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provide two numerical examples to demonstrate how our theoretical findings can be applied. 
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1. Introduction 

Time delays in information flow within different components 
of dynamic systems often lead to instability and are 
commonly observed in various engineering applications, 
including chemical processes, long-distance transmission 
lines, and microwave oscillators. Due to their ability to 
model natural phenomena more effectively than ordinary 
differential equations, fractional calculus have garnered 
significant attention from scholars worldwide. Therefore, 
mathematicians in particular currently appear to have a 
strong interest in fractional calculus. It is well known that 
neutral systems, which are of a more general class than those 
of the delayed type, have been an active area of research in 
recent years. The stability of neutral systems has proven to 
be a more complex question, since the system under 
consideration involves the derivation of the delayed state. In 
particular, over the past few decades, numerous books and 
articles have been explored concerning retarded-type or 
neutral-type differential and fractional differential systems. 
In this sense, the stability problem, which is one of the 
important problems in theoretical and practical applications, 
is considered an index in the study of fractional systems, and 
numerous articles have addressed different types of stability 
in such systems without delay and delay.  Fractional systems, 
both with and without time-varying delays, frequently appear 
in various scientific disciplines, including fields such as 
engineering, physics, biophysics, polymer rheology, blood 
flow dynamics, control theory, biology, and signal 
processing (see [1–37] and  references therein). 

Based on insights from the relevant literature, fractional 
calculus often provide a more accurate description of natural 
phenomena compared to ordinary differential equations. 
Consequently, this topic has been widely explored by 
numerous renowned scientists (see [36]). For those 
interested, several studies in this rapidly growing field are 
listed below. 
 
The q-fractional calculus, which was brought to the attention 
of researchers by some q-fractional derivatives and q-
fractional integrals, was first discussed by Agarwal [1] and 
Al-salam [3] in 1969. In [8], Chartbupapan et al. explored 
the asymptotic stability of nonlinear fractional Riemann-
Liouville (RL) differential equations with a fixed delay and 
included examples to demonstrate the validity of the 
conditions they established. In [29], presented a simple 
mathematical approach to explain when and why fractional 
Brownian motion is appropriate for economic modeling. In 
[27], various physical implications examined that are 
pertinent to dynamical processes in complex systems. In 
[25], three bioengineering research areas bio electrodes, 
biomechanics, and bioimaging are described, which have 
been utilized to develop new mathematical models based on 
fractional calculus. In [11], Jarad et al. examined the 
conditions for stability, uniform stability, and asymptotic 
stability within the framework of non-autonomous Caputo 
fractional derivatives using the Lyapunov direct method. In 
[24], Lu et al. derived various sufficient conditions for the 
asymptotic stability and Mittag-Leffler stability of fractional 
nonlinear neutral singular systems using the Lyapunov direct 
method. Zhang et al. [37], on the other hand, studied the 
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global asymptotic stability of delayed fractional RL neural 
networks. Additionally, several books on these topics can be 
referenced. Examples include works on q-fractional calculus 
[5, 10, 12], fractional calculus [13, 28], and singular systems 
[33, 36]. Drawing inspiration from the studies mentioned 
above and their references, we have focused on nonlinear 
time delay q-fractional neutral systems. 
 
It is observed that the stability method in the majority of 
studies concerning system stability in control theory is 
primarily based on LMIs and Lyapunov stability theory, as 
seen in references [4, 6, 9, 15–23, 30]. The Lyapunov direct 
method plays a central role in investigating stability in 
differential equations. The LKF explicitly incorporates 
terms that account for time delays in the system (including 
distributed or discrete delays). This allows it to effectively 
model the dynamic behavior of systems where the current 
state depends not only on the current time but also on past 
states.In contrast, classical Lyapunov functions typically 
focus on delay-free systems or only handle delays in an 
approximate or conservative manner. Advantage of LKF, 
by including integral terms related to the delay, LKFs 
provide a more flexible structure for capturing the 
dynamics of time-delay systems. This often leads to less 
conservative stability conditions, allowing more accurate 
determination of the system's stability region. In this 
research, the proof technique relies on fundamental 
inequalities, LMIs, and the Lyapunov functional approach. 
 
In comparison to the existing literature, the main 
contributions of this paper can be succinctly outlined as 
follows: 
 

(i) This study relies on the LMI and the direct 
calculation of quantum derivatives of LKFs. 
Therefore, there is no need to compute the 
fractional-order derivative of the Lyapunov 
functional. The derived stability criteria are 
formulated as LMIs, making them both convenient 
and effective for testing the asymptotically 
stability of the considered systems. 

(ii) In this study, motivated by the above-mentioned 
findings, the asymptotically stability of time-
delayed nonlinear q-fractional neutral systems is 
investigated by developing appropriate LKFs; 

(iii) In this study, several delay dependent sufficient 
conditions for asymptotic stability are derived. 

(iv) In this study believe that the theoretical results 
obtained are both intriguing and contemporary, 
providing a significant contribution to the existing 
literature. When the studies on stability analysis of 
q-fractional neutral systems are examined, the 
equation system considered in this research is new 
and generalizes similar studies in the related 
literature. 

In this study, we describe delayed q-fractional neutral 
systems. In addition, we introduce fundamental definitions 
and properties of quantum calculus, along with q-fractional 
integrals and derivatives. Next, using the Lyapunov 
method, we derive sufficient conditions to demonstrate the 
asymptotic stability of the considered system, leveraging 
foundational information and inequalities.  
Consider the following delayed nonlinear q-fractional 
system: 
 

( ) ( ) ( ) ( )+ ( ( ))

              ( ( )) ( ( )),    0,
q q

q

x t Ax t Bx t C x t Df x t

Ef x t Ff x t t

α α

α

τ τ

τ τ

∇ = + − + ∇ −

+ − + ∇ − ≥
 

(1) 

with the initial value condition as follows: 
 

1 ( ) ( ),     [ ,0],    0 1,qI x t t tα ϕ τ α− = ∈ − < <
 

 
where the state vector 𝑥𝑥(𝑡𝑡) ∈ ℝ𝑛𝑛, 𝜏𝜏 < 0 is a constant time 
delay, 𝐴𝐴,𝐵𝐵,𝐵𝐵,𝐷𝐷,𝐸𝐸,𝐹𝐹 ∈ ℝ𝑛𝑛×𝑛𝑛 are constant system matrices, 
𝑓𝑓�𝑥𝑥(𝑡𝑡)�, 𝑓𝑓�𝑥𝑥(𝑡𝑡 − 𝜏𝜏)�

 
and  𝑓𝑓 �∇𝑞𝑞𝛼𝛼𝑥𝑥(𝑡𝑡 − 𝜏𝜏)� ∈ ℝ𝑛𝑛represent 

the nonlinear terms of system (1), which satisfy that 
 

1( ( )) ( )f x t x tη≤
 

2( ( )) ( )f x t x tτ η τ− ≤ −

3( ( )) ( )q qf x t x tα ατ η τ∇ − ≤ ∇ −  

(2) 

 
where 𝜂𝜂1, 𝜂𝜂2 and 𝜂𝜂3 are positive real constants. Constraints 
described by (2) can be rewritten as follows 
 

2
1( ( )) ( ( )) ( ) ( )T Tf x t f x t x t x tη≤  

2
2( ( )) ( ( )) ( ) ( )T Tf x t f x t x t x tτ τ η τ τ− − ≤ − −  (3) 

2
3( ( )) ( ( )) ( ( )) ( ( )).T T

q q q qf x t f x t x t x tα α α ατ τ η τ τ∇ − ∇ − ≤ ∇ − ∇ −
 

 
Definition 1 ([28]) The RL fractional integral of order 𝑝𝑝 > 0 
of function g  is described as 
 

{ } .       ,)()(
)(

1)( 0
1

0

0
ttdssgst

p
tgD

t

t

pp
tt ≥−

Γ
= ∫ −−  

 
Definition 2 ([28]) The RL fractional derivative of order p  
for a function g  is described as 
 

   

 MJEN  MANAS Journal of Engineering, Volume 13 (Issue 1) © 2025 www.journals.manas.edu.kg 
 

http://www.journals.manas.edu.kg/


 

Y. Altun / MANAS Journal of Engineering 13(1) (2025) 30-39  32 

{ }
0

0

1

1 ( )( ) ,
( ) ( )

tn
RL p
t t n p n

t

d g sD g t ds
n p dt t s − +=

Γ − −∫
 

 
where 0 ≤ 𝑛𝑛 − 1 ≤ 𝑝𝑝 < 𝑛𝑛,𝑛𝑛 ∈ 𝑍𝑍+ and Γ denotes the 
Gamma function. 
 
 Definition 3 ([7]). For ),1,0(∈q { } { }0: ZnqT n

q ∈=  is 

defined as time scale, where Z  is the set of all integers. 
 
Definition 4 ([11]). The trivial solution ( ) 0x t =  of system 
(1) is said to be 
1. Stable, if for each 0ε >  and 0 ,qt T∈  there exists 

0( , ) 0tδ δ ε= >  such that for any solution 0( ) ( , , )x t x t t ϕ=  

with ( ) ,tϕ δ<  we always have ( ) ,x t ε<  for all 

0,  ;qt T t t∈ ≥
 

2. Uniformly stable, if it is stable and δ  depends only ;ε  
3. Asymptotically stable, if it is stable and for all 0 ,qt T∈

there exists 0( ) 0tδ δ= > such that if ( )tϕ δ< implies 

that 0lim ( , , ) 0.t x t t ϕ→∞ =  
 
Lemma 1 ([37]). Assume that 𝑆𝑆 ∈ ℝ𝑛𝑛×𝑛𝑛, 𝑆𝑆 = 𝑆𝑆𝑇𝑇 > 0,   is a 
constant matrix and  𝑥𝑥(𝑡𝑡) ∈ ℝ𝑛𝑛 be a vector of q-fractional 
differentiable function. Therefore, ,  0,qt T t∀ ∈ >                       

( ( ) ( )) 2 ( ) ( ),   0 1,q qx t Sx t x t S x tα α αΤ Τ∇ ≤ ∇ < <  
is satisfied. 
 
Lemma 2 ([19]). The homogeneous difference operator 
Θ: ℝ([−𝜏𝜏, 0],ℝ𝑛𝑛) ⟶  ℝ𝑛𝑛 is defined to be 

: ( ) ( ) ( ).tx x t Cx t τΘ Θ = − −  The operator Θ  is stable if 1.C <
 

 
The notations listed below will be employed throughout this 
research: ℝ denotes the set of all real numbers; n represent 
the dimension of the space; ℝ𝑛𝑛 represents the space of all n
-tuples of real numbers: ℝ𝑛𝑛 = {(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑖𝑖 =
1,2, … ,𝑛𝑛};  ‖. ‖ represents  the Euclidean norm for vectors; 
𝐴𝐴𝑇𝑇 means the transpose of the matrix 𝐴𝐴;  𝐵𝐵 is symmetric if 
𝐵𝐵 = 𝐵𝐵𝑇𝑇;𝐶𝐶 is positive definite (or negative definite) if 
〈𝐶𝐶𝑥𝑥, 𝑥𝑥〉 > 0

 
(or 〈𝐶𝐶𝑥𝑥, 𝑥𝑥〉 < 0) for all 𝑥𝑥 ≠ 0; ‖𝐷𝐷‖ represents  

the spectral norm of matrix 𝐷𝐷; "∗" means conjugate 
transpose. 
 
2. Main results 

 

We first present a result for the asymptotically stable of the 
trivial solution of system (1) with 0,D E F= = =  as 
follows 
 

( ) ( ) ( ) ( ),  0.q qx t Ax t Bx t C x t tα ατ τ∇ = + − + ∇ − >  (4) 
 
Theorem 2.1 For given scalar 0,τ > the trivial solution of 

system (4) is asymptotically stable, if 1C <  and there exist 

symmetric positive definite matrices , ,P Q S  and U  such 
that the following LMI holds: 
 

               

11 12 13

22 23

33

* 0.
* *

Π Π Π 
 Π = Π Π < 
 Π                      

(5)

  

where, 

   

11 ( ) ,T TPA A P Q A S U AτΠ = + + + +  

12 ( ) ,TPB A S U BτΠ = + +  

13 ( ) ,TPC A S U CτΠ = + +  

22 ( ) ,TB S U B QτΠ = + −  

23 ( ) ,TB S U CτΠ = +  

33 ( ) .TC S U C SτΠ = + −  

    

 
Proof. Let us select the following Lyapunov-Krasovskii 
functional 

 1( ( )) ( ( ) ( )) ( ) ( )
t

q q
t

V x t I x t Px t x s Qx s sα

τ

− Τ Τ

−

= + ∇∫    

                  ( ) ( )
t

T
q q q

t

x s S x s sα α

τ−

+ ∇ ∇ ∇∫     

                  ( ) ( ) .
t t

T
q q q q

t

x s U x s sα α

τ θ

θ
−

+ ∇ ∇ ∇ ∇∫ ∫  

Clearly, .0)( >tV  Let ( ) ( ) ( ) .
t t

T
q q q q

t

t x s U x s sα α

τ θ

θ
−

Ψ = ∇ ∇ ∇ ∇∫ ∫  

Based on the preceding results, we obtain 

   0

( ) ( ) ( )
t t

T
q q q q q q

t

t x s U x s sα α α

τ

θ
−


∇ Ψ = ∇ ∇ ∇ ∇ ∇


∫ ∫

 

                      
0

( ) ( )
t

T
q q q q

t

x s U x s s
θ

α α

τ

θ
−


− ∇ ∇ ∇ ∇ 


∫ ∫  
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                0

( ) ( )
t

T
q q q qx s U x s sα α ατ


= ∇ ∇ ∇ ∇

∫

  

                      
0

( ) ( )
t

T
q q q q

t

x s U x s s
θ

α α

τ

θ
−


− ∇ ∇ ∇ ∇ 


∫ ∫  

                
( ) ( )T

q qx t U x tα ατ= ∇ ∇
 

                      ( ) ( ) .
t

T
q q q

t

x s U x s sα α

τ−

− ∇ ∇ ∇∫                      (6) 

From ( ) ( ),   0q q qI f t f tα β α β α β−∇ = ∇ > ≥  and (6), we can derive the 

q-derivate of )(tV  along the trajectories of the system (4), 
we can write the as follows: 
 

( ( )) ( ( ) ( )) ( ) ( )T T
q qV x t x t Px t x t Qx tα∇ = ∇ +  

                         ( ) ( ) ( ) ( )T T
q qx t Qx t x t S x tα ατ τ− − − +∇ ∇  

                         
( ) ( )T

q qx t S x tα ατ τ−∇ − ∇ −
                          ( ) ( )T

q qx t U x tα ατ+ ∇ ∇
 

                         ( ) ( ) .
t

T
q q q

t

x s U x s sα α

τ−

− ∇ ∇ ∇∫                   (7)         

Since  U  is positive definite matrix, then 
 

0

( ) ( ) ( ) ( ) 0.
t

T T
q q q q q q

t

x s U x s s x t s U x t s s
τ

α α α α

τ−

∇ ∇ ∇ = ∇ − ∇ − ∇ ≥∫ ∫  

                                                                                             (8)          From (7)-(8), then  
 

( ( )) ( ( ) ( )) ( ) ( )T T
q qV x t x t Px t x t Qx tα∇ ≤ ∇ +    

                         ( ) ( ) ( ) ( )T T
q qx t Qx t x t S x tα ατ τ− − − +∇ ∇  

                         ( ) ( )T
q qx t S x tα ατ τ−∇ − ∇ −    

                         ( ) ( )T
q qx t U x tα ατ+ ∇ ∇                               (9) 

 
From Lemma 1, we obtain  
 

( ( ) ( )) 2 ( ) ( )T T
q qx t Px t x t P x tα α∇ ≤ ∇                               

   ( )2 ( ) ( ) ( ) ( )T
qx t P Ax t Bx t C x tατ τ= + − + ∇ −

 
( )( ) ( ) 2 ( ) ( )T T Tx t PA A P x t x t PBx t τ= + + −

 
             2 ( ) ( )T

qx t PC x tα τ+ ∇ −                                    
 
(10) 

and 

( )( )( ) ( ) ( ) ( ) ( )T
q q qx t S U x t Ax t Bx t C x tα α ατ τ τ∇ + ∇ = + − + ∇ −

                                         

              ( )( ) ( ) ( ) ( )qS U Ax t Bx t C x tατ τ τ+ + − + ∇ −
   

          ( ) ( ) ( )T Tx t A S U Ax tτ= +
       

               ( ) ( ) ( )T Tx t A S U Bx tτ τ+ + −  

              
( ) ( ) ( )T T

qx t A S U C x tατ τ+ + ∇ −
 

               + ( ) ( ) ( )T Tx t B S U Ax tτ τ− +  

              
( ) ( ) ( )T Tx t B S U Bx tτ τ τ+ − + −

 
               ( ) ( ) ( )T T

qx t B S U C x tατ τ τ+ − + ∇ −  

              
( ( )) ( ) ( )T T

q x t C S U Ax tα τ τ+ ∇ − +
 

              ( ( )) ( ) ( )T T
q x t C S U Bx tα τ τ τ+ ∇ − + −  

              
( ( )) ( ) ( )T T

q qx t C S U C x tα ατ τ τ+ ∇ − + ∇ −
          

(11)  
 

Substituting (10) and (11) into (9), we get 
 

                                
( ( )) ,qV x t Τ∇ ≤ Ξ ΠΞ

                    
(12)

                                                          
 where  

 

( )( ) ( ) ( ( ))
TT T T

qx t x t x tατ τΞ = − ∇ −
 

 
and the matrix ,Π is defined with (5). 

From (5) and (12), q ( ) 0.V t∇ <  Since the the conditions 
outlined in Theorem 2.1 are met, the trivial solution of the 
linear q-fractional system (1) is asymptotically stable. 
The following theorem presents the asymptotically stability 
of the trivial solution of the system (1), which is another 
main result of this study. 
 
Theorem 2.2 For given scalars 1 2 3, , , 0τ η η η >  and 

1 2 3, , 0,ε ε ε ≥ the trivial solution of system (1) is 

asymptotically stable, if 1C <  and there exist symmetric 

positive definite matrices , , ,P Q S U and W  such that the 
following LMI holds:

                                         

         

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

*
* *

0,
* * *
* * * *
* * * * *

∆ ∆ ∆ ∆ ∆ ∆ 
 ∆ ∆ ∆ ∆ ∆ 
 ∆ ∆ ∆ ∆

∆ = < ∆ ∆ ∆ 
 ∆ ∆
 

∆  
     

(13) 

where, 

                           

 
2

11 1 1( ) ,T TPA A P Q A S U A Iτ ε η∆ = + + + + +  

12 ( ) ,TPB A S U Bτ∆ = + +  
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13 ( ) ,TPC A S U Cτ∆ = + +  

14 ( ) ,TPD A S U Dτ∆ = + +  

15 ( ) ,TPE A S U Eτ∆ = + +  

16 ( ) ,TPF A S U Fτ∆ = + +
 

2
22 2 2( ) ,TB S U B I Qτ ε η∆ = + + −  

23 ( ) ,TB S U Cτ∆ = +  

24 ( ) ,TB S U Dτ∆ = +  

25 ( ) ,TB S U Eτ∆ = +  

26 ( ) ,TB S U Fτ∆ = +  
2

33 3 3( ) ,TC S U C I Sτ ε η∆ = + + −  

34 ( ) ,TC S U Dτ∆ = +  

35 ( ) ,TC S U Eτ∆ = +  

36 ( ) ,TC S U Fτ∆ = +  

44 1( ) ,TW D S U D Iτ ε∆ = + + −  

45 ( ) ,TD S U Eτ∆ = +  

46 ( ) ,TD S U Fτ∆ = +  

55 2( ) ,TE S U E I Wτ ε∆ = + − −  

56 ( ) ,TE S U Fτ∆ = +  

66 3( ) .TF S U F Iτ ε∆ = + −  
 
Proof. Let us select the following Lyapunov-Krasovskii 
functional 

1( ( )) ( ( ) ( )) ( ) ( )
t

q q
t

V x t I x t Px t x s Qx s sα

τ

− Τ Τ

−

= + ∇∫  

                   ( ) ( )
t

T
q q q

t

x s S x s sα α

τ−

+ ∇ ∇ ∇∫  

                   ( ) ( )
t t

T
q q q q

t

x s U x s sα α

τ θ

θ
−

+ ∇ ∇ ∇ ∇∫ ∫  

                   ( ( )) ( ( )) .
t

q
t

f x s Wf x s s
τ

Τ

−

+ ∇∫  

Clearly, .0)( >tV  Let ( ) ( ) ( ) .
t t

T
q q q q

t

t x s U x s sα α

τ θ

θ
−

Ψ = ∇ ∇ ∇ ∇∫ ∫   

 
Based on the preceding results, we obtain 

0

( ) ( ) ( )
t t

T
q q q q q q

t

t x s U x s sα α α

τ

θ
−


∇ Ψ = ∇ ∇ ∇ ∇ ∇


∫ ∫

 

                  
0

( ) ( )
t

T
q q q q

t

x s U x s s
θ

α α

τ

θ
−


− ∇ ∇ ∇ ∇ 


∫ ∫  

             0

( ) ( )
t

T
q q q qx s U x s sα α ατ


= ∇ ∇ ∇ ∇

∫

 

                  
0

( ) ( )
t

T
q q q q

t

x s U x s s
θ

α α

τ

θ
−

− ∇ ∇ ∇ ∇∫ ∫  

              
( ) ( )T

q qx t U x tα ατ= ∇ ∇
 

                 ( ) ( ) .
t

T
q q q

t

x s U x s sα α

τ−

− ∇ ∇ ∇∫                         (14)
 

From ( ) ( ),   0q q qI f t f tα β α β α β−∇ = ∇ > ≥  and (14), we can derive 

the q-derivate of )(tV  along the trajectories of the system 
(1), we can write the as follows: 
 

( ( )) ( ( ) ( )) ( ) ( )T T
q qV x t x t Px t x t Qx tα∇ = ∇ +  

                        ( ) ( ) ( ) ( )T T
q qx t Qx t x t S x tα ατ τ− − − +∇ ∇  

                        ( ) ( )T
q qx t S x tα ατ τ−∇ − ∇ −  

                        ( ) ( )T
q qx t U x tα ατ+ ∇ ∇  

                        ( ) ( )
t

T
q q q

t

x s U x s sα α

τ−

− ∇ ∇ ∇∫  

                        ( ( )) ( ( ))Tf x t Wf x t+  
                        ( ( )) ( ( ))Tf x t Wf x tτ τ− − −                  (15) 
Since  U  is positive definite matrix, then 

0

( ) ( ) ( ) ( ) 0.
t

T T
q q q q q q

t

x s U x s s x t s U x t s s
τ

α α α α

τ−

∇ ∇ ∇ = ∇ − ∇ − ∇ ≥∫ ∫
 

                                                                                           (16) 
From (15)-(16), then    

( ( )) ( ( ) ( )) ( ) ( )T T
q qV x t x t Px t x t Qx tα∇ ≤ ∇ +  

                       ( ) ( ) ( ) ( )T T
q qx t Qx t x t S x tα ατ τ− − − +∇ ∇  

                       ( ) ( )T
q qx t S x tα ατ τ−∇ − ∇ −  

                        ( ) ( )T
q qx t U x tα ατ+ ∇ ∇  

                        ( ( )) ( ( ))Tf x t Wf x t+    

                        ( ( )) ( ( ))Tf x t Wf x tτ τ− − −                  (17) 
 
From Lemma 1, we get  

( ( ) ( )) 2 ( ) ( )T T
q qx t Px t x t P x tα α∇ ≤ ∇    

                         (2 ( ) ( ) ( )Tx t P Ax t Bx t τ= + −  
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                                ( )+ ( ( ))qC x t Df x tα τ+ ∇ −
                             

                                
)( ( )) ( ( ))qEf x t Ff x tατ τ+ − + ∇ −

                           ( )( ) ( )T Tx t PA A P x t= +  

                               2 ( ) ( )Tx t PBx t τ+ −  

                               2 ( ) ( )T
qx t PC x tα τ+ ∇ −  

                               2 ( ) ( ( ))Tx t PDf x t+  

                               2 ( ) ( ( ))Tx t PEf x t τ+ −  

                               2 ( ) ( ( ))T
qx t PFf x tα τ+ ∇ −              (18)  

and 
( )( ) ( ) ( ( ) ( )T

q qx t S U x t Ax t Bx tα ατ τ∇ + ∇ = + −  

            ( ) ( ( )) ( ( ))qC x t Df x t Ef x tα τ τ+ ∇ − + + −  

            (( ( )))( ) ( ) ( )qFf x t S U Ax t Bx tα τ τ τ+ ∇ − + + −  

            
( )+ ( ( )) ( ( ))qC x t Df x t Ef x tα τ τ+ ∇ − + −

 
            ( ( )))qFf x tα τ+ ∇ −  

       ( ) ( ) ( ) ( ) ( )T T T Tx t A S U Ax t x t A S Uτ τ= + + +  
             ( ) ( ) ( ) ( )T T

qBx t x t A S U C x tατ τ τ− + + ∇ −  

            + ( ) ( ) ( ( )) ( ) ( )T T T Tx t A S U Df x t x t A S U Eτ τ+ + +  

            ( ( )) ( ) ( ) ( ( )))T T
qf x t x t A S U Ff x tατ τ τ− + + ∇ −  

            ( ) ( ) ( ) ( )T T T Tx t B S U Ax t x t Bτ τ τ+ − + + −  

            ( ) ( ) ( ) ( )T TS U Bx t x t B S U Cτ τ τ τ+ − + − +  

            ( )+ ( ) ( ) ( ( ))T T
q x t x t B S U Df x tα τ τ τ∇ − − +  

            ( ) ( ) ( ( )) ( )T T T Tx t B S U Ef x t x t Bτ τ τ τ+ − + − + −  

            ( ) ( ( )) ( ( ))T T
q qS U Ff x t x t Cα ατ τ τ+ ∇ − + ∇ −  

            ( ) ( ) ( ( )) ( )T T
qS U Ax t x t C S Uατ τ τ+ + ∇ − +  

             ( ) ( ( )) ( ) ( )T T
q qBx t x t C S U C x tα ατ τ τ τ− + ∇ − + ∇ −  

            ( ( )) ( ) ( ( ))T T
q x t C S U Df x tα τ τ+ ∇ − +  

            ( ( )) ( ) ( ( )) ( ( ))T T T
q qx t C S U Ef x t x tα ατ τ τ τ+ ∇ − + − + ∇ −  

             ( ) ( ( )) ( ( )) ( )T T T
qC S U Ff x t f x t D S Uατ τ τ+ ∇ − + +  

             ( ) ( ( )) ( ) ( )T TAx t f x t D S U Bx tτ τ+ + −  

            ( ( )) ( ) ( )+ ( ( ))T T T
qf x t D S U C x t f x tατ τ+ + ∇ −  

             ( ) ( ( )) ( ( )) ( )T T TD S U Df x t f x t D S U Eτ τ+ + +  

             ( ( )) ( ( )) ( ) ( ( ))T T
qf x t f x t D S U Ff x tατ τ τ− + + ∇ −  

            ( ( )) ( ) ( ) ( ( ))T T Tf x t E S U Ax t f x tτ τ τ+ − + + −  

             ( ) ( ) ( ( )) ( )T T TE S U Bx t f x t E S Uτ τ τ τ+ − + − +  

             ( ) ( ( )) ( ) ( ( ))T T
qC x t f x t E S U Df x tα τ τ τ∇ − + − +  

            ( ( )) ( ) ( ( ))T Tf x t E S U Ef x tτ τ τ+ − + −  

            ( ( )) ( ) ( ( ))T T
qf x t E S U Ff x tατ τ τ+ − + ∇ −  

            ( ( )) ( ) ( ) ( ( ))T T T
q qf x t F S U Ax t f x tα ατ τ τ+ ∇ − + + ∇ −  

              ( ) ( ) ( ( )) ( )T T T
qF S U Bx t f x t F S Uατ τ τ τ+ − + ∇ − +  

              ( ) ( ( )) ( ) ( ( ))T T
q qC x t f x t F S U Df x tα ατ τ τ∇ − + ∇ − +  

            ( ( )) ( ) ( ( ))T T
qf x t F S U Ef x tα τ τ τ+ ∇ − + −   

    ( ( )) ( ) ( ( ))T T
q qf x t F S U Ff x tα ατ τ τ+ ∇ − + ∇ −  

                                                                                   (19) 
Note that for any 1 2 3, , 0,ε ε ε ≥  it follows from (2) and (3) 
that 

2
1 1[ ( ) ( ) ( ( )) ( ( ))] 0,T Tx t x t f x t f x tε η − ≥  

2
2 2[ ( ) ( ) ( ( )) ( ( ))] 0,T Tx t x t f x t f x tε η τ τ τ τ− − − − − ≥  

and 
2

3 3[ ( ( )) ( ( )) ( ( )) ( ( ))] 0.T T
q q q qx t x t f x t f x tα α α αε η τ τ τ τ∇ − ∇ − − ∇ − ∇ − ≥

 
Substituting (18) and (19) into (17), we have

                                                       

                     
( ( )) ,qV x t ϕ ϕΤ∇ ≤ ∆

 
                                (20) 

 
where the matrix ∆  is defined with (13) and 

( )( ) ( ) ( ) ( ( )) ( ( )) ( ( )) .q qx t x t x t f x t f x t f x tα αϕ τ τ τ τ= − ∇ − − ∇ −
 

From (13) and (20), q ( ) 0.V t∇ <  Since the conditions 
outlined in Theorem 2.2 are satisfied, the trivial solution of 
nonlinear q-fractional delay system (1) is asymptotically 
stable. 

3. Numerical applications 

Two numerical examples are presented below to illustrate the 
effectiveness of the obtained theoretical results. 

 
Example 3.1 Let us define the below linear q-fractional 
neutral delay system as:    
 

3.8 1.5 0.3 0.01
( ) ( ) ( )

1.8 2.4 0 0.2

0.4 0
              ( ),    0.

0 0.3

q

q

x t x t x t

x t t

α

α

τ

τ

− − −   
∇ = + −   − −   

 
+ ∇ − > 
 

 (21) 

 

where ( )1 20 1,   0 1,   ( ) ( ) ( ) ,  1.5 .q x t x t x tα τΤ< < < < = =   
Now, we choose  
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28 1 8 1 4 1 1.2 0
,  ,  ,  .

1 20 1 4 1 3 0 2
P Q S U       
= = = =       
         

 
Under the above assumptions, by making a straightforward 
calculation with the help of MATLAB software, we can 
show that: 
 

  -91.5280  -12.4000    1.2480   -2.7616    1.6640   -4.0800
  -12.4000  -40.1900   -3.0300    0.9210   -4.0400    1.2300
    1.2480   -3.0300   -7.4780   -0.9574    0.6960    0.0900
   -2.7616    0.92

Π = .
10   -0.9574   -3.7634    0.0568    0.3570

    1.6640   -4.0400    0.6960    0.0568   -3.0720   -0.8800
   -4.0800    1.2300    0.0900    0.3570   -0.8800   -2.4600

 
 
 
 
 
 
 
 
   

 
In this case, 0,Π < since all eigenvalues of matrix Π  are      
-94.5910, -38.3651, -7.6909, -3.5436, -3.3680, and -0.9328, 
respectively. Thus, all the conditions of Theorem 2.1 are 
fulfilled. From Theorem 2.1, the trivial solution of the 
system (21) is asymptotically stable.  

 

Figure 1. The simulation of the Example 3.1 for 1.5 .τ =  

Example 3.2 Let us define the below delayed nonlinear q-
fractional system as:    

 

𝛻𝛻𝑞𝑞𝛼𝛼𝑥𝑥(𝑡𝑡) = �−4.8 −1.2
−1.8 −3.2� 𝑥𝑥(𝑡𝑡) + �0.3 −0.02

0 0.2 � 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) 

               + �0.5 0
0 0.2�𝛻𝛻𝑞𝑞

𝛼𝛼𝑥𝑥(𝑡𝑡 − 𝜏𝜏) + �1 -0.1
0 −2

� 𝑓𝑓(𝑥𝑥(𝑡𝑡)) 

+ �0.3 -0.04
0 0.2 � 𝑓𝑓(𝑥𝑥(𝑡𝑡 − 𝜏𝜏)) + � 0.3 0

-0.1 0.2� 𝑓𝑓(𝛻𝛻𝑞𝑞𝛼𝛼𝑥𝑥(𝑡𝑡 − 𝜏𝜏)).
 

  
(22) 

 
where 0 < 𝛼𝛼 < 1,  0 < 𝑞𝑞 < 1,  𝑥𝑥(𝑡𝑡) = (𝑥𝑥1(𝑡𝑡) 𝑥𝑥2(𝑡𝑡))𝛵𝛵, 𝜏𝜏 =
1.5 .

  
Now, we choose 𝜀𝜀1 = 42, 𝜀𝜀2 = 16, 𝜀𝜀3 = 20, 𝜂𝜂1 = 0.02, 𝜂𝜂2 =
0.03,𝜂𝜂3 = 0.04, 

𝑃𝑃 = �24 2
2 20� ,𝑄𝑄 = �10 1

1 4� , 𝑆𝑆 = �4 1
1 3�, 

 
𝑈𝑈 = �1.2 0

0 0.8� ,𝑊𝑊 = �4 0
0 1�.  

Under the above assumptions, by making a straightforward 

calculation with the help of MATLAB software, we can 

show that: 
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-63.0632   -4.6800   -1.6920   -1.9592   -2.8200   -2.0720   -5.6400   21.2840   -1.6920   -1.8464   -0.6560   -2.0720
   -4.6800  -69.7432   -2.4480    1.2352   -4.0800    1.0720   -8.1600   -9.9040

∆ =

   -2.4480    1.3984   -2.9840    1.0720
   -1.6920   -2.4480   -9.4636   -0.9748    0.8700    0.0600    1.7400   -0.7740    0.5220   -0.0096    0.4920    0.0600
   -1.9592    1.2352   -0.9748   -3.8233    0.0420    0.1640    0.0840   -1.6484    0.0252    0.1606   -0.0568    0.1640
   -2.8200   -4.0800    0.8700    0.0420   -2.5180   -0.9000    2.9000   -1.2900    0.8700   -0.0160    0.8200    0.1000
   -2.0720    1.0720    0.0600    0.1640   -0.9000   -2.8000    0.2000   -1.7000    0.0600    0.1600   -0.0240    0.1680
   -5.6400   -8.1600    1.7400    0.0840    2.9000    0.2000  -32.2000   -2.5800    1.7400   -0.0320    1.6400    0.2000
   21.2840   -9.9040   -0.7740   -1.6484   -1.2900   -1.7000   -2.5800  -23.7420   -0.7740   -1.5968    0.0760   -1.7000
   -1.6920   -2.4480    0.5220    0.0252    0.8700    0.0600    1.7400   -0.7740  -19.4780   -0.0096    0.5220    0.0252
   -1.8464    1.3984   -0.0096    0.1606   -0.0160    0.1600   -0.0320   -1.5968   -0.0096  -16.8387   -0.0096    0.1606
   -0.6560   -2.9840    0.4920   -0.0568    0.8200   -0.0240    1.6400    0.0760    0.4920   -0.0896  -19.4960   -0.0240
   -2.0720    1.0720    0.0600    0.1640    0.1000    0.1680    0.2000   -1.7000

.

    0.0600    0.1600   -0.0240  -19.8320

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
In this case, 0,∆ < since all eigenvalues of matrix ∆  are      
-75.0337,  -72.1298, -31.7295, -20.7979, -20.0050, -17.5758, 
-18.4755, -12.1922, -9.1788, -3.5531, -1.5474 and -0.7794, 
respectively. Thus, all conditions of Theorem 2.2 are 
fulfilled. From Theorem 2.2, the trivial solution of the 
system (22) is asymptotically stable. 

 
Figure 2. The simulation of the Example 3.2 for 1.5 .τ =  

An examination of the theoretical solutions for the above 
examples (Examples 3.1 and 3.2) indicates that the trivial 
solution of the systems becomes stable after a certain time 
interval under different initial conditions. This stability is 
supported by the corresponding simulation results (Figures 1 
and 2).  

 

4. Conclusions 

In this paper, we derive sufficient conditions for the 
asymptotic stability of certain kinds of q-fractional neutral 
type systems using LMIs and based on the direct 
computation of quantum derivatives of LKFs. Two examples 
are provided to highlight the validity of the proposed 
methods. In this study believe that the theoretical results 

obtained are both intriguing and contemporary, providing a 
significant contribution to the existing literature. Our future 
research will focus on the stability and synchronization of q-
fractional systems with time-varying delays and q-fractional 
coupled complex networks. 
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