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ABSTRACT 
 

With rapid urbanization, maintaining urban infrastructure has grown into a gigantic 
requirement. Proper and timely identification of infrastructure assets, such as manhole 
covers and drainage, is of utmost importance to ensure that water drainage and 
sewerage systems work properly within the precincts of a city. The classical methods of 
inspection have contributed to being slow, expensive, and full of errors. The paper tries 
to implement the use of YOLO in the automatic detection of manhole covers and drainage 
in images derived from Google Street View. This study will be focused on how to integrate 
results from object detection with MIS in order to monitor city infrastructures and 
optimize the planning of maintenance. These results proved that YOLOv11 has a high 
accuracy rate and has identified manhole covers and drainage from imagery on Google 
Street View. Performance metrics included mAP@0.5 and mAP@0.5-0.95, which 
described sensitivity and accuracy of the model, while the FPS analysis described the 
applicability in real time. Those kinds of findings have underlined that AI-based solution 
usage is efficient in the automatic monitoring and management of urban infrastructure 
and prove their potential to contribute much to decision support systems. 

ÖZ 

Hızlı kentleşmeyle birlikte, kentsel altyapının bakımı devasa bir gereksinim haline 
gelmiştir. Rögar kapakları ve mazgal gibi altyapı varlıklarının doğru ve zamanında tespit 
edilmesi, su drenaj ve kanalizasyon sistemlerinin bir şehrin sınırları içinde düzgün 
çalışmasını sağlamak için son derece önemlidir. Klasik denetim yöntemleri yavaş, pahalı 
ve hatalarla dolu olmasına katkıda bulunmuştur. Bu makale, Google Street View'dan elde 
edilen görüntülerde rögar kapaklarının ve mazgalların otomatik olarak tespit 
edilmesinde YOLO kullanımını uygulamaya çalışmaktadır. Bu çalışma, şehir altyapılarını 
izlemek ve bakım planlamasını optimize etmek için nesne tespitinden elde edilen 
sonuçların YBS ile nasıl entegre edileceğine odaklanacaktır. Bu sonuçlar, YOLOv11'in 
yüksek bir doğruluk oranına sahip olduğunu ve Google Street View görüntülerinden 
rögar kapaklarını ve mazgalların tespit ettiğini kanıtlamıştır. Performans ölçütleri 
arasında modelin hassasiyetini ve doğruluğunu tanımlayan mAP@0.5 ve mAP@0.5-0.95 
yer alırken, FPS analizi gerçek zamanlı uygulanabilirliği tanımlamıştır. Bu tür bulgular, 
yapay zeka tabanlı çözüm kullanımının kentsel altyapının otomatik olarak izlenmesi ve 
yönetilmesinde etkili olduğunun altını çizmiş ve karar destek sistemlerine büyük katkı 
sağlama potansiyellerini kanıtlamıştır. 

© 2024 JOBDA All rights reserved 
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1 | INTRODUCTION 

Indeed, in this fast-marching world of rising 
urbanization, the better management and viability 
of its urban infrastructure is the challenge of the 
day. Like other common structural components, 
the manhole covers and drainage play a critical role 
in the water drainage systems and sewerage 
mechanisms and have taken a frontline 
significance in the daily functioning of cities. They 
require routine monitoring and maintenance so 
that any potential infrastructure problem may be 
avoided, guaranteeing public safety. These 
activities involve identification and monitoring, 
which are highly time-consuming and costly, yet 
prone to errors.  
The growing complexity of urban environments 
and the increasing population density in cities 
demand innovative approaches to infrastructure 
management. Urban infrastructure must not only 
meet the needs of current residents but also 
anticipate future demands in terms of safety, 
functionality, and sustainability. Consequently, 
incorporating advanced technologies into urban 
management strategies is no longer optional but a 
necessity. 
Current methods of manual inspection hardly 
allow for updating and obtaining rather precise 
data over large-scale geographic areas; it reduces 
the effectiveness of operations within municipal 
governments and leads to oversight where urgent 
intervention is required. Similarly, rich, timely 
image databases- such as provided by Google 
Street View-are increasingly valuable in automated 
mapping and monitoring applications applied to 
city infrastructures. These data processing 
reductions obtained from these tools reduce 
fieldwork and allow spending higher productive 
resources. However, these data sources require 
efficient processing methodologies to extract 
actionable insights at scale. Artificial intelligence 
(AI) and deep learning techniques offer powerful 
solutions for leveraging such large datasets, 
enabling rapid, accurate, and cost-effective 
infrastructure assessments. More recently, thanks 
to the development of artificial intelligence and 
deep learning, it has been possible to develop new 
opportunities related to the analysis of large-scale 
data and object detecting applications. In 
particular, the methods based on You Only Look 
Once have phenomenal performance for real-time 
object detection. Among them, the latest version, 
now called YOLO v11, was able to perform fast and 
accurate detections for complicated visual data. 
The work at hand will present the automatic 
manhole cover and grating detection in Google 
Street View images performed with the use of the 
YOLO v11 algorithm. Data will be used within 
management processes regarding city 
infrastructure management, effective maintenance 

and repair processes, and advanced-level decision 
support mechanisms. All these will contribute to 
increasing the operation efficiency in city 
administrations and also raising the quality of the 
public services.  
Moreover, the findings of this study have 
implications for urban resilience and 
sustainability, aligning with global efforts to 
develop smarter, more adaptive cities. By 
addressing challenges such as data accuracy, model 
optimization, and operational scalability, this 
research aims to demonstrate how AI-based 
solutions can serve as catalysts for transformative 
change in urban planning and governance. 
The following are the research questions to be 
addressed within the scope of this study. 

• How effective is the YOLO Algorithm for 
detecting manholes and drains in street images? 

• Which ones are possible data preprocessing 
and model optimization methodologies that might 
be applied to enhance performance for manhole 
and drainage detection using YOLO? 

• The main question is, what novelty does 
YOLOv11 bring compared to the already existing 
YOLOv8 or their older versions, and in what 
scenarios does that translate into more efficient 
performance? 
 
2 | LITERATURE REVIEW 
 
Management of urban infrastructures is quite 

important in realizing the sustainability and safety 

of a modern city. The automatic defect detection 

relating to manhole covers, gratings, and road 

surfaces will accelerate the maintenance and 

repairing processes of infrastructural elements 

with reduced human errors. Deep learning and 

computer vision have developed in the recent past 

and hence brought significant progresses to the 

monitoring and evaluation processes relating to 

the urban infrastructures. For instance, some of the 

real-time object detection algorithms like YOLO 

can detect infrastructure features very fast with 

high accuracy. Wang et al. (2022) developed a 

YOLO-SDD with YOLOv5s that detected 

stormwater drains from street-level imagery. They 

optimize the backbone network and loss function 

by analyzing characteristics of the small-scale 

targets. The experimental results show that the 

mAP@0.5 reaches 89.6% for detecting various 

stormwater drains states in different 

environmental conditions. Another relevant 

article, Benhiba et al. 2023, applied the YOLOv8 

model to the detection of manhole covers through 

inspection using drone images and adding GPS 

location information. The experiments showed a 

very good performance of YOLOv8, 89% for 
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mAP@50, and 95% for accuracy. This contributes 

to proactive maintenance and mitigation of risks in 

the urban infrastructure. Singh et al. (2023) aimed 

to detect potholes on the road for intelligent 

transport systems. They made a comparison in 

performances of some deep learning-based object 

detection methods such as YOLOv5, YOLOv6, and 

YOLOv7 in road damage detection. Among all, the 

best performance was obtained by YOLOv7 with 

93% accuracy for detection. In this regard, Zhou et 

al. (2019) had four models trained and tested for 

automatically detecting potholes on the road: 

YOLOv3, SSD, HOG with SVM, and Faster R-CNN. 

The experimental results demonstrated that the 

YOLOv3 model outperformed the others in that it 

produced faster and reliable results in detection. 

Thereafter, Noori et al. (2023) presented deep 

learning-based approaches for assessing the 

severity of asphalt patches and manhole covers. 

They carried out work that involved the execution 

of a one-stage object detection algorithm using 

YOLOv5, YOLOv6, and YOLOv7 and showed that 

YOLOv5 had the best performance out of the three 

at high speed. This work has depicted the leading 

trend of deep learning models in detecting asphalt 

patches and manhole covers. Wang et al. (2023) 

propose the detection of manhole covers using 

aerial images captured by a UAV. They placed 

manhole covers using YOVOv8 object detection 

technology and enhanced image quality using 

super-resolution processing via the SRGAN 

network. Therefore, they have achieved manhole 

covers classification accuracy of 97.62%. Li et al. 

2020, have proposed an automatic sewer pipe 

defect detection system based on the deep learning 

algorithm YOLOv3. For example, in six various 

classes of model output identifications, the broken, 

hole, debris, crack, fracture, and root classes return 

an average precision of approximately 85.37%. 

Again, in proof of efficiency for deep-learning 

approaches to regular monitoring of sewerage 

systems. 

The above literature highlights the relevance of 

deep learning, especially the place occupied by 

YOLO algorithms for urban infrastructure 

management. Variably, various studies prove the 

very high accuracy and efficiency of the different 

versions of YOLO but also the use of other deep 

learning models to automatically detect manhole 

covers, gratings, and road damages. Most of the 

works conducted so far require imagery from 

drones or UAVs, and very few research works have 

focused on street-level imagery such as Google 

Street View. In this regard, this research paper will 

focus on the automatic detection of manhole covers 

and gratings using the YOLO algorithm in Google 

Street View images and try to fill up the gap in the 

literature. In that case, street-level imagery will 

provide data coverage on a wider scale, presently 

and through regular updates, enabling better and 

more economic monitoring of urban infrastructure 

with time. 

Incorporating spatial planning and Geographic 

Information Systems (GIS) into urban 

infrastructure management enhances decision-

making and resource allocation. GIS applications in 

urban and regional planning are diverse and 

essential for land management. Significant uses 

include risk management and emergency planning, 

where GIS data connects emergency management 

with spatial planning through network analysis 

and thematic mapping. GIS also aids in 

standardizing and validating urban data by 

collecting and analyzing socioeconomic and 

environmental information, facilitating 

methodologies like overlay analysis to identify 

conflicts between land development and 

environmental concerns. Additionally, GIS 

supports the execution of urban plans by 

conducting environmental impact assessments of 

proposed projects, evaluating and minimizing 

development impacts on the environment.  

Integrating Building Information Modeling (BIM) 

and GIS has been approached from relevant aspects 

such as standardization and level of detail, aiming 

to improve the operation and maintenance of 

urban infrastructure. This integration enhances the 

management of existing infrastructure by 

combining detailed building models with spatial 

context, facilitating better decision-making in 

maintenance and operations (Cepa et al. 2024).  

GIS also plays a crucial role in urban infrastructure 

planning and management by developing and 

maintaining the physical infrastructure that 

supports urban areas, including transportation, 

water and sewer systems, waste management, and 

public spaces. The goal is to ensure that 

infrastructure is safe, reliable, efficient, and meets 

the needs of urban populations. Furthermore, GIS 

streamlines asset management by centralizing 

information on maintenance schedules, repair 

history, and equipment inventory. By tracking the 

lifecycle of each asset, from installation to 

decommissioning, GIS empowers organizations to 

prioritize maintenance tasks, prolong asset 

lifespan, and minimize downtime (Lamp 2024).  
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This research paper focuses on the automatic 

detection of manhole covers and gratings using the 

YOLO algorithm in Google Street View images, 

aiming to fill the gap in the literature. Street-level 

imagery provides broader data coverage, enabling 

better and more economical monitoring of urban 

infrastructure over time. Integrating deep 

learning-based detection with GIS and spatial 

planning frameworks can enhance urban 

infrastructure management by providing accurate, 

real-time data for decision-making, improving 

maintenance efficiency, and contributing to the 

sustainability and safety of modern cities. 

3 | METHODOLOGY 

Experiments are designed to comparatively assess 
different deep learning object detection models for 
manhole covers and grating auto-detection. In this 
regard, the paper considers an experimental design 
methodology comprising tests in four phases, 
comparing the performance of the YOLO 
algorithms and selecting the best model. 

The labeled dataset created consisted of 686 
Google Street View images featuring manhole 
covers with drainage labels, amounting to 1001 
labels where manhole covers were created using 
the Roboflow tool-manually generated with 635, 
while for drainage, 366 was prepared. 

In the post-labeling process, some data 
augmentation techniques were performed in order 
to make the variations in the dataset more diverse, 
including: rotation, scaling 640x640 pixels, and 
adjusting brightness and contrast. After 
augmentation, a total of 1646 images are obtained: 
70% data for training is 1440 images, 15% for 
validation is 136 images, and 15% for testing is 67 
images. The first experiment compares the 
performance between YOLOv5, YOLOv8, and 
YOLOv11. All the models have been trained on the 
same training and validation datasets, keeping 
similar training parameters. Model performance is 
quantified by metrics such as mAP@0.5, Precision, 
Recall, and F1 Score. The second experiment 
compares several size versions of YOLOv11: 
YOLOv11n or nano, YOLOv11s or small, and 
YOLOv11m or medium version. In this experiment, 
this investigates how changes in model size affect 
the speed and accuracy of the model. The 
evaluation metrics that will be used include 
mAP@0.5, model size in megabytes, and 
processing speed in frames per second. The 
performances of the third experiment were tested 
on the test dataset, comparing both the speeds and 
accuracies. Later, the applications were run on the 
test dataset that had not been used for training. 
Further, their performance was compared against 
real-world data. In this regard, mAP@ 0.5 and 

@0.5:0.95, among other metrics to be considered 
including processing time, ms/ image, and FPS. It 
therefore gives a full comparison performance 
analysis of various YOLO models in detecting the 
covers of manholes and gratings that henceforth 
guide the selection of the best object detection 
model for practical applications in managing city 
infrastructures. These experiments aim to 
ascertain, with regard to both aspects of accuracy 
and speed, the suitability of the models for practical 
applications. It empowers city governments with 
better monitoring of their infrastructure assets and 
improvements in the ways maintenance is done. 

 

Figure 1. Labeling of manhole covers and drainage 

 

3.1. Modeling 

Regarding this, various experiments are conducted 
concerning specific hyper-parameters and training 
strategies to achieve optimum performance of the 
deep learning model called YOLOv11 for detecting 
manholes and drainage in Google Street View 
images, so as to enhance the generalization 
capability of the model. This experimental design 
adopted in this paper is based on the requirement 
needed for the research question at hand, while 
aspiring to fill in the gaps evident in the literature. 
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In this context, some experiments, such as version 
comparison for YOLO, determination of the 
number of epochs, and early stop strategy are done. 
The experiments here are selected since, from the 
literature in deep learning [Liao etc. 2022, Yang 
and Shami 2020, Bischl etc. 2023, Du etc. 2021, Rjin 
and Hutter 2018] optimization in hyperparametric 
parameters and training strategies are the keys 
leading to better model performances. This shall 
help in filling up the literature gap by providing 
optimized performance of the YOLOv11 model in 
identifying manholes and grilles within the settings 
of an urban environment. 

3.2. Experiment comparing the results of different 
Yolo versions 

In this study, the experiment was conducted with 
three different versions of YOLO that faced each 
other frequently in the literature. A model will be 
created by using Yolo v5, and thereafter the 
performance values will be analyzed (Figure 2). It 
can be inferred from the results analysis about the 
Confusion Matrix and the F1-Confidence Curve that 
the class "man-hole" has a higher F1 score than 
"drainage" class, which means, in general, this class 
is presenting more detection accuracy (Figure 2a). 
While in this problem, the F1-Score was more 
successful, specifically in the "man-hole" class for 
the Model; the "drainage" class still has a pretty low 
precision and recall value. mAP@0.5 value for all 
classes is 0.583-the said model works with 
acceptable accuracy; it needs to be improved for 
some classes (Figure 2b). About 0.144 mAP@0.5-
0.95: a model performs badly, especially on more 
difficult detections since a line is at the bottom left 
while drawing across different IoU thresholds. It 
can be observed from the Precision-Recall curve 
that the "man-hole" class has a much better result 
in comparison with other classes (Figure 2c). The 
"drainage" class has low precision and recall, 
relating to many false negatives and positives in the 
detections (Figure 2d). Losses such as 
train/box_loss, train/cls_loss, train/cls_loss, 
val/box_loss, among others, keep decreasing 
during training and verification. That provides 
evidence that the model is learned in some sort of 
process and is making fewer mistakes. It would be 
easy, though, to notice fluctuations, especially 
those related to validation losses, because some 
evidence for overfitting might have happened in 
some epochs. That is to say, the model performance 
in the "manhole" class is middle, but gives huge 
errors and poor performance in the class 
"drainage." Generally, during this fit for FPS and 
speed evaluation, sensitivity and recall values have 
to be increased, especially in the class "drainage," 
in order to reach the desired level in accuracy. 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 2. Result values of the Yolo v5 model 

The Accuracy, F1-Score, and Average Precision-
mAP@0.5/mAP@0.5-0.95 scores are depicted 
below for the given YOLOv8 model (Figure 3). By 
considering the Precision-Recall curve as well as 
the F1-Confidence curve, one is able to analyze that 
compared to a class "drainage," the "man-hole" 
class gives rather successful detection accuracy 
(Figure 3a). The "man-hole" class has higher values 
both for precision and recall; therefore, the F1 
score is on this side. It doesn't perform that well 
compared to the "drainage" class. Precision and 
Recall values have many fluctuations. This shows 
that it might sometimes come under conditions of 
false positive or false negative. For the mean 
Average Precision mAP@0.5 across all classes, the 
value is 0.609, hence it would give quite accurate 
detections (Figure 3b). The value of mAP@0.5-0.95 
comes out to be 0.154. This further means that with 
higher IoU threshold values, the model performs 
worst and needs further improvement on most 
challenging detections. If considering Precision-
Confidence and Recall-Confidence Curves, the 
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"manhole" class outperforms the "drainage" class. 
Though both classes have high recall value, 
"manhole" class has higher whereas the "drainage" 
classes have lower recall rates (Figure 3c). It is 
visible that loss both trains and validates-a model 
learns after some time and makes fewer mistakes. 
In real time, if there are too many ups and downs in 
terms of validation losses, one can draw a 
conclusion with confidence: most likely, this 
network is overfitted and requires a regular 
strategy of training (Figure 3d). The performance 
of Model YOLOv8 was great, especially class "man-
hole" had high accuracy and F1 score. Though this 
performs fantastically well, it has very poor 
performance within the "drainage" class, which 
actually needs further development based on more 
data. 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 3. Yolo v8 model results 

 

 

Following are the results for the evaluations by the 
YOLOv11 model: From the F1-Confidence Curve, it 
is seen that the class "manhole" ensured a better 
F1-Score as opposed to the class "drainage" (Figure 
4). The F1-score can be seen around 0.60, while the 
performance of the class "drainage" is very poor 
(Figure 4a). From what the Precision-Recall curve 
represents on all classes by this YOLOv11 model, 
the estimated mAP@0.5 amounts to 0.606, 
depicting that it is acceptable in overall 
performance for the model (Figure 4b). On the 
other hand, mAP@0.5-0.95 managed by the model 
is only 0.161, representing that there needs to be 
more improvement in performance w.r.t more 
challenging detection across different IoU 
thresholds (Figure 4c). It can be observed from the 
Precision-Confidence Curve that the man-hole 
class is performing better compared to the 
drainage class concerning precision and recall. The 
Recall-Confidence Curve of the drainage class 
shows very low recall values; it means the model 
tends to predict more false negatives in that class 
(Figure 4d). Though there was a lot of fluctuation 
in training and validation losses, a further decline 
concerning time is registered for the train/box_loss 
and train/cls_loss, which means the model learns. 
This showed increased mAP50 during the 
validation but gave pretty low values for higher 
IoU's. The accuracy, precision, and F1 score of the 
YOLOv11 for the manhole class were very high. 

 

 
a 

 
b 

 
c 

 
d 
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Figure 4. Yolo v11 model results 

We summarize the results by comparing the 
performance of YOLOv5, YOLOv8 and YOLOv11 
algorithms and evaluating them in terms of 
Accuracy, F1-Score, Average Precision (mAP@0.5, 
mAP@0.5-0.95), Precision and Recall metrics 
(Table 1). 

Table 1 Results of comparing Yolo versions 

 

YOLOv5: It gave middle performance from the 
point of view of both accuracy and F1 score. 
"Manhole" class gives a really high F1-score, while 
not that well in class "drainage". The approximate 
F1-score is about 0.56. YOLOv8: Compared with 
YOLOv5, this model yields a bit higher F1-score. In 
particular, for class "man-hole", an F1-score of 
approximately 0.60 is achieved. Compared to 
YOLOv5, the "drainage" class only showed lower F1 
performance when the overall accuracy was 
improved. YOLOv11: In general, and considering all 
the results, the best performance was given by 
YOLOv11 when considering the F1-Score. That 
value reached 0.62 for the class "man-hole" when 
the class "drainage" took lower F1 values. 

YOLOv5: The values are 0.583 mAP@0.5 and 0.144 
mAP@0.5-0.95, which indicates performance 
degradation when higher IoU thresholds are 
involved. YOLOv8: mAP@0.5 value: 0.609; 
mAP@0.5-0.95 value: 0.154: Therefore, in this 
regard, it outperformed but still has room for 
improvement toward higher IoU values. YOLOv11: 
mAP@0.5 value: 0.606; mAP@0.5-0.95 value: 

0.161: This is the best compared to all of them, with 
a small increment, mainly towards IoU threshold 
challenges. 

YOLOv5: The "Man-hole" class has better precision, 
but because of the "drainage" class, the average is 
low. Also, Recall is higher in "man-hole" but low in 
the "drainage" class. YOLOv8: Higher Precision and 
Recall values compared to YOLOv5. In the case of 
the "man-hole" class, the Precision and Recall rate 
is good enough to be considered even in the 
distribution. Whereas, in the "drainage" class, the 
values of both precision and recall are low enough. 
YOLOv11: The precision is really good, especially 
for the class "manhole". The precision of the model 
outperforms YOLOv5 and YOLOv8. Recall in 
YOLOv11 for the "man-hole" class is good, but for 
the class "drainage", the recall is low. 

YOLOv11 gives the best performance by F1-Score. 
In the case of mAP@0.5 and mAP@0.5-0.95, 
YOLOv11 had a slight edge, though YOLOv8 
performed similarly. And lastly, in the "man-hole" 
class, Precision and Recall for all models had 
performed good enough, but regarding the 
"drainage" class, they need further improvement. 
While the other models drop either in Precision or 
Recall, YOLOv11 would be doing the best with a 
better balance between them. Moreover, it is clear 
that more data or development might be necessary 
for all models to perform well in the class 
"drainage." Without question, referring to the 
results portrayed, the best performance in general 
is by the model YOLOv11. 

3.3. Investigating Model Architecture 
Variations 

The result of the evaluation of the model within 
Yolo v11n stands as follows: 

Considering the F1-Confidence Curve, the 
maximum value of F1 for all classes is 
approximately 0.60, while for this particular class, 
that is, manhole, it is about 0.8. Yes, they actually 
reflect the general performance of the model, as 
one could realize that it shows very good results, 
especially on the class named "manhole". Now, 
from the following Precision-Recall and Precision-
Confidence graphs, we can draw conclusions on the 
accuracy of the model. Where the Precision-
confidence curve is 0.761 for all classes and about 
0.80 for the man-hole class. Some Average 
Precision metrics-like mAP50-are 0.606 for 
general performance, 0.799 for man-hole class 
detection, and 0.413 for the drainage class. In 
addition, this diminishes to the lower value of 
0.225 by mAP50-95. From these Precision-Recall 
curves, one can observe that the precision values 
are pretty high for the manhole class, ~0.799, and 
considerably decrease in the case of a drainage 
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class, ~ 0.413. Recall metrics are pretty good in the 
manhole class of ~ 0.87 but low in the drainage 
class of ~ 0.413. In a nutshell, YOLOv11 performs 
well because for the Man-hole class, YOLOv11 has 
a higher accuracy value, higher precision, and 
higher recall; whereas for the Drainage class, the 
values are low. Since both mAP@0.5 and 
mAP@0.5-95 report the general performance of 
the model as balanced, from the overall accuracy 
F1-score perspective, the model does quite well in 
general. 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 5. Results of the Yolo v11n model 

Performance by the model used, i.e., Yolo v11s, can 
be evaluated as: 

Various metric results have been analyzed about 
the model created on the Yolo v11 small version 
(Figure 5). It has an F1 score in the F1-Confidence 
Curve of about 0.60 for all classes. Among them, 
man-hole covers are classified with much more 
confidence compared to the class drainage. This 
probably should be the reason that accuracy may 

also be higher for certain classes (Figure 5a). 
Concretely, it can be seen from the F1-Confidence 
Curve that the F1 scores are about 0.74 for the class 
"manhole," about 0.44 for the class "drainage," 
while the mean F1 score of all classes is 0.60 
(Figure 5b). According to the Precision-Recall 
Curve of all classes, the mAP@0.5 value of the 
model is about 0.592. Although the exact value is 
not directly given by the graphs, mAP@0.5-0.95 
can be estimated to be lower than that of mAP@0.5, 
and it is generally around 0.20 to 0.30 (Figure 5c). 
Looking at the Precision-Confidence Curve, the 
precision of the manhole class, man-hole, is quite 
high, about 0.74. Precision in the case of the 
drainage class, drainage, is comparatively low at 
about 0.44. Recall-Confidence Curve indicates that 
the value of recall in the manhole class is high at 
around 0.88, with that of the drainage class being 
low at around 0.60 (Figure 5d). Looking from these 
metrics, one may notice fairly well that the Yolo 
v11 works nice for the class of manholes and the 
same network does worse for the class of 
drainages. Anyway, considering everything, this 
performance is imbalanced between classes, 
though, in general, the performance of F1 score and 
precision are middle in average. 
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Figure 6. Results of the Yolo v11s model 

 

This plot could give an interpretation for the 
performance of YOLOv11 medium model: Using 
F1-Confidence Curve for a confidence level of 
0.298, the F1 score in all classes is going to be about 
0.54 (Figure 6). This would mean that only at this 
value of confidence will a better trade-off between 
precision and recall be achieved by the model, but 
not high (Figure 6a). The best precision in the last 
epoch is around 0.323 while the recall is about 
0.293. From the Precision-Confidence curve, it can 
be seen that the higher the confidence, the higher 
the precision. The precision of the model is 1.00 
with a confidence level of 0.680 but after that 
rapidly falls afterwards. Recall-Confidence Curve 
reflects that if confidence is small, the recall is 
higher and decreases with the increase of 
confidence (Figure 6b). While the highest recall 
value of 0.86 is realized at 0 confidence level, 
among the Mean Accuracy scores, the score at 
mAP@0.5 is around 0.270; in other words, at an 
IoU threshold of 0.5, performance is comparatively 
reasonable for the model in terms of object 
recognition. The score of mAP@0.5-0.95 is 
comparatively low, at about 0.099, with a tighter 
IoU threshold or when the condition gets tougher 
(Figure 6c-d). Training Losses: The box loss curve 
goes down smoothly, which represents that 
through the training process, the model is 
predicting the location of an object better and 
better. Overall, the model's performance is quite 
reasonable considering precision and recall. The 
map@0.5 is not bad, but in the case of more difficult 
IoU thresholds, such as map@0.5-0.95, it degrades 
performance. Higher F1 score can be obtained and 
hence scope for further improvement. 
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Figure 7. Results of the Yolo v11m model 

Our work tests YOLOv11 in three variants, namely 
nano (n), small (s), and medium (m), based on 
Accuracy, F1-Score, Average Precision, which is 
mAP@0.5 and mAP@0.5-0.95, Precision, Recall, 
and Speed in FPS. 

Table 2 Results of comparing Yolo variant versions 

 

If the F1-Scores are considered, then the F1-
confidence for YOLOv11n would lie at 
approximately a maximum of 0.60. This model 
gives an edge in terms of speed because of lesser 
model complexity but considerably low F1-score as 
compared to other variants. The variant YOLOv11s 
has an approximate F1 score of 0.60, showing more 
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or less even balancing. This small model provides a 
very good balance between speed and 
performance. Having F1, the maximum score 
achieved by YOLOv11m is 0.54, and thus, the model 
with more complex architecture should not show 
such a high F1 score in comparison with nano and 
small versions. 

Considering the mean average precision, 
mAP@0.5, for instance, YOLOv11n presents good 
object recognition, with high values of 
approximately 0.60 mAP@0.5. Therefore, releasing 
YOLOv11s, keeping in mind a value of 0.592 
mAP@0.5, very close to the nano model, assures a 
good result as far as object recognition 
performance is concerned. mAP@0.5: On the 
YOLOv11m version, this value is at about 0.536, 
somewhat lower compared to the other two. 
mAP@0.5-0.95: On these difficult IoU thresholds, 
the YOLOv11n does fairly well by a bigger margin 
in IoU, having its mAP@0.5-0.95 value at about 
0.225. The YOLOv11s does quite well at an 
mAP@0.5-0.95 of about 0.220. For example, the 
IoU threshold, which is relatively complex, has a 
performance of 0.099 in the YOLOv11m version. 
Contrarily, the more complex a model is, the less 
mAP@0.5-0.95. 

The precision values show that the YOLOv11n: 
Nano model reaches highs with its precision value 
of 0.761. In a very similar way, very good results 
are represented by the YOLOv11s model version 
when considering precision, due to the value of 
1.00 of the same. The YOLOv11m model version 
has around 0.680 value accuracy, quite low 
compared to different models. From the Recall 
values, the maximum recall in YOLOv11n is 0.87, 
showing high sensitivity with even low confidence. 
Similarly, the YOLOv11s performed nearly like the 
nano version and yielded a recall value of 0.88. In 
the YOLOv11m version, too, there was slight 
degradation in sensitivity, giving a recall of 0.86. 
The training losses for different models all take a 
similar trend of going downwards, but a keen look 
reveals a larger loss both in box loss and cls loss  for 
the medium model; that would mean this model is 
large and complex to learn. 

Among all the comparisons done, model YOLOv11n 
has the best balance between speed and overall 
accuracy. The preferred model in those cases when 
the speed matters but not much regarding high 
accuracy is YOLOv11n. YOLOv11s has presented a 
good compromise between efficiency and accuracy, 
since it has performed well on accuracy and recall. 
However, the YOLOv11m-medium model may 
show better mAP@0.5 values due to its more 
complex structure running significantly slower 
compared to the small ones and with a little bit 
lower F1 score. Therefore, the above comparisons 
will definitely help the users make the right choice 

according to their needs, depending on which 
model is going to be used.  

This would be a good opportunity to analyze model 
performance based on different metrics for the two 
classes: Drainage and Man-Hole. With this, one may 
quickly appreciate the huge difference in the 
number of predictions, with the model proposing 
240 for the drainage class, while the model 
predicted 446 for the man-hole class. It could be 
the case that instances of the manhole class are 
more frequently found and cropped into view by 
the model, compared to the drainage class, and 
hence may mean that the manhole class contains 
more instances in this dataset, hence meaning the 
model is working on an imbalanced dataset. 

By considering the average confidence scores, it 
can be seen that the model's confidence score is 
52% for the drainage class, while for the man-hole 
class, it is 58%. These show that the average 
confidence scores in both classes are below 60%, 
which means that the model is not sure and cannot 
give full confidence in the prediction. Very low 
confidence in the drainage class of the model surely 
suggests that the model needs further development 
in this class. Having low confidence scores could 
indicate that the model is indifferent with some of 
the predictions it gives or does not really see much 
difference between the objects that it detects. This 
would be improved either by more training of the 
model or by balancing classes. 

Regarding the speed in FPS, it reached 4.26 FPS in 
both classes, meaning that this model can process 
four images per second and is fit for real-time 
object detection. In contrast, the low confidence 
score and the differences between classes are 
evidence of further opportunities for improving 
this model by better accuracy and confidence, 
while the performance concerning speed is quite 
sufficient. 

The higher amount of predictions in the man-hole 
class could have, therefore, been a resultant effect 
of the imbalance in the dataset. The low confidence 
scores in the drainage class support the fact that 
this class needs to be supported with more data, or 
that more training on this class needs to be carried 
out. Though quite satisfying concerning the speed 
factor, it goes without saying that more 
improvements should be done to concern the 
reliability of the forecasts. 

3.4 Determining the Number of Epochs and Early 
Stop Strategy 

The number of epochs defines how many times the 
model viewed the training data and influences how 
much it can learn from it. Choosing an appropriate 
number of epochs lets it learn enough, without 
making it prone to overfitting. Early stop is a 
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possibility to stop the training optimally, based on 
the performance on the validation set 5. Since a 
small number of images - usually 686 - would 
create a high risk of overfitting the model, I try 
several epoch numbers in order to find the best 
performance point of the model using the early 
stopping strategy. In this experiment, the early stop 
was set at 5; thus, it got that the model trains only 
up to 25 epochs. Later, when this value was 
reached, the experiments were completed with 
more than 25 epochs each. 

4 | RESULTS 

This paper has presented how the YOLOv11 
algorithm works in respect of detecting manhole 
covers and drainage in Google Street View images. 
Experimental results prove that the achieved 
accuracy of YOLOv11 is very high and object 
detection really efficient. Automatically detected 
manhole covers and drainage are an important 
contribution to public safety and an improvement 
in processes connected with infrastructure 
maintenance. 

The performance of the YOLOv11 in this study was 
rather good, compared to other YOLO series 
versions, regarding both speed and balanced 
accuracy. Furthermore, by the precision and recall 
results, the model results showed reasonable 
performance. More precisely, the results were 
more accurate for the man-hole class, whereas the 
class of drainage had room for further 
improvement. 

Results obtained in this paper represent the 
promise of using the YOLOv11, an AI-based object 
detection algorithm, in the management and 
monitoring of urban infrastructure. Future work 
might be done on testing the performance of the 
model using bigger-sized datasets and improving 
the performance under various weather conditions 
and lighting changes. On the other hand, the fact 
that infrastructure detections can be integrated 
with Management Information Systems for speedy 
and effective decisiveness mechanisms of city 
administrations also goes to show that these 
technologies make a great contribution to urban 
planning and management. 

The integration of these technologies with spatial 
planning processes holds even greater potential. 
Spatial planning, which focuses on the strategic and 
sustainable use of land, can greatly benefit from AI-
driven detection results. By integrating 
infrastructure data with Geographic Information 
Systems (GIS), city planners can create real-time 
spatial databases that support better decision-
making. This integration enables the visualization 
of infrastructure conditions, highlighting areas that 
require urgent maintenance or are at risk of failure. 
It also provides the ability to model future urban 

scenarios, taking into account the interplay 
between infrastructure, land use, and population 
dynamics. Furthermore, by aligning maintenance 
priorities with broader urban development plans, 
spatial planning can ensure that resources are 
distributed more equitably and efficiently across a 
city. 

Infrastructure management is a major function in 
all modern cities of the world in regard to public 
safety and the effective use of all resources. 
Management Information Systems empower 
decision support mechanisms through the 
collecting, processing, and analysis of big data. 
Automatic detection, therefore, with situational 
analysis of manhole covers and gratings, can 
constitute very important innovation in 
infrastructure management. The research study 
will be done to extend the MIS for better decision-
making in city management by incorporating an 
image-processing technique that will detect 
infrastructure objects in images using the YOLOv11 
algorithm. 

These determinants, integrated with MIS, would 
update the inventories of infrastructure assets at 
any instant of time and provide valid data to city 
administrations. The location and condition 
information of infrastructure elements could be 
tracked in real time, and missing or incorrect data 
would appear instantly and be set right. This saves 
a great deal of time and resources deployed in 
infrastructure management and leads to better 
management processes. It further provides the 
scope for getting more accurate automatic data, 
rather than some manual inspection on the field. 

Integrated with MIS, such detections allow the 
infrastructure maintenance and inspection 
processes of city administrations, while the 
priorities of manhole cover and grating 
maintenance are brought out more quickly and the 
teams in the area do less work. Automatic detection 
and monitoring reduce human error, saving lots of 
time and decreasing an enormous amount of 
human error. Instantaneous detection of areas 
needing maintenance allows anticipating the 
problem in infrastructure and hastening the 
solution. 

Management Information Systems, in turn, 
contribute to effective strategic decision making 
through the incorporation of findings from the 
detection into DSS. KDS feeds information on 
proactive decisions on areas that should receive 
priority in infrastructure management, 
identification, and condition of infrastructure 
elements. The identification of sections that need 
high frequent maintenance, for instance, aids in 
effective resource use and planning of the future 
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infrastructures. This therefore represents a more 
valid and effective decision-making process. 

The data flow by MIS on resource management and 
planning processes enables the city government to 
optimize resources put into the upkeep and repair 
of infrastructure. Manhole cover and drainage 
detection by city governments offers an 
opportunity to improve the planning of the 
maintenance team and the supply of materials. 
Integration of results of detection into budgeting 
processes coupled with it enables more 
appropriate investment in infrastructure and 
thereby increases efficiency in the management of 
resources in the long term. 

Lastly, with respect to the dangers about safety, 
there should be an updated monitoring over 
infrastructure elements. Information obtained 
with the employment of MIS allows the 
infrastructural problems, especially the ones 
relating to the public health and safety to be 
defined and interfered with at the earliest stage. 
Data obtained about the status of infrastructure 
elements may be used also in the process of 
emergency response such as disaster management 
whereby one can easily follow up the risky zones 
inside the city. 

These detections using the YOLOv11 algorithm 
have great potential to contribute a lot once 
integrated with the MIS pertaining to urban 
infrastructure management. In that respect, such 
an integrated system offers good data-driven 
decision-making, judicious resource utilization, 
and proactive resolution of issues relating to 
infrastructure. Such solutions are what 
Management Information Systems can help impart 
to the city governments in order to carry out 
infrastructure management in a speedier, more 
efficient, and safe way, besides being one of the 
important constituents of the smart city solutions. 

By aligning urban infrastructure monitoring with 
spatial planning, cities can adopt a holistic 
approach to resource management. This integrated 
framework not only enhances the operational 
efficiency of existing systems but also provides the 
foundation for more resilient and adaptive urban 
development strategies. The synergy between AI, 
GIS, and spatial planning thus represents a 
transformative step towards building smarter, 
safer, and more sustainable cities. 

Automation means much to infrastructure 
management; thus, massive benefits are created in 
all spheres of managing a city, right to the correct 
utilization of resources. First, the automation 
systems enable the quick identification of 
infrastructure elements like manhole covers and 
drainage, something that could have been done 
more speedily and efficiently. While there is 

perhaps inevitable human fallibility with the 
traditional methods of manual inspections-so time-
consuming-the automated systems ensure 
continuous, exact monitoring of infrastructure 
elements. This, therefore, ensures efficiency, hence 
saving on time in infrastructure management. 

Automation will also decrease human error. 
Consistent and correct identifications of structure 
features reduce loads of human error and provide 
reliable data. This automatic system replaces 
inefficient on-site manual inspection with more 
accurate and steadier results. Besides, it allows for 
better resource management: it can point out 
which structural elements require maintenance or 
repair, so that labor, time, and material can be 
better spent. 

Other beneficial contributions of automation relate 
to economies of scale. An automated system 
requires many reductions in manpower and time, 
which drastically bring down the cost. Besides, by 
regular monitoring of infrastructural elements, it is 
possible to detect and respond against major 
failures or damages before they occur; hence, 
saving costs in the long run by stopping the 
situation of infrastructure problems from 
aggravating. 

Automation also contributes much value to 
security and risk management, as, due to 
continuous monitoring of infrastructural elements, 
a number of security risks can be discovered much 
earlier than otherwise would be possible. Special 
benefits derive from status monitoring of the 
infrastructure elements most critical from the 
point of view of public health and safety and from 
making rapid interventions whenever needs arise. 
The same systems will provide much very valuable 
data in disaster and emergency situations.  

Other advantages include increased efficiency of 
data collection and data analysis processes once 
they are automated. Management can also include 
automated systems in DSS simply by constant data 
collection of the elements of infrastructure. Such 
data can be utilized in infrastructure planning and 
budgeting processes, thereby providing strategic 
leverage to the city administrations. Also, it 
prolongs the useful life of the elements of 
infrastructure, avoiding sudden failures and 
improving the overall performance of 
infrastructure. 

The bottom line of all is that automation in 
infrastructure management contributes toward 
much safer, more efficient, and even more 
sustainable infrastructure of cities. These allow 
resources to be put to effective use, reduce costs, 
and offer proactive risk management. In the long 
run, these contributions by automation have the 
capacity to speed up the pace toward changing 



C. Aydın and G. Erdoğan Aydın / Journal of Business in The Digital Age 7(2), 2024, 112-124 
 

124 

 

cities into smart city solutions by opening new eras 
in infrastructure management. 

In future studies, addressing the issue of dataset 
imbalance could further enhance the robustness 
and generalizability of the model. One promising 
approach involves leveraging advanced deep 
learning architectures, such as the Swin 
Transformer. With its hierarchical design and self-
attention mechanism, the Swin Transformer is 
particularly adept at capturing both local and 
global features, which may help mitigate the 
adverse effects of underrepresented classes. 
Furthermore, its scalability and adaptability to 
diverse data distributions make it a suitable 
candidate for addressing the challenges posed by 
imbalanced datasets. Integrating Swin 
Transformer with techniques such as class 
weighting, focal loss, or synthetic data 
augmentation could yield significant 
improvements in performance, particularly for 
minority classes. Future research could explore 
these avenues to develop more equitable and 
accurate models. 
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