laplacian eigenvalues denoted by µ1 and µ2.

Graphs µ1 µ2 Path Laplacian En-
ergy

Kn (n− 1)(2− n) 2(n− 1) 3(n− 1)2

Cn 2(2− n) 4 3(n− 1)
Qn n(2− 2n) 2n 2n(2n − 1)
Petersen Graph 6 −24 54

From Propositions 3.1-3.4, we get the path Laplacian energies of Sn, Pn, Wn and
Km,n as follows.

The path Laplacian energy of the star graph Sn is 2(n−2)
n

+ 2
√

n2 − 3n + 3.

The path Laplacian energy of the path graph Pn is n2−n−4
n

+
√

n2 − 2n + 9.

The path Laplacian energy of the wheel graph Wn is 2(n2−4)
n

+

2
√

4n2 − 11n + 16.
The path Laplacian energy of the complete bipartite graph Km,n (1 < m ≤ n) is
2mn(n−m)

m+n
+ (m− n) +

√
[m + n−mn]2 + mn[1 + 3(m− 1)].

The following result follows from the definitions of the path energy and path
Laplacian energy.

Proposition 4.1. Let G be a r-regular, r-connected graph on n vertices (1 ≤ r ≤
n− 1) and m edges. Then PE(G) = PLE(G) = 4(n−1)

n
m.
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Proof. By [6], the path eigenvalues of G are r(n−1) with multiplicity 1 and −r with
multiplicity n− 1. Since G is r-regular, r = 2m

n
, this implies that

PE(G) = |r(n− 1)|+ (n− 1)| − r| = 2r(n− 1) =
4(n− 1)

n
m.

By Theorem 3.5, the path Laplacian eigenvalues of G are 2r − nr with multiplicity
1 and 2r with multiplicity n− 1. Thus

PLE(G) = |r(2−n)−r|+(n−1)|2r−r| = |r−nr|+(n−1)|r| = 2r(n−1) =
4(n− 1)

n
m.

Let G be a disconnected graph with two components G1 and G2, then PLE(G)
need not be equal to PLE(G1) + PLE(G2). Consider the following example.

Example 4.2. Consider the graph G with two connected components P4 and C3,
then PLE(G) 6= PLE(P4) + PLE(C3) as the value of LHS is 13.982 and the value
of RHS is 12.123. We observe that average vertex degree of P4 = 1.5 6= 2= average
vertex degree of C3.

In the following Proposition, we give a sufficient condition so that PLE(G) =
PLE(G1) + PLE(G2).

Proposition 4.3. If the graph G consists of disconnected components G1 and G2,
and if G1 and G2 have equal average vertex degrees, then PLE(G) = PLE(G1) +
PLE(G2).

Proof. Let G, G1, and G2 be (n, m), (n1, m1), and (n2, m2)-graphs, respectively.
Then from 2m1/n1 = 2m2/n2 it follows 2m/n = 2mi/ni, i = 1, 2. Therefore

PLE(G) =

n1+n2∑
i=1

|µi − 2m

n
| =

n1∑
i=1

|µi − 2m1

n1

|+
n1+n2∑
i=n1+1

|µi − 2m2

n2

|

= PLE(G1) + PLE(G2).

Let G1 and G2 be two graphs with disjoint vertex sets. Let Vi and Ei be the
vertex and edge sets of Gi (i = 1, 2), respectively. The union of G1 and G2 is the
graph G1∪G2 with vertex set V1∪V2 and the edge set E1∪E2. If G1 is an (n1, m1)-
graph and G2 is an (n2, m2)-graph then G1 ∪G2 has n1 + n2 vertices and m1 + m2

edges.
In the following Theorem, we obtain bound for the path Laplacian energy of the

union of two graphs.

Theorem 4.4. If G1 be an (n1, m1)-graph and G2 be an (n2, m2)-graph, such that
2m1

n1
> 2m2

n2
. Then

PLE(G1)+PLE(G2)−4(n2m1 − n1m2)

n1 + n2

≤ PLE(G1∪G2) ≤ PLE(G1)+PLE(G2)+

4(n2m1 − n1m2)

n1 + n2

.
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Proof. Let G = G1 ∪G2. Then G is an (n1 + n2, m1 + m2)-graph. By the definition
of path Laplacian energy,

PLE(G1 ∪G2) =

n1+n2∑
i=1

|µi(G)− 2(m1 + m2)

n1 + n2

|

=

n1∑
i=1

|µi(G)− 2(m1 + m2)

n1 + n2

|+
n1+n2∑
i=n1+1

|µi(G)− 2(m1 + m2)

n1 + n2

|

=

n1∑
i=1

|µi(G1)− 2(m1 + m2)

n1 + n2

|+
n2∑
i=1

|µi(G2)− 2(m1 + m2)

n1 + n2

|

=

n1∑
i=1

|µi(G1)− 2m1

n1

+
2m1

n1

− 2(m1 + m2)

n1 + n2

|+
n2∑
i=1

|µi(G2)− 2m2

n2

+
2m2

n2

− 2(m1 + m2)

n1 + n2

|

≤
n1∑
i=1

|µi(G1)−2m1

n1

|+n1|2m1

n1

−2(m1 + m2)

n1 + n2

|+
n2∑
i=1

|µi(G2)−2m2

n2

|+n2|2m2

n2

−2(m1 + m2)

n1 + n2

|.

Since n2m1 > n1m2, above inequality becomes

PLE(G1 ∪ G2) ≤ PLE(G1) + n1(
2m1

n1

− 2(m1 + m2)

n1 + n2

) + PLE(G2) + n2(−2m2

n2

+

2(m1 + m2)

n1 + n2

) = PLE(G1) + PLE(G2) +
4(n2m1 − n1m2)

n1 + n2

which is an upper bound

for path Laplacian energy of G1 ∪G2.
To get the lower bound, we just have to note that in full analogy to the above
arguments,

PLE(G1∪G2) ≥
n1∑
i=1

|µi(G1)− 2m1

n1

|−n1|2m1

n1

− 2(m1 + m2)

n1 + n2

|+
n2∑
i=1

|µi(G2)− 2m2

n2

|−

n2|2m2

n2

− 2(m1 + m2)

n1 + n2

|.
Since n2m1 > n1m2, above inequality becomes

PLE(G1 ∪ G2) ≥ PLE(G1) − n1(
2m1

n1

− 2(m1 + m2)

n1 + n2

) + PLE(G2) − n2(−2m2

n2

+

2(m1 + m2)

n1 + n2

) = PLE(G1) + PLE(G2)− 4(n2m1 − n1m2)

n1 + n2
which is a lower bound for path Laplacian energy of G1 ∪G2.

Corollary 4.5. Let G1 be an r1 regular graph on n1 vertices and G2 be an r2 regular
graph on n2 vertices, such that r1 > r2. Then

PLE(G1)+PLE(G2)− 2n1n2(r1 − r2)

n1 + n2

≤ PLE(G1∪G2) ≤ PLE(G1)+PLE(G2)+

2n1n2(r1 − r2)

n1 + n2

.

Proof. Since G1 is r1 regular, the number of edges in G1 is m1 = n1r1

2
and since G2

is r2 regular, the number of edges in G2 is m2 = n2r2

2
. Now 2m1

n1
= r1 > r2 = 2m2

n2
. By

Theorem 4.4, we get the required inequality.
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Corollary 4.6. Let G1 be an (n, m)-graph and G2 be the graph obtained from G1

by removing k edges, 0 ≤ k ≤ m. Then
PLE(G1) + PLE(G2)− 2k ≤ PLE(G1 ∪G2) ≤ PLE(G1) + PLE(G2) + 2k.

Proof. The number of vertices of G2 is n and the number of edges in G2 is m − k.
By Theorem 4.4, the result follows.

5 Conclusion

In the present paper, the concepts of path Laplacian matrix, path Laplacian eigen-
values and path Laplacian energy of a graph are given and studied. Also, some
bounds on Path Laplacian Energy of graphs are given and studied.
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