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Abstract— In this research paper, a novel neural-inspired approach called the Neuronal Auditory Machine 

Intelligence (NeuroAMI) is proposed for prediction of cryptocurrency prices - the ripple (XRP/USD) trading pair. 

The NeuroAMI is implemented as part of a LUNO API systems app and real-time data is generated and captured. 

Comparisons were also made with two other methods used in cryptocurrency trading called the Non-linear Auto-

Regressive Neural Network (NARX-net) and progressive Long Short-Term Memory (LSTM). The experimental 

results considering the 40%, 60%, and 80% input training level and the Mean Absolute Percentage Error (MAPE) 

evaluation metric were reported for the considered techniques. From the experimental results, it was clearly seen 

that on average, the NeuroAMI will outperform the NARXnet and LSTM techniques at the various input training 

data levels. In addition, it was observed that the proposed NeuroAMI technique attains consistent MAPE error 

estimates for a given percentage input training level. 

 . 
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1. Introduction  

Financial markets play a crucial and impactful role in the development of everyday society as market commodities 

or financial assets have to be bought and sold at competitive rates in order to meet the needs of a potential number 

of successful traders from a larger trader pool. This results in a potential huge set of minute-by-minute, hourly, 

and daily financial transactions and in turn corresponding profits or losses.  

In the context of cryptocurrency trading, the profits and losses results in bullish and bearish markets which is a 

direct consequence of the greed (or fear) index. Thus, it becomes a matter of urgency for cryptocurrency experts 

and enthusiasts alike to develop as well as support the development of techniques and tools that will guide the 

trader in making profitable high-yield financial decisions and hence minimize if not eliminate the losses or risks 

associated with bad market choices or decisions. 

In this paper, we develop an effective AI-based technique that is neural-based and can lead to potential profitable 

transactions in the FOREX or CRYPTEX markets. This technique is inspired by the intelligent operations that 

occur in mammalian auditory cortex and follows from an earlier study proposed in (Osegi, 2021, Osegi 2023).  

 

2. Related Studies 

The studies in the field of cryptocurrencies is an active one in which a great deal of research in the use of neural 

machine learning has been investigated. For instance, Shintate & Pichl (Shintate & Pichl, 2019) used the deep 

Long Short-Term Memory (LSTM) optimized learning method coined the Random Sampling Method (RSM) for 

the task of trend prediction classification of the cryptocurrency time series (bitcoin) OHLC dataset obtained from 

the OkCoin exchange market. In Miura et al (2019), a combination of several ML methods for Return Volatility 

(RV) prediction of bitcoin data time series was proposed. These methods include the standard MLP, LSTM, Gated 

Recurrent Unit (GRU), Convolution Neural Network (CNN), Support Vector Machine (SVM), and Ridge 

Regression (RR) were applied to the analysis of cryptocurrency data. 
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Dutta et al (2020) proposed a holistic approach to bitcoin price prediction including both endogenous and 

exogenous variables. They used the Gated Recurrent Unit (GRU), a deep learning extension of the LSTM 

technique with a simpler and compact architecture for making recurrent price predictions. 

Anghel (2020) used TA and ML trading rules in the context of multi-hypothesis testing for evaluating the excess 

return of crypto assets. Several ML techniques including the Support Vector Machine (SVM), Logistic Regression 

(LR), Random Forests (RF), Recurrent Neural Networks (RNN), and Wide and Deep Neural Networks (WDNN) 

were encoded as trading rules trained by a set of 84 features. Omane-Adjepong et al (Omane-Adjepong et al., 

2020) explored the chaotic patterns exhibited by some leading BRICS asset cryptos. Five key analytic solution 

techniques including wavelet time scale decomposition and four testing operations – the Block-Dechert-

Scheinlman (BDS), Teräsvirta Neural Network (TNN), Entropy Test for Non-Linearity (ETN), and the Largest 

Lyapunov Exponent (LLE) tests were proposed. They identified high-level chaos in log-return for intra-week 

(daily) scale samples of the considered crypto markets. Also, the Non-linear Auto-regressive Neural Network 

(NARX-net) as a predictor has been used in (Houssein et al., 2020) for the prediction of the Egyptian stock 

exchange market. 

While very good results are obtained for the techniques employed in the aforementioned research studies, it is 

common knowledge that these techniques require high number of features before a reliable prediction can be made. 

They also frequently require an extra computation to determine right set of features (referred to as feature 

engineering problem). In addition, these techniques lack continual learning ability inspired by biological neuronal 

processing. 

Thus, the purpose of this research study is to leverage on emerging continual learning approach for cryptocurrency 

price predictions. 

 

3. Materials and Methods 

The materials are composed of input and output documents derived from the LUNO trading view while the specific 

methods adopted are AI-inspired and based on auditory machine intelligence introduced earlier introduced in 

(Osegi & Anireh, 2019). 

3.1.  Input and Output Documents 

The proposed input and output documents are composed of digitized computer data in the form of prices of crypto 

or fiat-based currencies. Instances of these data are captured in the form of a flat file open source price dataset for 

the fiat (forex data) pair and a real-time crypto price pair data. 

The output documents are generated by a computer program based on a neural auditory-inspired machine 

intelligence technique. It uses the last (or past) traded price to make a future prediction of the crypto pair (see 

sample snapshot in Figure 1). 

 

 
Figure 1. A sample snapshot of an output document generated by the neural computer program. 
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The input documents comprise the last 100 traded prices from the LUNO order book (see sample snapshot in 

Figure 2). 

 
Figure 2. A Sample snapshot of an input document used for real-time analysis. 

 

 

3.2.  Artificial Intelligence (AI) Method 

The AI method employed is based on an earlier study by first author (Osegi, 2021). This method is called Neuronal 

Auditory Machine Intelligence (NeuroAMI) and the neuron architecture is shown in Figure 3. 

 

 
Figure 3. NeuroAMI Architecture. 

 

As can be seen from Figure 3, input sensory patterns are fed to both a Sensory-Binary-to-Integer Encoder (SBIE) 

and a Sensory-Class Memory Processor (SCMP); also, the somatic inputs from the SBIE are parsed to the SCMP 

via a class-type non-linearity resulting in Integer class-type coding (Ic). This allows the formation of sensory 

memory cells (s), and hence the predicted cell (Pr) is formed via reverse mismatch operations. Also, mismatch 

operations enable change detections via the Ic leading to the output prediction state (P). To ensure that learning is 

effectively accomplished and to enforce sparse activations, a frequency class signal level is applied to the non-

linearity (Osegi, 2023).  

With this neuron architecture, it becomes more advantageous to deal with streaming inputs that change through 

time using sparse detection. This process is further enhanced using a reinforcement learning process as described 

in the following sub-sections. 
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3.2.1. NeuroAMI Learning Procedure 
In the first instance, NeuroAMI learns a sequence of data points (values) automatically/temporally in an adaptive 

manner such that a mean deviant point is computed as in (1): 
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where, 

n = number of data points in a temporal sequence 

Sdeviant = the (n-1)th value of the temporal sequence 

Sdev = the difference between Sdeviant and Sstars 

Sstars = the (n-2)th values of the temporal sequence 

S* = sparse set of input sequences 

 

In order to make a prediction with the NeuroAMI, the formula in (2) is used as follows: 

 )(meandevdeviantpred SSS   (2) 

where, 

 1 

ndeviant SS  (3) 

 2 

nstars SS  (4) 

 

Algorithm 1. NeuroAMI Processing Algorithm 

A. i: Initialize Spred, as prediction parameter, Sstars, as input sequences (standards) state, Sdev(mean) as deviant mean, 

j as iteration counter. 

B. ii: for all ss.Sstars, &&j> 1, do 

C. iii: Compute Sdeviantand Sstars using equations (3) and (4) 

D. iv: starsdeviantdev SSS  // deviations from standards 

E. v:     Compute Sdev(mean) using equation (3) 

F. vi:     Compute Spred using equations (2)  

G. vii:      Update Sdev(mean) using Algorithm 2 

H. viii: end for 

 

 

The update routine in Algorithm 1 describes a learning process following Hebbian-style reinforcement as depicted 

in Algorithm 2: 

 

Algorithm 2. NeuroAMI Learning Algorithm 

İ. i: Initialize Spred, as prediction parameter, Sstars, as input sequences (standards) state, Sdev(mean) as  

J. deviant mean, Sdiff(1) as difference between Spred,Sdeviant+1and Sdiff(2) as difference between  

K. Sdev(mean) and |Sdiff(1)|, lp as correction factor or bias. 

L. ii: for all ss.Sstarsdo 

M. iii:    if Sdiff(2) > 0 

N. iv: 
)1()()( diffmeandevmeandev SSS  // Weaken deviant mean by a factor, |Sdiff(1)| 

O. v:        elseif Sdiff(2) < 0 

P. vi: 
)1()()( diffmeandevmeandev SSS  // Reinforce deviant mean by a factor, |Sdiff(1)| 

Q. vii:        else 

R. viii: 
pmeandevmeandev lSS  )()(

 

S. ix:    end if 

 

The learning rule is explained as follows: 

If the current prediction error of the NeuroAMI neuron is greater than or lower than zero, we reinforce its prediction 

by decreasing or increasing its deviant weight value by the absolute prediction error difference at the current time 

step; otherwise, we perform zero or negligible positive reinforcement by adding a very small value (deviant-

laplacian correction). In situations where exact matches occur, a small laplacian correction value (typically in small 
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fractions of about a hundredth), is used for deviant weight updates. It is important to emphasize that the learning 

process in Algorithm 2 may be weakened by a divisive penalty, and strenghtened by a multiplicative penalty. 

 

3.3. System Architecture 

The system-level architecture captures the core operational modules that used to implement a cryptocurrency 

trading solution. This architecture is shown in Figure 4. 

 

 
Figure 4. Proposed System Architecture of Crypto Trading System (Osegi, 2021). 

 

Considering this architecture, the data processing should be done in near real-time. The key parts of this 

architecture are the “Luno-trade-feed” and the “Run NeuralEngine” modules. The Luno-trade-feed generates real-

time streaming data; thus, data is generated in an online or continual manner. The Run NeuralEngine performs the 

task of prediction by capturing past streaming data and generating a precise estimate of the last traded price in the 

next time step. This function has to be done continuously; thus, algorithms that are online-capable are favored. In 

this research, the auditory-inspired neural technique described in Section 3.2 is proposed as a candidate neural 

approach. 

 

 

 

4. Results and Discussions 

Real-time experiments are conducted for one of the major cryptos used in the blockchain space; in this case, the 

XRP coin. In particular, prediction results are reported for the XRPNGN currency pair for 100 samples of intraday 

trades – the trades representing the orders (sell or buy orders) performed within a specific duration and generated 

using a NeuroAMI web-based AI software tool in PHP.  

In Figure 5, a typical graphical prediction response is shown at run-time. The input Reinforcement Learning 

Interval (RLI) parameter and sell order threshold values are specified before a prediction run i.e. by clicking the 

submit button.  

When there is an increase, the AI bot will initiate a sell order (see sell caption at about 70th data point); otherwise, 

a buy decision is initiated. The sell or buy decisions are determined by the NeuroAMI n-th prediction following 

the last traded price.  
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Figure 5. Prediction response of the NeuroAMI predictor showing sell-order execution 

 

 

For the comparative simulation experiments, the input data is sampled continually and fed to the NeuroAMI at 

40%, 60%, and 80% levels. The default operating parameters are used for NARXnet (Houssein, 2020) and in 

LSTM as reported in (Fayek, 2017). 

In Tables 1 to 3, the comparative performance of NeuroAMi and NARXnet are presented in terms of the Mean 

Absolute Percentage Error (MAPE) which is a better performance metric than the Root Mean Squared Error 

(RMSE) or other statistical metrics for continual learning AI systems (Cui et al., 2016). Also, a comparison with 

a variant of the Long Short-Term Memory (LSTM) with progressive (continual) learning feature proposed in 

(Fayek, 2017) is equally reported in Tables 1 to 3. 

 

 

Table.1. Comparative results using real-time XRP trading data (40% level); training data in curly brackets. 

Trial number NeuroAMI MAPE{40%} NARXnetMAPE{40%} LSTMMAPE{40%} 

1 0.2422 0.8871 1.9444 

2 0.2422 0.4516 1.9365 

3 0.2422 0.4032 2.0311 

4 0.2422 0.7016 1.9281 

5 0.2422 0.8871 1.8937 

Mean: 0.2422 0.6661 1.9468 

 

 

Table.2. Comparative results using real-time XRP trading data (60% level); training data in curly brackets. 

Trial number NeuroAMI MAPE{60%} NARXnetMAPE{60%} LSTMMAPE{60%} 

1 0.2344 0.7952 1.7384 

2 0.2344 0.7952 1.8346 

3 0.2344 0.6988 1.9067 

4 0.2344 0.5783 1.6015 

5 0.2344 0.6145 1.8358 

Mean: 0.2344 0.6964 1.7834 
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Table.3. Comparative results using real-time XRP trading data (80% level); training data in curly brackets. 

Trial number NeuroAMI MAPE{80%} NARXnetMAPE{80%} LSTMMAPE{80%} 

1 0.4569 0.9091 1.9076 

2 0.4569 0.9091 2.0030 

3 0.4569 0.9091 2.0293 

4 0.4569 0.7273 1.9787 

5 0.4569 0.4545 2.3386 

Mean: 0.4569 0.7818 2.0514 

 

 

The results in Tables 1 to 3 shows that the NeuroAMI MAPE is consistent across all the trials which is also the 

case for the different percentage training data inputs as it gave similar MAPE estimates; on the other hand, the 

NARXnet and LSTM techniques exhibited stochasticity in their reported MAPE estimates.  

The results also clearly shows that NeuroAMI outperformed the NARXnet and LSTM techniques at the 40%, 60% 

and 80% levels (see mean values). In particular, it can be seen that on average, the proposed NeuroAMI is about 

2 times better than the NARXnet technique. 

 

 

5. Conclusions and Future Work 

This research has proposed a web-based AI tool that can support trading in financial markets such as the 

Cryptocurrency Exchange (CRYPTEX) markets. The new system (NeuroAMI) uses unconventional neural 

techniques that draw inspiration from intelligent processing in auditory cortex. The proposed NeuroAMI system 

has been applied to real-time data obtained from a CRYPTEX market. 

The predictive real-time functionality of the proposed NeuroAMI system was deployed and tested on the LUNO 

financial exchange which represents a CRYPTEX market.  

The results of simulation experiments based on the Mean Absolute Percentage Error (MAPE) evaluation metric 

and using the NeuroAMI technique with real-time data are compared with two existing neural models - the 

NARXnet and progressive LSTM. The results showed that the proposed new system is better than the existing 

ones with respect to progressive MAPE performance, and consistency in results. 

Hence, the NeuroAMI technique is highly recommended as an alternative and more bio-inspired artificial neural 

strategy for CRYPTEX markets. 

In future, attempts at enhancing the NeuroAMI system to improve MAPE performance will be investigated by 

employing dynamic optimization strategies. Also, detailed studies on the NeuroAMI operating parameters will be 

equally investigated. 
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