(2)
 New Théorary

Received: 20.12.2017
Published: 17.02.2018

On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs

Shridhar Chandrakant Patekar ${ }^{1, *}$ shri82patekar@gmail.com
Maruti Mukinda Shikare ${ }^{1} \quad$ mmshikare@unipune.ac.in
${ }^{1}$ Department of Mathematics, Savitribai Phule Pune University, Pune-411007, India

Abstract

Abstaract - We introduce the concept of Path Laplacian Matrix for a graph and explore the eigenvalues of this matrix. The eigenvalues of this matrix are called the path Laplacian eigenvalues of the graph. We investigate path Laplacian eigenvalues of some classes of graph. Several results concerning path Laplacian eigenvalues of graphs have been obtained.

Keywords - Path, Real symmetric matrix, Laplacian matrix.

1 Introduction

For a graph G the eigenvalues of G are the eigenvalues of its adjacency matrix. The spectrum of of a graph G is the set of its eigenvalues. Several properties and applications of eigenvalues of graph are useful. For undefined terminology and notations we refer to Lowel W. Beineke [1] and West [2]. For an extensive survey on graph spectra we refer to R. B. Bapat [3], Brouwer A. E. [4] and Verga R. S. [5].

We have defined the path matrix $[6,7]$ of the graph G as follows. Let G be a graph without loops and let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of G.
Define the matrix $P=\left(p_{i j}\right)$ of size $n \times n$ such that

$$
p_{i j}=\left\{\begin{array}{lc}
\text { maximum number of vertex disjoint paths from } v_{i} \text { to } v_{j} & \text { if } i \neq j \\
0 & \text { if } i=j
\end{array}\right.
$$

We call P as Path Matrix of G. The matrix P is real symmetric matrix. Therefore, its eigenvalues are real. We call eigenvalues of P as path eigenvalues of G.

[^0]
2 Preliminary

We define the path Laplacian matrix of $G, P L(G)$ as follows.
Definition 2.1. The rows and columns of $P L(G)$ are indexed by $V(G)$. If $i \neq j$ then the (i, j) - entry of $P L(G)$ is 0 if there is no path between i and j, and it is $-k$ if the maximum number of vertex disjoint paths between i and j is k. The (i, i) entry of $P L(G)$ is d_{i}, the degree of the vertex $i, i=1,2,3, \ldots, n$.

Thus $P L(G)$ is an $n \times n$ matrix. The path Laplacian matrix of G can be defined in an alternative way. Let $D(G)$ be the diagonal matrix of vertex degrees. If $P(G)$ is the path matrix of G, then $P L(G)=D(G)-P(G)$. We call the path eigenvalues of $P L(G)$ as path Laplacian eigenvalues of G.
Example 2.2. Consider the graph G as shown in the following figure.

Then the path Laplacian matrix of G is

$$
\mathbf{P L}(G)=\left[\begin{array}{ccccc}
2 & -2 & -2 & -1 & -1 \\
-2 & 2 & -2 & -1 & -1 \\
-2 & -2 & 4 & -2 & -2 \\
-1 & -1 & -2 & 2 & -2 \\
-1 & -1 & -2 & -2 & 2
\end{array}\right]
$$

The characteristic polynomial of the matrix $P L(G)$ is
$C_{P L(G)}(x)=|P L-x I|=(x+4)(x-2)(x-4)^{2}(x-6)$. The path Laplacian eigenvalues of G are $-4,2,4,4$ and 6 . The ordinary Laplacian eigenvalues of G are $0,1,3,3$ and 5.

The ordinary Laplacian spectrum of the graph G, consisting of the numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ is the spectrum of its Laplacian matrix [8, 9, 10, 11]. In analogy, the path Laplacian spectrum of a graph G is defined as the spectrum of the corresponding path Laplacian matrix.

3 Path Laplacian Eigenvalues of Graphs

In this section, we investigate path Laplacian eigenvalues of some special classes of graphs. In this paper, we define path Laplacian matrix of a graph and investigate the eigenvalues (called path Laplacian eigenvalues) of this matrix. We obtain several properties concerning the path Laplacian eigenvalues. A notion of path Laplacian energy has been introduced and some of its basic properties have been obtained.

Proposition 3.1. Let S_{n} be a star with n vertices. Then the path Laplacian eigenvalues of S_{n} are 2 with multiplicity $n-2,1+\sqrt{n^{2}-3 n+3}$ with multiplicity 1 and $1-\sqrt{n^{2}-3 n+3}$ with multiplicity 1 .

Proof. We can write the path Laplacian matrix of S_{n} as

$$
\mathbf{P L}\left(\mathbf{S}_{\mathbf{n}}\right)=\left[\begin{array}{cccccc}
n-1 & -1 & -1 & \ldots & -1 & -1 \\
-1 & 1 & -1 & \ldots & -1 & -1 \\
-1 & -1 & 1 & \ldots & -1 & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & -1 & \ldots & 1 & -1 \\
-1 & -1 & -1 & \ldots & -1 & 1
\end{array}\right]
$$

The characteristic polynomial of $P L\left(S_{n}\right)$ is

$$
C_{P L\left(S_{n}\right)}(x)=(x-2)^{n-2}\left(x-1-\sqrt{n^{2}-3 n+3}\right)\left(x-1+\sqrt{n^{2}-3 n+3}\right) .
$$

Consequently the path Laplacian eigenvalues of S_{n} are 2 with multiplicity $n-2$, $1+\sqrt{n^{2}-3 n+3}$ with multiplicity 1 and $1-\sqrt{n^{2}-3 n+3}$ with multiplicity 1 .

Proposition 3.2. Let P_{n} be a path graph with n vertices. Then the path Laplacian eigenvalues of P_{n} are 2 with multiplicity 1,3 with multiplicity $n-3, \frac{(-n+5)+\sqrt{n^{2}-2 n+9}}{2}$ with multiplicity 1 and $\frac{(-n+5)-\sqrt{n^{2}-2 n+9}}{2}$ with multiplicity 1 .

Proof. The path Laplacian matrix of P_{n} is

$$
\mathbf{P L}\left(\mathbf{P}_{\mathbf{n}}\right)=\left[\begin{array}{cccccc}
1 & -1 & -1 & \ldots & -1 & -1 \\
-1 & 2 & -1 & \ldots & -1 & -1 \\
-1 & -1 & 2 & \ldots & -1 & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & -1 & \ldots & 2 & -1 \\
-1 & -1 & -1 & \ldots & -1 & 1
\end{array}\right]
$$

The characteristic polynomial of $P L\left(P_{n}\right)$ is $C_{P L\left(P_{n}\right)}(x)=$

$$
(x-2)(x-3)^{n-3}\left(x-\frac{(-n+5)+\sqrt{n^{2}-2 n+9}}{2}\right)\left(x-\frac{(-n+5)-\sqrt{n^{2}-2 n+9}}{2}\right) .
$$

Consequently the path Laplacian eigenvalues of P_{n} are 2 with multiplicity 1,3 with multiplicity $n-3, \frac{(-n+5)+\sqrt{n^{2}-2 n+9}}{2}$ with multiplicity 1 and $\frac{(-n+5)-\sqrt{n^{2}-2 n+9}}{2}$ with multiplicity 1.

Proposition 3.3. Let W_{n} be a wheel graph with n vertices. Then the path Laplacian eigenvalues of W_{n} are 6 with multiplicity $n-2,-(n-4)+\sqrt{4 n^{2}-11 n+16}$ with multiplicity 1 and
$-(n-4)-\sqrt{4 n^{2}-11 n+16}$ with multiplicity 1 .
Proof. The path Laplacian matrix of W_{n} is

$$
\mathbf{P L}\left(\mathbf{W}_{\mathbf{n}}\right)=\left[\begin{array}{cccccc}
n-1 & -3 & -3 & \ldots & -3 & -3 \\
-3 & 3 & -3 & \ldots & -3 & -3 \\
-3 & -3 & 3 & \ldots & -3 & -3 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-3 & -3 & -3 & \ldots & 3 & -3 \\
-3 & -3 & -3 & \ldots & -3 & 3
\end{array}\right]
$$

The characteristic polynomial of $P L\left(W_{n}\right)$ is $C_{P L\left(W_{n}\right)}(x)=(x-6)^{n-2}(x+(n-4)-$ $\left.\sqrt{4 n^{2}-11 n+16}\right)\left(x+(n-4)+\sqrt{4 n^{2}-11 n+16}\right)$. Consequently the path Laplacian eigenvalues of W_{n} are 6 with multiplicity $n-2,-(n-4)+\sqrt{4 n^{2}-11 n+16}$ with multiplicity 1 and
$-(n-4)-\sqrt{4 n^{2}-11 n+16}$ with multiplicity 1 .
Proposition 3.4. The path Laplacian eigenvalues of the complete bipartite graph $K_{m, n}(1<m \leq n)$ are m with multiplicity $n-1, n$ with multiplicity $m-1$, $(m+n-m n)+\sqrt{[m+n-m n]^{2}+m n[1+3(m-1)]}$ with multiplicity 1 and $(m+$ $n-m n)-\sqrt{[m+n-m n]^{2}+m n[1+3(m-1)]}$ with multiplicity 1.

Proof. The path Laplacian matrix of $K_{m, n}$ is

$$
\begin{aligned}
\mathbf{P L}\left(\mathbf{K}_{\mathbf{m}, \mathbf{n}}\right) & =\left[\begin{array}{cccccccc}
n & -n & \ldots & -n & -m & -m & \ldots & -m \\
-n & n & \ldots & -n & -m & -m & \ldots & -m \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-n & -n & \ldots & n & -m & -m & \ldots & -m \\
-m & -m & \ldots & -m & m & -m & \ldots & -m \\
-m & -m & \ldots & -m & -m & m & \ldots & -m \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-m & -m & \ldots & -m & -m & -m & \ldots & m
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 n I_{m}-n J_{m} & B \\
B^{\prime} & & 2 m I_{n}-m J_{n}
\end{array}\right] .
\end{aligned}
$$

where B is $m \times n$ matrix with all entries $-m$ and B^{\prime} is the transpose of the matrix B. Therefore the path Laplacian eigenvalues of $K_{m, n}$ are $2 m$ with multiplicity $n-1$, $2 n$ with multiplicity $m-1,(m+n-m n)+\sqrt{[m+n-m n]^{2}+m n[1+3(m-1)]}$ with multiplicity 1 and $(m+n-m n)-\sqrt{[m+n-m n]^{2}+m n[1+3(m-1)]}$ with multiplicity 1.

Remark: Let G be a graph on n vertices with m edges. Then the sum of the path Laplacian eigenvalues of G is $2 m$. For instance, let G be a graph with vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$ and with path Laplacian eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$. Then $\operatorname{trace} P L(G)=\sum_{i=1}^{n} d_{i}=2 m$, also trace $P L(G)=\sum_{i=1}^{n} \mu_{i}$. Thus $\sum_{i=1}^{n} \mu_{i}=2 m$.

The following theorem gives path Laplacian eigenvalues of r-regular, r-connected graph.

Theorem 3.5. Let G be a r - regular, r-connected graph with n vertices. Then the path Laplacian matrix $P L(G)$ of G is of the form $2 r I_{n}-r J_{n}$ and the path Laplacian
eigenvalues of G are of the form $2 r-n r$ with multiplicity 1 and $2 r$ with multiplicity $n-1$.

Proof. We can write $P L(G)$ as

$$
\begin{aligned}
\mathbf{P L}(\mathbf{G}) & =\left[\begin{array}{cccc}
r & -r & \ldots & -r \\
-r & r & \ldots & -r \\
\vdots & \vdots & \ddots & \vdots \\
-r & -r & \ldots & r
\end{array}\right] \\
& =2 r I_{n}-r J_{n} .
\end{aligned}
$$

Consequently the path Laplacian eigenvalues of a graph G are $r(2-n)$ with multiplicity 1 and $2 r$ with multiplicity $n-1$.

Corollary 3.6. Let G_{1} be a r_{1}-regular, r_{1}-connected graph with n_{1} vertices and G_{2} be a r_{2}-regular, r_{2}-connected graph with n_{2} vertices. Then the path Laplacian eigenvalues of their cartesian product are $\left(r_{1}+r_{2}\right)(2-n)$ with multiplicity 1 and $2\left(r_{1}+r_{2}\right)$ with multiplicity $n-1$, where $n=n_{1} \cdot n_{2}$.

Proof. Let G denote the cartesian product of G_{1} and G_{2}. Then G is $r_{1}+r_{2}$-regular, $r_{1}+r_{2}$-connected with n vertices. By Theorem 3.5, the path Laplacian eigenvalues of G are $\left(r_{1}+r_{2}\right)(2-n)$ with multiplicity 1 and $2\left(r_{1}+r_{2}\right)$ with multiplicity $n-1$.

Remark: Let G be an r-regular, r-connected graph with n vertices. Then $P L(G)+$ $P(G)=r I_{n}$.

Proposition 3.7. Let G be a r-regular, r-connected graph with n vertices and m edges. Let μ_{1}, \ldots, μ_{n} and d_{1}, \ldots, d_{n} be the path Laplacian eigenvalues and degrees of vertices of G, respectively. Then

$$
\sum_{i=1}^{n} \mu_{i}^{2}=\sum_{i=1}^{n} d_{i}^{2}+n(n-1) r^{2}=\sum_{i=1}^{n} d_{i}^{2}+\frac{4 m^{2}(n-1)}{n}
$$

Proof. Let $P L(G)$ be the path Laplacian matrix of G. Then

$$
P L(G)^{2}=\left[\begin{array}{cccc}
n r^{2} & (n-4) r^{2} & \ldots & (n-4) r^{2} \\
(n-4) r^{2} & n r^{2} & \ldots & (n-4) r^{2} \\
\vdots & \vdots & \ddots & \vdots \\
(n-4) r^{2} & (n-4) r^{2} & \ldots & n r^{2}
\end{array}\right]
$$

Since G is r-regular, $d_{i}=r=\frac{2 m}{n}, \quad i=1,2, \ldots, n$ and $\sum_{i=1}^{n} d_{i}^{2}=n r^{2}$.
$\sum_{i=1}^{n} \mu_{i}^{2}=\operatorname{tr} P L(G)^{2}=n^{2} r^{2}=n r^{2}+n^{2} r^{2}-n r^{2}=\sum_{i=1}^{n} d_{i}^{2}+n(n-1) r^{2}=\sum_{i=1}^{n} d_{i}^{2}+$ $\frac{4 m^{2}(n-1)}{n}$.

In the following Proposition, we give the relation between path Laplacian eigenvalues and maximum vertex degree Δ.

Proposition 3.8. Let G be a graph on n vertices with degrees d_{i} and $P L(G)$ be its path Laplacian matrix. Let $\Delta=\max _{i} d_{i}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the path Laplacian eigenvalues of $\mathrm{PL}(\mathrm{G})$. Then $\sum_{i} \mu_{i} \leq n \Delta$.

Proof. We know that $\sum_{i} \mu_{i}=\sum_{i} d_{i}$ and $\sum_{i} d_{i} \leq n \Delta$. Therefore we conclude that $\sum_{i} \mu_{i} \leq n \Delta$.

Proposition 3.9. (Bounds for μ_{1} and μ_{n} :) Let G be a graph on n vertices, m edges with degrees of vertices d_{i} and $P L(G)$ be its path Laplacian matrix. Let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}$ be the path Laplacian eigenvalues of $P L(G)$. Then $\mu_{n} \leq \frac{2 m}{n} \leq \mu_{1}$.

Proof. We know, $\sum_{i} \mu_{i}=2 m$ and $n \mu_{n} \leq \sum_{i} \mu_{i} \leq n \mu_{1}$. This implies that $\mu_{n} \leq \frac{2 m}{n}$ and $\mu_{1} \geq \frac{2 m}{n}$. Thus $\mu_{n} \leq \frac{2 m}{n} \leq \mu_{1}$.

4 Path Laplacian Energy of Graphs

In this section, we find path Laplacian energy of some graphs.
Definition: Let G be a graph with n vertices and m edges. Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the path Laplacian eigenvalues of G. We define the path Laplacian energy as

$$
\operatorname{PLE}(G)=\sum_{i=1}^{n}\left|\mu_{i}-2 m / n\right| .
$$

In the following table, we explore the path Laplacian energy of some classes of graphs which have just two distinct path Laplacian eigenvalues denoted by μ_{1} and μ_{2}.

Graphs	μ_{1}	μ_{2}	Path Laplacian En- ergy
K_{n}	$(n-1)(2-n)$	$2(n-1)$	$3(n-1)^{2}$
C_{n}	$2(2-n)$	4	$3(n-1)$
Q_{n}	$n\left(2-2^{n}\right)$	$2 n$	$2 n\left(2^{n}-1\right)$
Petersen Graph	6	-24	54

From Propositions 3.1-3.4, we get the path Laplacian energies of S_{n}, P_{n}, W_{n} and $K_{m, n}$ as follows.
The path Laplacian energy of the star graph S_{n} is $\frac{2(n-2)}{n}+2 \sqrt{n^{2}-3 n+3}$.
The path Laplacian energy of the path graph P_{n} is $\frac{n^{2}-n-4}{n}+\sqrt{n^{2}-2 n+9}$.
The path Laplacian energy of the wheel graph W_{n} is $\frac{2\left(n^{2}-4\right)}{n}+$
$2 \sqrt{4 n^{2}-11 n+16}$.
The path Laplacian energy of the complete bipartite graph $K_{m, n}(1<m \leq n)$ is $\frac{2 m n(n-m)}{m+n}+(m-n)+\sqrt{[m+n-m n]^{2}+m n[1+3(m-1)]}$.

The following result follows from the definitions of the path energy and path Laplacian energy.

Proposition 4.1. Let G be a r-regular, r-connected graph on n vertices $(1 \leq r \leq$ $n-1)$ and m edges. Then $P E(G)=P L E(G)=\frac{4(n-1)}{n} m$.

Proof. By [6], the path eigenvalues of G are $r(n-1)$ with multiplicity 1 and $-r$ with multiplicity $n-1$. Since G is r-regular, $r=\frac{2 m}{n}$, this implies that

$$
P E(G)=|r(n-1)|+(n-1)|-r|=2 r(n-1)=\frac{4(n-1)}{n} m .
$$

By Theorem 3.5, the path Laplacian eigenvalues of G are $2 r-n r$ with multiplicity 1 and $2 r$ with multiplicity $n-1$. Thus
$P L E(G)=|r(2-n)-r|+(n-1)|2 r-r|=|r-n r|+(n-1)|r|=2 r(n-1)=\frac{4(n-1)}{n} m$.

Let G be a disconnected graph with two components G_{1} and G_{2}, then $P L E(G)$ need not be equal to $\operatorname{PLE}\left(G_{1}\right)+P L E\left(G_{2}\right)$. Consider the following example.

Example 4.2. Consider the graph G with two connected components P_{4} and C_{3}, then $P L E(G) \neq P L E\left(P_{4}\right)+P L E\left(C_{3}\right)$ as the value of LHS is 13.982 and the value of RHS is 12.123 . We observe that average vertex degree of $P_{4}=1.5 \neq 2=$ average vertex degree of C_{3}.

In the following Proposition, we give a sufficient condition so that $\operatorname{PLE}(G)=$ $P L E\left(G_{1}\right)+P L E\left(G_{2}\right)$.

Proposition 4.3. If the graph G consists of disconnected components G_{1} and G_{2}, and if G_{1} and G_{2} have equal average vertex degrees, then $\operatorname{PLE}(G)=P L E\left(G_{1}\right)+$ $\operatorname{PLE}\left(G_{2}\right)$.

Proof. Let G, G_{1}, and G_{2} be (n, m), (n_{1}, m_{1}), and (n_{2}, m_{2})-graphs, respectively. Then from $2 m_{1} / n_{1}=2 m_{2} / n_{2}$ it follows $2 m / n=2 m_{i} / n_{i}, i=1,2$. Therefore
$\operatorname{PLE}(G)=\sum_{i=1}^{n_{1}+n_{2}}\left|\mu_{i}-\frac{2 m}{n}\right|=\sum_{i=1}^{n_{1}}\left|\mu_{i}-\frac{2 m_{1}}{n_{1}}\right|+\sum_{i=n_{1}+1}^{n_{1}+n_{2}}\left|\mu_{i}-\frac{2 m_{2}}{n_{2}}\right|$
$=P L E\left(G_{1}\right)+P L E\left(G_{2}\right)$.
Let G_{1} and G_{2} be two graphs with disjoint vertex sets. Let V_{i} and E_{i} be the vertex and edge sets of $G_{i}(i=1,2)$, respectively. The union of G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with vertex set $V_{1} \cup V_{2}$ and the edge set $E_{1} \cup E_{2}$. If G_{1} is an $\left(n_{1}, m_{1}\right)$ graph and G_{2} is an $\left(n_{2}, m_{2}\right)$-graph then $G_{1} \cup G_{2}$ has $n_{1}+n_{2}$ vertices and $m_{1}+m_{2}$ edges.

In the following Theorem, we obtain bound for the path Laplacian energy of the union of two graphs.

Theorem 4.4. If G_{1} be an $\left(n_{1}, m_{1}\right)$-graph and G_{2} be an $\left(n_{2}, m_{2}\right)$-graph, such that $\frac{2 m_{1}}{n_{1}}>\frac{2 m_{2}}{n_{2}}$. Then
$P L E\left(G_{1}\right)+P L E\left(G_{2}\right)-\frac{4\left(n_{2} m_{1}-n_{1} m_{2}\right)}{n_{1}+n_{2}} \leq P L E\left(G_{1} \cup G_{2}\right) \leq P L E\left(G_{1}\right)+P L E\left(G_{2}\right)+$ $\frac{4\left(n_{2} m_{1}-n_{1} m_{2}\right)}{n_{1}+n_{2}}$.

Proof. Let $G=G_{1} \cup G_{2}$. Then G is an $\left(n_{1}+n_{2}, m_{1}+m_{2}\right)$-graph. By the definition of path Laplacian energy,

$$
\begin{gathered}
P L E\left(G_{1} \cup G_{2}\right)=\sum_{i=1}^{n_{1}+n_{2}}\left|\mu_{i}(G)-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right| \\
=\sum_{i=1}^{n_{1}}\left|\mu_{i}(G)-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right|+\sum_{i=n_{1}+1}^{n_{1}+n_{2}}\left|\mu_{i}(G)-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right| \\
=\sum_{i=1}^{n_{1}}\left|\mu_{i}\left(G_{1}\right)-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right|+\sum_{i=1}^{n_{2}}\left|\mu_{i}\left(G_{2}\right)-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right| \\
=\sum_{i=1}^{n_{1}}\left|\mu_{i}\left(G_{1}\right)-\frac{2 m_{1}}{n_{1}}+\frac{2 m_{1}}{n_{1}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right|+\sum_{i=1}^{n_{2}}\left|\mu_{i}\left(G_{2}\right)-\frac{2 m_{2}}{n_{2}}+\frac{2 m_{2}}{n_{2}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right| \\
\leq \sum_{i=1}^{n_{1}}\left|\mu_{i}\left(G_{1}\right)-\frac{2 m_{1}}{n_{1}}\right|+n_{1}\left|\frac{2 m_{1}}{n_{1}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right|+\sum_{i=1}^{n_{2}}\left|\mu_{i}\left(G_{2}\right)-\frac{2 m_{2}}{n_{2}}\right|+n_{2}\left|\frac{2 m_{2}}{n_{2}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right| .
\end{gathered}
$$

Since $n_{2} m_{1}>n_{1} m_{2}$, above inequality becomes
$P L E\left(G_{1} \cup G_{2}\right) \leq P L E\left(G_{1}\right)+n_{1}\left(\frac{2 m_{1}}{n_{1}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right)+\operatorname{PLE}\left(G_{2}\right)+n_{2}\left(-\frac{2 m_{2}}{n_{2}}+\right.$ $\left.\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right)=P L E\left(G_{1}\right)+P L E\left(G_{2}\right)+\frac{4\left(n_{2} m_{1}-n_{1} m_{2}\right)}{n_{1}+n_{2}}$ which is an upper bound for path Laplacian energy of $G_{1} \cup G_{2}$.
To get the lower bound, we just have to note that in full analogy to the above arguments,
$P L E\left(G_{1} \cup G_{2}\right) \geq \sum_{i=1}^{n_{1}}\left|\mu_{i}\left(G_{1}\right)-\frac{2 m_{1}}{n_{1}}\right|-n_{1}\left|\frac{2 m_{1}}{n_{1}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right|+\sum_{i=1}^{n_{2}}\left|\mu_{i}\left(G_{2}\right)-\frac{2 m_{2}}{n_{2}}\right|-$ $n_{2}\left|\frac{2 m_{2}}{n_{2}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right|$.
Since $n_{2} m_{1}>n_{1} m_{2}$, above inequality becomes
$\operatorname{PLE}\left(G_{1} \cup G_{2}\right) \geq P L E\left(G_{1}\right)-n_{1}\left(\frac{2 m_{1}}{n_{1}}-\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right)+\operatorname{PLE}\left(G_{2}\right)-n_{2}\left(-\frac{2 m_{2}}{n_{2}}+\right.$ $\left.\frac{2\left(m_{1}+m_{2}\right)}{n_{1}+n_{2}}\right)=P L E\left(G_{1}\right)+P L E\left(G_{2}\right)-\frac{4\left(n_{2} m_{1}-n_{1} m_{2}\right)}{n_{1}+n_{2}}$
which is a lower bound for path Laplacian energy of $G_{1} \cup G_{2}$.
Corollary 4.5. Let G_{1} be an r_{1} regular graph on n_{1} vertices and G_{2} be an r_{2} regular graph on n_{2} vertices, such that $r_{1}>r_{2}$. Then
$P L E\left(G_{1}\right)+P L E\left(G_{2}\right)-\frac{2 n_{1} n_{2}\left(r_{1}-r_{2}\right)}{n_{1}+n_{2}} \leq P L E\left(G_{1} \cup G_{2}\right) \leq P L E\left(G_{1}\right)+P L E\left(G_{2}\right)+$ $\frac{2 n_{1} n_{2}\left(r_{1}-r_{2}\right)}{n_{1}+n_{2}}$.
Proof. Since G_{1} is r_{1} regular, the number of edges in G_{1} is $m_{1}=\frac{n_{1} r_{1}}{2}$ and since G_{2} is r_{2} regular, the number of edges in G_{2} is $m_{2}=\frac{n_{2} r_{2}}{2}$. Now $\frac{2 m_{1}}{n_{1}}=r_{1}>r_{2}=\frac{2 m_{2}}{n_{2}}$. By Theorem 4.4, we get the required inequality.

Corollary 4.6. Let G_{1} be an (n, m)-graph and G_{2} be the graph obtained from G_{1} by removing k edges, $0 \leq k \leq m$. Then
$P L E\left(G_{1}\right)+P L E\left(G_{2}\right)-2 k \leq P L E\left(G_{1} \cup G_{2}\right) \leq P L E\left(G_{1}\right)+P L E\left(G_{2}\right)+2 k$.
Proof. The number of vertices of G_{2} is n and the number of edges in G_{2} is $m-k$. By Theorem 4.4, the result follows.

5 Conclusion

In the present paper, the concepts of path Laplacian matrix, path Laplacian eigenvalues and path Laplacian energy of a graph are given and studied. Also, some bounds on Path Laplacian Energy of graphs are given and studied.

References

[1] Lowel W. Beineke, Robin J. Wilson, Topics in Algebraic Graph Theory, Cambridge University Press, 2004.
[2] Douglas B.West, Introduction to Graph theory, Prentice-Hall, U.S.A, 2001.
[3] R. B. Bapat, Graphs and Matrices, Hindustan Book agency, New Delhi, 2010.
[4] Brouwer A. E., Haemers W. E., Spectra of Graphs, Springer, New York, 2010.
[5] Varga, R. S., Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.
[6] S. C. Patekar, M. M. Shikare, On the Path Matrices of Graphs and Their Properties, Advances and Applications in Discrete Mathematics, Vol. 17. N0. 2, (2016), pp 169- 184.
[7] M. M. Shikare, P. P. Malavadkar, S. C. Patekar, I. Gutman, On Path Eigenvalues and Path Energy of Graphs, MATCH Communications in Mathematical and in Computer Chemistry, Vol. 79. N0. 2, (2018), pp 387-398.
[8] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229.
[9] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. (1994) 143-176.
[11] R. Merris, A survey of graph Laplacians, Linear Multilinear Algebra 39 (1995) 19-31.

[^0]: *Corresponding Author.

