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 Forest fires have important ecological, social and economic consequences causing loss of life 
and property. In order to prevent these consequences, it is very important to intervene in 
active fires in a timely manner and to determine the extent of burnt areas as soon as possible. 
In such studies, remote sensing methods provide great benefits in terms of speed and cost. In 
recent years, various methods have been developed to segment active fires and burnt areas 
with satellite images. Deep learning methods successfully perform segmentation processes in 
many areas such as disease detection in the field of health, crop type determination in the field 
of agriculture, land use and building detection in the field of urbanization. In this study, a 
method has been developed that automatically detects both active fires and burned areas that 
need to be re-enacted in terms of location and area size by using the same Sentinel 2 scene in 
a single time using deep learning methods.  In particular, a new training and validation data 
set was created to train the U-Net+InceptionResNetV2 (CNN) model. By combining the 
powerful features of U-Net with InceptionResNet V2, a convolutional neural network trained 
over more than one million images on the ImageNet very base, we aim to examine its 
capabilities in burned area and active fire detection. The model applied on the test data has 
been shown to give successful results with an overall accuracy of 0.97 and an IoU (Intersection 
over union) value of 0.88 in the detection of burnt areas, and an overall accuracy of 0.99 and 
an IoU value of 0.82 in the detection of active fires. Finally, when the test images that were not 
used in the training dataset were evaluated with the trained model, it was revealed that the 
results were quite consistent in the detection of active fires and burnt areas and their 
geographical locations. 
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1. Introduction  
 

Forests cover one third of the world's terrestrial 
areas. They are of vital importance for all living things 
due to factors such as ensuring natural balance, 
sustainability of ecosystem activities, regulation of water 
resources and nutrient cycling (1, 2, 3). In addition, 
forests are one of the most important assets for our 
world in terms of biodiversity and climate, carbon 
storage functions against the greenhouse gas effect, and 
their role in creating a barrier against flood and erosion 
hazards (2, 4). Forest fires that destroy these unique 
assets lead to the decline of forest stands, impair forest 
health and biodiversity, and emit aerosols and other 
greenhouse gases that have impacts on the global carbon 
content (3). 

The most important reason for the easy onset and 
rapid spread of forest fires can be shown as global 
climate change and the resulting global warming. 
Especially in the last century, greenhouse gases emitted 
during activities such as agriculture, industry, animal 
husbandry and logistics have been the main cause of 
climate change. The Mediterranean climate, which is hot 
and dry in summer, increases the risk of fire and causes 
fires to occur in large areas and for a long time (1, 2). In 
recent years, the world has been exposed to many forest 
fire disasters caused by factors such as negligence, 
accident and intention (1). Türkiye is covered with 
approximately 23 million hectares of forest area. While 
the total number of fires of 500 hectares or more, which 
are considered as large fires in Türkiye, is 25 in the last 
ten years, Türkiye has been exposed to 16 large fires only 
in 2021. Factors such as negligence, accident and 
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intention cause forest fires. The Intergovernmental Panel 
on Climate Change (IPCC) has revealed that the global 
temperature, which has increased by 1.2 C⁰ since the pre-
industrial period, has caused an increasing number of 
droughts and forest fires (1, 3). Forest fires, which are a 
critical and global event, are exacerbated by climate 
change and cause significant economic and 
environmental damage annually (4). 

It is crucial to obtain information on the location, 
extent and frequency of fire events in order to coordinate 
emergency responses on the ground, identify economic 
and ecological losses, and assess the recovery process. 
Compared to terrestrial methods, remote sensing data 
are highly advantageous in terms of time and cost (2, 3, 
4). Recently, due to the reasons mentioned above, forest 
fires have become one of the topics of great interest in the 
scientific world. 

Optical sensors are widely preferred for analyzing 
active fires and burnt areas. This is because burning 
biomass must have clear effects to be detected. In 
contrast, radar sensors are less favoured than optical 
imagery in such studies due to the opposite effects of 
radar measurements on the backscattering coefficient 
during the burning of biomass (3). However, there are 
also some common problems with optical imagery when 
identifying burned areas. First of all, there is the problem 
of atmospheric opacity. The presence of fire smoke and 
clouds prevents the observation of burned areas, and 
even cloud shadows can cause false detections (5). In 
addition, sensor characteristics are also an important 
detail in the detection of fires. It has been observed that 
low-resolution sensors are insufficient especially in the 
detection of small and fragmented burnt areas (6). On the 
other hand, if burnt areas do not cover a complete pixel 
area, these areas may co-locate spectrally and spatially 
with different land plant species (7). High resolution 
sensors reduce this problem considerably. In other 
words, the general problem when working with coarse 
resolution data is that small and fragmented active fires 
and small and fragmented burnt areas caused by fires 
cannot be detected. Therefore, this situation negatively 
affects the segmentation results (3, 4). For this reason, 
products have been developed for the use of higher 
resolution images. Sentinel 2 optical satellite imagery, 
which has been freely available since 2015, represents a 
good balance between temporal and spatial resolution. 
The images have a temporal resolution of five days and a 
spatial resolution ranging from 10 m to 60 m (3). In 
addition, Sentinel 2 satellite imagery is widely used in 
studies on mapping burned areas and determining active 
fires in the literature (3, 4, 8, 9, 10). 

Many studies have been carried out in the literature 
on the detection of active forest fires and mapping of 
burnt areas. The current and important ones of these 
studies are taken into consideration and analyzed. 

Kavzoğlu et al. (11) aimed to analyze the forest fires 
that occurred in Manavgat, Marmaris and Bodrum 
districts in July and August 2021 using remote sensing 
techniques and multi-temporal satellite images and to 
determine the boundaries of the damaged areas. Using 
Sentinel 2 satellite imagery before, during and after the 
fire, burn severity difference maps were produced and 

Normalized Difference Vegetation Index (NDVI) was 
calculated to evaluate the burn severity levels both 
visually and metrically during and after the fire periods, 
The performance of spectral indices such as Middle 
Infrared Burn Index (MIRBI), Burned Area Index (BAI), 
Normalized Burn Ratio (NBR), Char Soil Index (CSI) in 
separating burned areas from unburned areas was 
evaluated. 

Musaoğlu et al. (12) emphasized the importance of 
accurate information production and up-to-date 
information in forest fire preparedness. In this context, 
the importance of GIS together with remote sensing data 
in determining fire vulnerability and risk analysis with 
up-to-date data was mentioned. 

De Almeida Pereira et al. (13) studied how different 
convolutional neural network architectures can be used 
in active fire detection studies with Landsat 8 satellite 
images and compared the performance of the models 
trained on automatically segmented image patches with 
the original algorithm. 

Seydi et al. (14) detected fires with the help of 
Landsat 8 satellite images. After applying some pre-
processing steps such as radiometric correction and 
orthorectification to Landsat 8 satellite images, 
atmospheric correction was performed with the Fast 
Line of Sight Atmospheric Analysis of Hypercubes 
(FLAASH) module. The Fire-Net Architecture created in 
this study is compared with other common machine 
learning algorithms and its performance is evaluated. 

In the study by Boothman and Cardille (15), low 
spatial, temporal and spectral resolution satellite images 
obtained from Landsat Multispectral Scanner (MSS) 
platform before 1980 were trained on U-Net architecture 
using deep learning methods and burnt area analysis was 
performed. 

Khryashchev and Larionav (16), presented a 
convolutional neural network for automatic burnt area 
detection on high-resolution aerial images. Satellite 
images with different resolutions were also used to train 
and test this neural network. In the study, the images 
were analysed with the U-ResNet34 model, which was 
created by combining ResNet34 and U-Net neural 
networks as encoders. 

In the study by Knopp et al. (3), segmentation of 
burnt areas was performed as a result of training the 
dataset created using NIR and SWIR bands of Sentinel 2 
satellite images using U-Net architecture within the deep 
learning framework.  

In the study by Zhang et al. (4), data collection and 
pre-processing, deep learning-based active fire detection 
and final product creation processes were performed 
using SWIR, NIR and Red bands of Sentinel 2 satellite 
images. In the study, the performances of DeepLabV3, 
HRNetV2 and DCPA+HRNetV2 models were evaluated. 

Atasever and Tercan (17) used the Stacked 
Autocoders method based on deep learning for mapping 
burned forest areas from Sentinel-2 satellite images. This 
unsupervised learning method was combined with 
frequently used supervised learning algorithms (k-
Nearest Neighbors, Subspace k-NN, Support Vector 
Machines, Random Forest, Bagged Decision Tree, Naive 
Bayes and Linear Discriminant Analysis) in two different 
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burned forest regions. both qualitatively and 
quantitatively. The study aims to provide an objective 
assessment by selecting regions with different structural 
characteristics. For the accuracy assessment, manually 
digitized burned areas from Sentinel-2 images were 
used. Different classification performance and quality 
metrics (Overall Accuracy, Mean Squared Error, 
Correlation Coefficient, Structural Similarity Index 
Measure, Peak Signal-to-Noise Ratio, Universal Image 
Quality Index and KAPPA metrics) were used for 
comparison. Furthermore, the consistency of the Stacked 
Autocoders method is analyzed with box plots. The 
results show that the Stacked Autocoders method has the 
highest accuracy values in both quantitative and 
qualitative analysis. 

Fusioka et al. (18) addressed active fire 
segmentation in satellite imagery, a remote sensing task 
that is critical for planning, decision making and policy 
development. Although robust algorithms have been 
developed for this purpose for some satellites such as 
MODIS and Landsat-8, there is still a lack of an effective 
solution for important satellites such as Sentinel-2. To fill 
this gap, researchers have attempted to train 
convolutional and transformer-based deep learning 
architectures (U-Net, DeepLabV3+ and SegFormer) for 
active fire segmentation using transfer learning. They 
pre-trained their model with Landsat-8 images and 
automatically labeled samples and then fine-tuned it on 
Sentinel-2 images. Experimental results show that the 
proposed method achieves F1 scores of up to 88.4% on 
Sentinel-2 data, outperforming the three threshold-
based algorithms by at least 19%. 

Classification algorithms for forest fire 
segmentation can be divided into rule-based and 
machine learning approaches. Rule-based approaches 
detect spectral changes in the NIR and SWIR bands of 
Sentinel satellite imagery relative to the surroundings of 
burned areas and define thresholds for spectral bands or 
spectral indices (3). Similarly, active fires are detected by 
filtering high-value pixels in the B12 and B11 bands of 
Sentinel satellite images and low-value pixels in the B4 
band (4). The indices commonly used in the literature for 
burned area segmentation are the Normalized Burn 
Ratio Index (NBR) (19), The Middle Infrared Burn Index 
(MIRBI) (20) and the Modified Burned Area İndex 
(BAIM) (21). In general, in studies conducted without 
using machine learning and deep learning algorithms, 
not only post-fire images but also pre-fire images are 
needed. The working logic of this is to calculate spectral 
indices for the pre-event and post-event images and 
detect changes in pixels. The disadvantage of this is that 
the use of inadequate pre-event images exposed to cloud 
and glare effects may lead to misclassification. Unlike 
rule-based approaches, in machine learning approaches, 
active fires and burnt areas are learnt from a set of 
labelled data. Examples of Machine Learning algorithms 
are Support Vector Machines (SVM) (22) and Random 
Forest (RF) (23, 24). 

Another machine learning field frequently preferred 
in remote sensing is convolutional neural networks 
(CNN), which we call deep learning. CNN connects only 
neurons within a receptive field (neighborhood), not all 

neurons of consecutive layers, and reduces the 
computational time required by allowing contextual 
information to be integrated. Furthermore, the deep 
layer architecture enables the network to map any non-
linear function and generalize the learned features. Here, 
the multiple layers in the network are the reason why 
CNNs are often referred to as deep learning architectures 
(3). CNNs can be used in many sensitive studies such as 
the detection of diseases in the field of health (25, 26), 
buildings (27), clouds (28), slums (29), water (30), land 
use (31), crop types (32) and human privacy (33). On the 
other hand, machine learning algorithms such as SVM 
and RF require extensive input data and need auxiliary 
data. On the other hand, deep learning algorithms in the 
form of CNNs can perform segmentation by generalizing 
features through labelled data without the need for any 
auxiliary data. For this reason, deep learning-based CNN 
architectures have been very promising in studies such 
as active fire detection and burned area mapping. 

Compared to Landsat satellite imagery, which is 
frequently used in studies on forest fires, Sentinel 2 
satellite imagery has better temporal resolution. 
Therefore, the possibility of obtaining cloud-free data at 
more frequent visit intervals increases even more. The 
biggest challenge in building a neural network model for 
active fire and burned area detection is the availability of 
training data containing spatial information. In order to 
increase the impact of training data on the performance 
of the network, it is necessary to determine the optimal 
band combinations for active forest fires and burned area 
detection separately (3,4). 

Considering the above-mentioned studies, it is 
extremely important to introduce a method that 
performs data acquisition, data pre-processing, burnt 
area and active fire segmentation model, current location 
information of active fires and burnt areas, and 
calculation of active fire and burnt area sizes fully 
automatically in emergency response to forest fires and 
taking necessary measures as well as rehabilitation of 
burnt areas.  Within the scope of this study, a software 
has been developed to automatically detect actively 
burning, burned and unburned areas using different 
band combinations of the same image by training 
Sentinel 2 satellite images, which are freely available for 
free use, with U-Net+Inception ResNetV2 deep learning 
architecture that can use the powerful features of U-Net 
and InceptionResNet V2 models trained with more than 
a million data, and to automatically perform geographical 
and metric analysis with Python programming language. 
Thus, with this study, if the date and location information 
of the image obtained from Sentinel 2 satellite on any 
date is defined to the software, active fire areas and burnt 
areas can be determined automatically. 

 
2. Material and Method 

 
2.1. Data 
 

The most important feature that distinguishes deep 
learning algorithms from machine learning is that they 
require hardware with very high computational power in 
relation to their complex structure and large data size 
(34).  In relation to this, in deep learning-based image 
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processing studies, a large number of labelled data is 
required while training the model. 

In active fire area segmentation, pixels with active 
fire and pixels without active fire are manually labeled, 
similarly in burned area segmentation, burned pixels and 
unburned pixels are manually labeled and the data set is 
prepared. In this study, Sentinel 2 imagery was preferred 
as it is considered to be more useful than other free 
satellite imagery in terms of spatial and temporal 
resolution. Sentinel 2 satellite imagery covers 13 spectral 
bands, each with a spatial resolution between 10 and 60 
m (Table 1). 

A data search was conducted by considering fires in 
different locations around the world, such as Algeria, 
different states of the United States and Türkiye. A new 
dataset was compiled for training, validation and testing 
by considering images with appropriate features. In this 
direction, an atmospheric correction code was written in 
Python programming language using the Earth Engine 
library provided by Google using the metadata in the 
satellite images to use the images of the fire dates 
observed by the Sentinel 2 satellite. Then, the dates and 
locations from which the data were to be obtained were 
defined in the software. A buffer zone was created 

around 58 km of the defined locations and all Sentinel 2 
scenes for that date within the buffer zone were 
automatically determined by the software. SWIR1, 
SWIR2 and Red band combinations (Figure 1.b) were 
determined for the detection of active fires and SWIR2, 
NIR and Blue band combinations (Figure 1.a) were 
determined for burnt area detection. In Sentinel 2 
images, the burned area causes a strong decrease in the 
near infrared (NIR) band (B8) and the resulting drought 
causes a moderate increase in the Short-Wave Infrared 
(SWIR) band (B12) (3, 6). Similarly, active fire detection 
using Sentinel 2 data can be performed by filtering out 
high-value pixels in the SWIR bands (B12 and B11) and 
low-value pixels in the B4 band (4). The bands 
recommended in the literature were also visually 
analyzed and it was concluded that their use was 
sufficient. All selected bands were resampled to 20 m 
spatial resolution and fully automatic downloading was 
completed. Labelled masks were generated from the 
downloaded images. The images and masks were divided 
into 256x256 image patches using Python programming 
language in order to make it easier for the artificial 
intelligence to learn and to lighten the computational 
load. 

 
Table 1. Spectral band characteristics of the Sentinel 2 satellite (adapted from 3) 

Band Description Central Wavelength [nm] Bandwidth [nm] Spatial resolution [m] 

B1 Aerosol 443 20 60 
B2 Blue 490 65 10 
B3 Green 560 35 10 
B4 Red 665 30 10 
B5 Vegetation edge 705 15 20 
B6 Vegetation edge 740 15 20 
B7 Vegetation edge 783 220 20 
B8 NIR 842 115 10 
B8a Narrow NIR 865 20 20 
B9 Water vapor 945 20 60 
B10 Cirrus 1380 30 60 
B11 SWIR1 1610 90 20 
B12 SWIR2 2190 180 20 

 
A total of 988 image patches for active fires and 

2304 image patches for burnt areas were created by 
visual analysis of the appropriate data. The data set was 
split into approximately 80% training, 10% validation 
and 10% test sets. In order to increase the analysis 
capabilities against different images, each training tile 
was increased approximately three times by applying a 
series of random shifts, scales, rotations, reflections, etc. 
from data augmentation techniques on the training data.   
Data augmentation, rotation in the factor range [-30, 30], 
shift in both width and height in the factor range [-0.3, 
0.3], shear transformation in the factor range [-0.5, 0.5], 
random zoom in the factor range [-0.3, 0.3], and both 
vertical and horizontal mirroring were performed by 
testing their suitability after visual analysis. Border 
reflection and nearest neighbour interpolation were 
used to bring the enlarged tiles back to the required 
256x256 pixel segment size. The purpose of applying 
data augmentation in the study is to improve training by 
artificially creating more balanced classes and examples 
with a wider variety in the training dataset. In other 
words, the training data must be of sufficient variety and 

size; both requirements can be met with data 
augmentation techniques. Studies (32, 34, 35, 36, 37) 
have shown that the application of data augmentation 
methods improves the accuracy of the results by 4-8% 
(39). A dataset consisting of 2368 patches for active fires 
and 5520 patches for burnt area was generated by 
applying the data augmentation processes mentioned 
above. 
 

2.2 Realisation of fully automated data processing 
 

Fully automatic active fire and burnt area analysis is 
shown in the workflow diagram in Figure 2. 

The process chain (Figure 2) is implemented in 
Python using the Keras library within the deep learning 
framework. Keras is a deep learning library running on 
Tensorflow (42). 

The main components realized within the scope of 
this study are described in detail below. In order to start 
the fully automated processing chain in the software 
developed using the Python programming language, the 
location to be studied and a time when the Sentinel 2 
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satellite is receiving data must be defined. Level L1C data 
are downloaded with radiometric calibration settings 
and orthorectification, but not atmospherically corrected 
(3). The data are downloaded through the ESA 
Copernicus Open Access Centre (43) using the developed 
programming interface (API). Before downloading the 
data, atmospheric corrections are made and all bands of 
the two band combinations to be used (BC1: B12, B11, B4 
and BC2: B12, B8, B2) are resampled to 20 m spatial 
resolution. The downloaded BC1 band combinations are 
used to produce labels for active fire areas and the BC2 
combinations are used to produce labels for burnt areas. 

Downloaded images and generated masks are 
divided into 256x256 patches for training. All these data 
are trained in a CNN architecture with the software 
created and a product that detects active fire and burnt 
areas is created.  

When any date and location information from 
Sentinel 2 satellite image acquisition is defined to the 
software, burnt area and active fire areas can be detected 
automatically. In addition to obtaining the location 
information of active fire areas and burnt areas from the 
result image generated by the software, the dimensions 
of the relevant areas can also be calculated automatically. 

 

 
Figure 1. a) BC2: Image with B12, B8 and B2 band combination, b) BC1: Image with B12, B11 and B4 band combination 
 
2.3 Semantic segmentation of fire areas with 
convolutional neural network 
 

The most important part of this study is the 
development of a deep learning model based on CNN for 
segmentation. A neural network is a system of 
interconnected neurons used to model a complex 
function using many labelled data. A defined set of 
weights serves to complete the function. The neurons are 
organized as multiple cascaded layers allowing features 
to be learned in a hierarchical manner. During training, 
input tiles are propagated through the network and a loss 
function is calculated for quality assessment. The 
gradients of the loss functions are then propagated back 
through the network and the weights are adjusted 
accordingly to minimize the loss (3). 

A critical point affecting the performance of the 
network is the network architecture. In this study, the U-
Net model (Figure 3), which has been widely used in 
recent years and has proven its success, is preferred. The 
U-Net architecture was originally designed for 
biomedical image segmentation, but it has been shown to 
give good results in segmentation studies with satellite 
images such as cloud/cloud shadow and water 
segmentation (3). The U-Net architecture takes its name 
from its architecture similar to the letter U as shown in 
Figure 3.   

U-Net is an architecture consisting of encoder and 
decoder convolutional neural network layers. The 
convolutional layers are trained iteratively and feature 
extraction is performed using the filters in these layers to 
learn features. The working principle of the U-Net 
architecture is to encode the image passing through the 
CNN in the encoder and then decode it in the decoder to 
obtain the segmentation mask. The attributes of the 
segmentation mask depend on the learnt weighting 
filters, the encoder and decoder networks, and the 
hopping and merging links.  

In the encoder part, the input data is passed through 
five convolutional blocks where features are extracted at 
different scales. Each convolution block consists of two 
3x3 convolutions with ReLU activation. Each one follows 
a batch normalization of the activations of the previous 
layer and the maximum pooling process ends with step 
2, which samples the feature maps. The size of the feature 
maps is reduced by a factor 4 after each convolution 
block, while the number of feature channels is doubled. 
In the decoder part, the feature maps are also upsampled 
to the original image size by passing them through five 
blocks. Each of these blocks consists of a 2x2 transposed 
convolution which halves the number of feature 
channels, a concatenation with the corresponding 
feature map from the encoder part, and two 3x3 
convolutions with ReLU activation, each followed by 
batch normalization. The last layer is a 1x1 convolution 
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with sigmoid activation to calculate the burn-in 
probability of each pixel (Figure 3).    

The backbone is an architectural element that 
defines how these layers are organized in the encoder 
network and determines how the decoder network 
should be constructed. The backbones used are generally 
CNNs such as Inception, ResNet, VGG, EfficientNet, etc., 
which contain their own encoder and down-sampling. In 
this study, U-Net+InceptionResNetV2 backbone model is 
used for the segmentation algorithm. 

InceptionResNetV2 (Figure 4) is a convolutional 
neural network trained on over one million images from 
the ImageNet database. The network is 164 layers deep 
and has categorised the images into 1000 object 
categories such as mouse, keyboard, pencil and many 
animals. As a result, the InceptionresNetV2 network is 
trained on rich feature representations for a wide variety 
of images. The network has an input image size of 
299x299 and the output is a list of estimated class 
probabilities. It is formulated based on a combination of 
Inception structure and residual connectivity. In the 
InceptionResNet block, multidimensional convolutional 
filters are combined with residual links. The use of 
residual links eliminates the distortion problem caused 
by deep structures and also reduces the training time 
(44). The network architecture of InceptionResNetV2 is 
shown in Figure 4. 

The U-Net+InceptionResNetV2 network was also 
trained on data sets such as shift scale and rotation. Thus, 
different geometric transformations can be used to 
process spatially resolved data. 

In order to optimise the model, the loss function dice 
loss was used. Dice loss is a loss function used especially 
in processes such as image segmentation.  This loss 
function is used to evaluate the performance of the model 
by measuring the similarity between the predicted 
segmentation map and the actual segmentation map 
(Equation 1). 

     

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 −
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                                                     (1)                                                                         

Where X represents the estimated mask and Y 
represents the ground truth. 

The learning rate was 0.0001 and the Adam 
optimization algorithm was used. The Adam 
optimization algorithm is advantageous for efficient 
Stochastic optimization requiring only first order 
gradients with low memory requirements. This 
optimization method calculates individual adaptive 
learning rates for different parameters from estimates of 

the first and second moments of the gradients. The 
advantages of the Adam optimizer are that the 
magnitudes of the parameter updates are invariant in 
rescaling the gradient, the step sizes are approximately 
bounded by the step size hyperparameter, it does not 
require a stationary objective, and it works with sparse 
gradients (45). Validation data were also passed through 
the network during training, loss was calculated and 
monitored. At the end of the training process, the model 
associated with the lowest validation loss was saved. The 
Colab platform provided by Google was used in the model 
training. The workstation made available includes 
Intel(R) Xeon(R) CPU @ 2.00GHz, 8 cores, 64 GB RAM and 
Tesla T4 GPU unit. 

 

 
Figure 2. Workflow diagram 
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Figure 3. U-Net architecture used in the study 
 

 
Figure 4. Basic network architecture of InceptionResnetV2 
 
2.4. Model evaluation 
 

For model evaluation, data were transmitted over the 
network and analysed with evaluation metrics such as 
overall accuracy, IoU, Dice similarity, precision, recall 
and F1-score. Confusion matrix table shows the actual 
and predicted values in a classification problem (Figure 
5).  

True positive (TP) and True negative (TN) are the 
areas where the model is correctly predicted, while False 
positive (FP) and False negative (FN) are the areas where 
the model is incorrectly predicted. Overall Accuracy is 
defined as the number of correctly classified pixels out of 
the total number of pixels (Equation 2). 

 

𝑂𝐴 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                            (2)   

   

   Since the overall accuracy is mainly influenced by the 

amount of unburned pixels due to the uneven 

distribution of classes, we calculated precision (Equation 

3), which indicates how many of the values shown as 

positive are actually positive, and recall (Equation 4), 

which indicates how many of the pixels that we should 

have predicted as positive we were able to predict as 

positive.  

The harmonic mean of Precision and Recall values is used 

to calculate the F1-score. The reason for using the 

harmonic mean instead of a simple mean is that we 

should not ignore the extreme cases (Equation 5). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                              (3)    

                                                                                                                   

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                   (4)      

                                                                                                                               

𝐹
1 = 2∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

                                                                (5)   

  

    In addition, IoU and Dice similarity coefficient metrics, 

also known as jaccard index, which are frequently used 

by artificial intelligence experts to measure the 

performance of segmentation models, were also 

calculated. IoU is defined as the similarity between 

ground truth and model prediction (Equation 6).                   

𝐼𝑜𝑈 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃+𝐹𝑁)
                                                                  (6)  

 

Similarly, another very reliable metric for analysing 

segmentation results is the Dice similarity coefficient 

(Equation 7). 
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𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                      (7) 

 

  In this study, the model was tested with data that it had 

not learnt before and was not entered into the training 

and its performance was evaluated with these metrics. 

 

3. Results  
 
The performance of the deep learning-based 

segmentation model (U-Net+InceptionResNetV2) was 
evaluated in the active fire detection and burnt area 
detection task. The related accuracy measurements were 
calculated on the test data set that was not learnt by the 
model during the training phase. 

When training the CNN model, U-Net, an 
architecture consisting of encoder and decoder CNN 
layers, was used. Backbone is an architectural element 
that defines how these layers are organised in the 
encoder network and determines how the decoder 
network should be constructed. In this study, 
InceptionResNetV2 backbone, a CNN trained on more 
than one million images in the ImageNet database, is 
used. In the InceptionResNet block, multidimensional 
convolutional filters are combined with residual 
connections. The use of residual connections eliminates 
the distortion problem caused by deep structures and 
also reduces the training time (44). 

In active fire detection using Sentinel 2 satellite 
images, high value pixels in SWIR bands (B12 and B11) 
and low value pixels in B4 band are filtered. B12, B11 and 
B4 bands are used in active fire detection. In burned area 
detection, the burned area in Sentinel 2 images causes a 
strong decrease in the near infrared (NIR) band (B8) and 
the resulting drought causes a moderate increase in the 
SWIR band (B12). Therefore, B12, B8 and B2 bands were 
used for burnt area detection. The final model was 
trained on the augmented data set using Red band and 
SWIR bands. In this study, the models were trained for an 
average of 4 hours each using Intel (R) Xeon (R) CPU @ 
2.00 GHz, 8 cores, 64 Gb RAM and Tesla T4 GPU unit in 
the Colabratory environment provided by Google. 

In each training epoch, training and validation data 
are passed over the network. In addition, IoU and loss 
values are calculated for both active fires (Figure 6) and 
burnt areas (Figure 7) in each epoch. IoU value, which is 
one of the most frequently used metrics in semantic 
segmentation, is calculated by dividing the overlap area 
between the predicted segmentation and the ground 
truth by the merging area between the predicted 
segmentation and the ground truth. This metric ranges 
from 0 to 1 (0 to 100 per cent), with 0 indicating no 
change and 1 indicating a perfectly overlapping 
segmentation. In the loss function, the system checks the 
error of its predictions and continuously tries to 
minimise the error. For this purpose, it calculates the 
error and tries to reduce it by means of an optimizer. 

The evaluation results for the test patches are 
summarised in Table 2. In active fire detection with the U 
Net+InceptionResNetV2 model, a recall of 0.90, F1-score 
of 0.89, IoU of 0.82 and Dice score of 0.89 were obtained 
for 99 test images. In burnt area detection, a recall of 

0.93, F1-score of 0.93, IoU of 0.88 and Dice score of 0.93 
were obtained for 230 test images. 

The results of three test patches from different 
regions are sampled (Figure 8). For active fires, the false 
color combination of the spectral bands B12, B11 and B4 
is displayed, as well as the corresponding reference mask 
and the U-Net+InceptionResnetV2 estimate. Figure 9 
shows an example of the results of four test patches from 
different regions for burnt areas. For burnt areas, the 
false colour combination of the B12, B8 and B2 spectral 
bands as well as the corresponding reference mask and 
the U-Net+InceptionResnetV2 estimate are displayed. 

In order to test the study, two different regions with 
fire history given in Table 3 were analysed fully 
automatically. 

The evaluation of the proposed automatic fire 
detection framework has been carried out with respect 
to detection accuracy and processing efficiency, visual 
quality control and location accuracy have been 
confirmed. 

It was found that the fully automatic chain, controlled 
by optical satellite images obtained at any fire time by 
entering location and date information, reliably found 
small and fragmented burnt areas and active fires (Figure 
10). In addition, the location information and area 
dimensions of the burnt areas of active fires are very 
important in terms of rapid intervention and subsequent 
revitalisation of the area. With this study, the mentioned 
information can be easily obtained automatically from 
the satellite image.  Location and area information were 
determined separately for all active fires and burnt areas 
in the tested images. Table 4 shows an example of the 
location and area size data automatically determined by 
the software for both active fires and burnt areas.  

 
4. Discussion 

 
The selection of appropriate training data is the most 

important key point affecting the performance of the 
deep learning model. Considering this critical feature, not 
only patches containing both classes (burnt and clean 
area or active fire area and clean area), but also patches 
where one class is completely covered were used in the 
training of the models. Satellite images of many fires 
occurring in the world, which were pre-analysed visually, 
were used in the model training to facilitate the learning 
of artificial intelligence in the training phase. 

Considering the IoU values (Table 2), which are 
evaluated in terms of the reliability of the model in 
segmentation studies in general, it is seen that the studies 
are quite successful, even small and fragmented active 
fires and burnt areas can be identified with high 
accuracy.  Figure 6 and 7, which show the IoU and Loss 
values for the training and validation sets, it is seen that 
there are no problems such as overfitting and 
underfitting, and the graph oscillations are very good.  

Test images taken from different parts of the world 
were analyzed with the relevant band combinations and 
reference masks were created. When these reference 
masks were compared with the model predictions, the 
success of the model was once again demonstrated 
(Figure 8 and 9). 
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In the study, when the active fire detection model and 
the burnt area detection model were evaluated within 
themselves, it was observed that the burnt areas had 
higher IoU values. This result is attributed to the fact that 
active fires are smaller and more fragmented and 
therefore have more background (i.e. clean area), 
whereas burnt areas are generally larger and more 
holistic. It was also observed that when testing the 
automated processing chain, agricultural areas and small 
volcanic rocks were rarely mixed with burnt areas. 

However, in future studies, the success of the models 
can be improved by using more and various training data 
in both active fire detection and burnt area detection. 

In spite of a few shortcomings mentioned above, 
which could be improved in the future, the proposed fully 
automated processing chain provides a product that can 
successfully identify active fires and burnt areas with 
high accuracy, in terms of geographical coordinates and 
fire size. 

 

 
Figure 5. Confusion matrix 
 

 
Figure 6. Training history of active fire detection model showing IoU and Loss value for training and validation dataset 
 

 
Figure 7. Training history of the burnt area detection model showing IoU and Loss value for the training and validation 
dataset 
 
Table 2. Evaluation metrics for active fire and burnt area results of trained models 

Detection Overall Accuracy Precision Recall F1- score Dice Score IoU 
Active Fire 0.99 0.87 0.90 0.89 0.89 0.82 
Burned Area 0.97 0.94 0.93 0.93 0.93 0.88 
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Test Area Algeria California USA 

False Color 
(B12, B11, B4) 

   
Reference Mask 

   
Model Prediction 

   
Figure 8. False color composition for spectral bands, reference mask and final model prediction of active fire (B12, B11 
and B4) spectral bands for three different areas 
 

Test Area Algeria 1 California Algeria 2 

False Color  
(B12, B8, B2) 

   
Reference Mask 

   
Model Prediction 

   
Figure 9. Reference mask and final model prediction of burned area (B12, B8 and B2) spectral bands for three different 
areas 
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Table 3. WGS 1984 UTM Zone 32N datum-based location information of optical satellite images used for test data 
 Active Fire Burned Area 
Acquisition Date 2021-08-11 2021-08-12 
Top  4103360 4103440 
Left 396540 497220 
Right 512840 613540 
Bottom 3986980 3986900 

 

 
Figure 10. For the test area specified in Table 3; a) Active fire predict image, b) Burnt area predict image 
 
Table 4. Example of automatically determined active fire and burned area zones and sizes (WGS 1984 UTM Zone 32N) 

 Ymin Ymax Xmin  Xmax Size (m2)  
Active Fire 4061940 4062860 468860 469420 11920 
Burnt Area 4055620 4056360 605360 605820 13290 

5. Conclusion 
 

In this study, a fully automatic processing chain 
based on data collection, pre-processing and deep 
learning that can determine the location and size of 
active fires and burnt areas is presented for instant and 
reliable detection of active fires and rapid and reliable 
detection and rehabilitation of burnt areas. It is trained 
on the U-Net+InceptionResNetV2 model, which allows 
the analysis of active fires using SWIR2, NIR and Red 
bands of Sentinel 2 products and burnt areas using SWIR 
bands and blue band. The segmentation model is based 
on a deep neural network and achieved an overall 
accuracy of 0.99 and IoU of 0.82 for active fires and an 
overall accuracy of 0.97 and IoU of 0.88 for burnt areas. 
In addition, in the analysis performed with test data not 

previously trained by the model, it was found to be very 
successful in finding small and fragmented fires and 
burnt areas.   

Remote sensing satellites will be equipped with 
sensors with increasingly higher spatial and temporal 
resolution, enabling more precise and periodic 
monitoring. It is thought that the automatic processing 
chain presented in this study will be optimized in time 
and will provide great advantages in the rapid detection 
of active fires and in the revitalization of burnt areas.  
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