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 This study addresses the critical challenge of Cyber-attacks detection (CAD) in 

the Internet of Things (IoT) environment, specifically focusing on the 

classification of non-malicious and malicious network traffic. The primary 

objective is to enhance the accuracy and reliability of detection mechanisms 

through the implementation of advanced machine learning models, particularly 

the hybrid CNN-GRU-LSTM model. The study utilizes the SYN DoS dataset 

from the Kitsune Network Attack Dataset to train and evaluate various models, 

including Linear Discriminant Analysis (LDA), Logistic Regression, and the 

CNN-GRU-LSTM model. The methodology includes a comprehensive 

performance analysis of each model, employing metrics such as accuracy, 

precision, recall, and F1-score. The results reveal that both LDA and Logistic 

Regression achieved perfect accuracy (1.00), while the CNN-GRU-LSTM 

model exhibited an accuracy of 0.998. Additionally, the CNN-GRU-LSTM 

model demonstrated a high area under the curve (AUC) value of 0.8559, 

indicating strong discriminatory power. The study further employs SHAP 

(SHapley Additive exPlanations) for model interpretability, allowing for a 

detailed analysis of feature importance and insights into model behavior. In 

conclusion, the hybrid CNN-GRU-LSTM model offers a promising approach for 

effective network attack detection while providing a basis for future 

improvements in real-time applications and the exploration of additional 

datasets.        
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1. Introduction 

In the era of digital transformation, network 

security has become a critical concern for 

organizations worldwide. With the increasing 

reliance on networked systems, the frequency and 

sophistication of cyberattacks have escalated, posing 

significant threats to data integrity, privacy, and 

operational stability [1,2]. Network attacks, 

including Distributed Denial of Service (DDoS) and 
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Man-in-the-Middle (MitM) attacks, can disrupt 

services and compromise sensitive information, 

making it imperative to develop robust methods for 

detecting and classifying these threats effectively [3, 

4]. 

Traditional network attack detection methods, 

often reliant on signature-based detection, struggle to 

keep pace with the evolving nature of cyber threats. 

Attackers continuously develop new methods to 

https://dergipark.org.tr/en/pub/jscai
mailto:yabuzir@qou.edu
https://orcid.org/0009-0007-9597-1510
https://orcid.org/0000-0002-1220-1411


 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence  05 (02): 41-62, 2024 

 

42 
 

bypass signature-based defenses, highlighting the 

limitations of these traditional approaches. False 

positives and negatives further hamper the 

effectiveness of these methods, leading to wasted 

resources and potential security breaches [5] [6] [7]. 

Deep learning (DL), a subfield of artificial 

intelligence, offers a promising solution for network 

attack detection [9]. DL algorithms are effective at 

identifying complex patterns within vast amounts of 

dataset. By examining network traffic data, DL 

models have the ability learn to distinguish between 

normal and malicious network behavior, offering a 

more adaptable and robust approach to network 

attack detection [10] [11] [12]. 

This research explores the potential of deep 

learning (DL) and machine learning (ML) techniques 

for accurately predicting and detecting SYN DoS 

attacks. We hypothesize that deep learning models 

can outperform traditional methods due to their 

superior pattern recognition capabilities [11]. We 

will investigate the effectiveness of two machine 

learning and a deep learning hybrid CNN-GRU-

LSTM model – for identifying SYN DoS attacks 

within the Kitsune SYN DoS dataset 

(https://www.kaggle.com/datasets/ymirsky/network-

attack-dataset-kitsune/data). Our evaluation will 

compare the performance of these machine and deep 

learning model, emphasizing key metrics such as 

accuracy, precision, recall, and F1-score [12] [13]. 

The Problem Question is How can we accurately 

classify and detect various types of network attacks 

using machine and deep learning techniques, and 

what are the most effective models for distinguishing 

between harmful and benign network traffic? 

The motivation behind this research stems from the 

growing need for advanced and efficient solutions to 

enhance network security. Traditional methods of 

network attack detection often struggle with high 

false-positive rates and limited adaptability to new 

attack vectors. Machine learning offers the potential 

to improve detection accuracy and adapt to evolving 

threats by learning from historical data. By exploring 

and comparing various machine learning models, this 

research aims to identify the most effective 

approaches for classifying network attacks, thereby 

contributing to the development of more resilient 

cybersecurity systems. 

The novelty of this study lies in the integration of 

CNN, GRU, and LSTM into a single hybrid model 

that addresses the complexities of network traffic 

data. Previous studies have largely relied on 

individual models, such as CNNs for feature 

extraction or LSTMs for sequence learning, but have 

not explored the synergy between these architectures 

in the context of network attack detection. 

This study makes several key contributions to the 

field of network security and machine learning: 

• Comprehensive Evaluation of Models: The 

study assesses and compares the performance of 

Linear Discriminant Analysis (LDA), Logistic 

Regression, and a hybrid CNN-GRU-LSTM 

modelwithin the framework of network attack 

classification. A comprehensive evaluation of 

this hybrid approach, demonstrating its superior 

accuracy and ability to handle class imbalance 

in detecting both malicious and benign network 

instances. 

• Detailed Analysis of Network Attack Data: By 

using the Kitsune Network Attack Dataset, the 

study provides an in-depth analysis of various 

attack types, including SYN DoS, and 

demonstrates how machine learning models can 

be applied to detect and classify these attacks. 

• Model Interpretability: The use of SHAP 

(SHapley Additive exPlanations) to explain the 

models' predictions provides valuable 

information about the factors influencing the 

classification decisions, enhancing the 

transparency and trustworthiness of the machine 

learning models. 

• The hybrid model that leverages the strengths of 

CNN for spatial feature extraction, GRU for 

short-term temporal dependencies, and LSTM 

for capturing long-term temporal dependencies 

in network traffic. 

• The integration of advanced optimization 

techniques such as dropout regularization and 

early stopping to avoid overfitting and ensure 

model generalization on unseen data. 

This hybrid model provides a novel framework for 

intrusion detection systems, improving both 

accuracy and computational efficiency compared to 

traditional and single-model approaches. 

This study examines the development of machine 

learning for network attack detection. It begins by 

reviewing existing methods and datasets before 

delving into model development using techniques 

like LDA, logistic regression, and hybrid CNN-

GRU-LSTM. Model performance is evaluated using 
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standard metrics, and their effectiveness is analyzed 

using interpretability tools like SHAP. The study 

concludes by discussing the implications of the 

findings for network security and outlining directions 

for future research. 

 

2. Literature Review 

Researchers are increasingly interested in using 

deep learning (DL) to create online network attack 

detection. This is because machine learning (ML) and 

DL techniques have been shown to be effective in 

identifying cyberattacks launched from 

compromised Internet of Things (IoT) devices [14], 

[15]. 

One challenge with traditional ML-based network 

attack detections is that they require a lot of labelled 

data for training. To address this, a new approach 

called Decentralized and Online Federated Learning 

Intrusion Detection (DOF-ID) has been proposed. 

This system allows collaborating devices to share 

information and improve intrusion detection 

performance across the network [16] [17]. 

Another promising technique is Deep Transfer 

Learning (DTL), a type of DL that can be used to 

enhance intrusion detection within industrial control 

systems. DTL allows the system to gain insights from 

data in one domain (such as general network traffic) 

and apply insights to a different domain (such as 

industrial control systems) [18] [19]. This can 

improve detection accuracy and help mitigate threats 

more effectively. Overall, these studies show that 

advanced ML and DL techniques have a lot of 

potential for improving the capabilities of online 

network intrusion detection systems. 

In the paper by Hussain et al. (2023), the authors 

reviewed various intrusion detection models and the 

threats posed to IoT systems by compromised 

devices, emphasizing the use of ML and DL 

techniques as effective defensive measures [15]. 

Mert et al. (2023) proposed the DOF-ID architecture, 

which enhances intrusion detection by allowing IDSs 

to learn from both local and remote data while 

maintaining data privacy, showing significant 

performance improvements on Kitsune and Bot-IoT 

datasets [20]. Kheddar et al. (2023) provided a 

comprehensive review of using deep transfer learning 

(DTL) in industrial control networks for intrusion 

detection, highlighting improvements in detection 

accuracy and the use of multiple datasets and 

evaluation metrics like accuracy and false alarm rate 

[18].  

Wasnik and Chavhan (2023) tested different DL 

algorithms on public malware data. They found these 

models work well, but need frequent updates to stay 

ahead of changing attack patterns. The authors 

propose a specific deep neural network (DNN) that 

can adapt to dynamic network behavior. They 

suggest constantly improving these models and 

linking them to real-time monitoring for proactive 

threat detection [20]. Ogundokun et al. (2023) 

systematically reviewed the application of ML and 

DL algorithms in IDS, analyzing various classifiers, 

datasets, and frameworks used from 2016 to 2021, 

and offering insights into recent advancements and 

challenges [22].  

Krishna et al. (2020) focused on building an IDS 

that can also prevent attacks (DOS, Probe, R2L, 

U2R). They used a Multi-Layer Perceptron (MLP) 

deep learning model on the KDDCup99 dataset and 

achieved high accuracy against different attack types. 

Their system combines detection and prevention, 

proving effective in real-time situations. The authors 

recommend further development of the prevention 

mechanisms and testing the system across diverse 

network environments [23]. 

The study of (Fadel et al., 2022) proposed the 

HDLIDP framework, combining signature-based and 

deep learning techniques to improve DDoS attack 

detection and prevention in SDNs, demonstrating 

significant accuracy improvements through 

experiments on traditional and SDN datasets [24]. 

The research by (Alghamdi, 2022) proposes a 

hybrid intrusion detection model (PO-CFNN) for 

securing Internet of Things (IoT) devices. It uses a 

unique optimization technique and achieves high 

performance on test datasets. The author suggests 

adapting the model for more complex IoT scenarios 

and improving its efficiency [25]. 

The review by (Monani et al., 2023) explores 

different ways to analyze cyber threats using data, 

like predicting denial-of-service attacks. The study 

suggests combining these methods for stronger 

defenses [26]. 

Deep Learning for Network Security: The survey 

of (Auwal, 2022) highlights how deep learning can 

improve network intrusion detection compared to 

traditional methods. It identifies areas for further 

research, like exploring techniques that don't require 
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as much labeled data [27].  

The study of (Hnamte & Hussain, 2023) proposes 

a deep learning model using convolutional neural 

networks to detect and classify network intrusions. It 

shows promising results, but needs testing with more 

diverse data to ensure real-world effectiveness [28]. 

Alabdulatif and Rizvi (2022) addressed the 

improvement of Kitsune Network Intrusion 

Detection (NID) using machine learning techniques. 

They evaluated various tree algorithm variants on 

Kitsune datasets, ultimately recommending the Fine 

Tree algorithm for better performance. The main 

metrics used were effectiveness and efficiency. The 

results indicated that the Fine Tree algorithm 

outperformed other tree variants in terms of 

improving Kitsune NID's accuracy and reliability 

[29]. 

The study by Malliga et al. (2022) examines the 

efficacy of deep learning techniques in identifying 

DoS/DDoS attacks. They concluded that deep 

learning is capabile of managing these evolving 

threats [30]. Sujatha et al. (2023) examined the 

application of deep reinforcement learning (DRL) for 

network intrusion detection [31]. They reported that 

their DQL model achieve high degree and impressive 

accuracy in identifying intrusion.  

Mohammed et al. (2023) in their review on 

machine learning and deep learning stratigies for 

DDoS detection in Software-Defined Networking 

(SDN) frameworks. Their results reveal highlight a 

growing interest in utilizing these techniques, with 

challenges related to datasets [32]. In a similar vein, 

Omarov et al. (2022) explore current techniques for 

detecting network intrusions in Internet of Things 

(IoT) scenarios. They point out the lack of 

computational models and formal justification of 

attacks as key challenges in this area [33]. 

Researchers are exploring various Machine 

Learning (ML) and Deep Learning (DL) techniques 

to improve cyberattack detection. These techniques 

address challenges like data privacy, adaptability, 

and evolving threats. Studies recommend ongoing 

model refinement, using advanced algorithms, and 

testing in real-world scenarios. Overall, these 

advancements in ML and DL are crucial for building 

robust and adaptable cyberattack detection systems to 

combat cyber threats. 

 

 

Table 1 Summary for some researches in applying ML and DL in network attack detection 

Reference Problem ML/DL Techniques Evaluation Metrics Main Results 

Hussain et al. 

(2023) 

IoT-based cyber-

attacks due to device 

proliferation 

ML, DL Not specified Effective control 

against IoT-originated 

attacks 

Mert et al. 

(2023) 

Limited applicability 

of ML-based IDSs 

due to private local 

data 

Federated learning Accuracy, 

computation time 

Improved intrusion 

detection performance 

across nodes 

Kheddar et al. 

(2023) 

Protecting industrial 

control systems from 

various threats 

Deep Transfer 

Learning 

Accuracy, F-score, 

false alarm rate 

Enhanced IDS 

performance with 

scarce labeled data 

Ogundokun et 

al. (2023) 

Lack of 

comprehensive 

studies on ML for 

IDS 

ML, DL algorithms Not specified Insights into 

advancements and 

challenges from 2016-

2021 

Fadel et al. 

(2022) 

DDoS attacks on 

SDN controllers 

Hybrid Deep Learning Classification 

accuracy 

Significant 

improvement in 

detection accuracy 

Alabdulatif 

and Rizvi 

(2022) 

Improving Kitsune 

NID 

Variants of Tree 

algorithms (Simple 

Tree, Medium Tree, 

Coarse Tree, RUS 

Boosted, Bagged Tree) 

Confusion Matrix, 

Speed, Accuracy 

Fine Tree algorithm 

outperformed others 

Malliga, 

Nandhini, 

Kogilavani 

(2022) 

Detecting 

DoS/DDoS attacks 

Deep learning models Various performance 

metrics 

Deep learning models 

have improved 

detection capabilities 

but need further 

enhancement 
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Sujatha et al. 

(2023) 

Network intrusion 

detection 

Deep Q-Learning 

(DQL) 

Accuracy, recall rate, 

precision 

DQL model achieved 

91.4% accuracy, 

outperforming other 

models 

Bahashwan et 

al. (2023) 

Detecting DDoS 

attacks in SDN 

ML, DL, hybrid 

approaches 

Evaluation based on 

Various performance 

metrics (Accuracy) 

and unrealistic 

datasets 

Ensemble, hybrid, and 

single ML-DL 

approaches are most 

used but need 

improvement 

Omarov et al. 

(2022) 

Network intrusion 

detection 

Taxonomy of detection 

technologies 

Evaluation of 

advanced research 

topics 

Highlights need for 

computational models 

and formal attack 

justification 

 

3. Methodology 

In this study, we implemented a systematic and 

robust methodology to address the challenges posed 

by network attack detection using machine learning 

techniques. Our approach involves several key 

stages, from data acquisition and preprocessing to 

model training, evaluation, and interpretability. The 

goal is to develop effective and interpretable models 

that can accurately classify network traffic as benign 

or malicious. Figure 1, presents a conceptual diagram 

illustrating the methodology for network attack 

detection research. The diagram highlights the 

workflow from data acquisition through model 

evaluation and interpretability. 

 

 

Figure 1 A conceptual diagram illustrating the methodology

Data Acquisition: The first step involves sourcing 

the Kitsune Network Attack Dataset, specifically the 

SYN DoS dataset. It provides a rich set of features 

related to various types of network attacks. This 

dataset serves as the foundation for our study, 

offering diverse and representative samples for 

model training and evaluation. 

Data Preprocessing: Once the data is acquired, it 

undergoes extensive preprocessing. This stage 

includes data exploration to understand the structure 

and quality of the dataset, followed by cleaning and 

normalization to prepare the data for model training. 

Outlier detection and handling are also performed to 

ensure the data's integrity and improve model 

performance. 

Feature Engineering: Feature engineering is a 

crucial step where we select and refine the features 

used in model training. This step applies techniques 

such as SHAP (SHapley Additive exPlanations) to 

assess feature significance and comprehend the 

impact of different features on model predictions. 

This step ensures that the models leverage the most 

relevant information for accurate classification. 

Model Training: We then train a variety of 

machine learning models to address the classification 

task. The models include Linear Discriminant 

Analysis (LDA), Logistic Regression, and a hybrid 

CNN-GRU-LSTM model. Each model is trained and 

fine-tuned to optimize its performance in detecting 

network attacks. 

Model Evaluation: The trained models are 

evaluated using several metrics to assess their 
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performance. Metrics such as accuracy, precision, 

recall, and F1-score are calculated to provide a 

comprehensive view of each model's effectiveness. 

Error analysis is also conducted to identify any 

patterns in misclassification and areas for 

improvement. 

Model Interpretability: To ensure that the models 

are not only effective but also interpretable, we use 

SHAP analysis to explain model predictions. This 

step involves visualizing SHAP values to understand 

how different features influence the model's 

decisions, providing transparency and trust in the 

model's outputs. 

The methodology outlined here integrates these 

steps into a coherent process aimed at developing 

robust and interpretable models for network attack 

detection. By systematically addressing each phase 

of the study, we aim to enhance the reliability and 

practical applicability of machine learning solutions 

in network security. 

 

3.1 Dataset and Preprocessing 

3.1.1. Description of the Kitsune Network Attack 

Dataset 

The Kitsune Network Attack Dataset is a 

comprehensive dataset designed to facilitate the 

analysis and classification of various network 

attacks. It includes network traffic data captured from 

a simulated environment where different types of 

network attacks were introduced. The dataset is 

hosted on Kaggle and provides CSV files with 

detailed information about network traffic, including 

both benign and malicious activities. 

The dataset encompasses a wide range of attack 

types, such as: 

• ARP MitM (Address Resolution Protocol Man-

in-the-Middle) 

• SYN DoS (SYN Denial of Service) 

• Active Wiretap 

Each type of attack is represented by specific CSV 

files containing attributes related to the network 

traffic during the attack. Key attributes typically 

include time-related features, packet counts, and 

other metrics essential for understanding the nature 

and impact of the attacks. 

The research utilized the SYN DoS dataset from 

the Kitsune Network Attack Dataset to analyze and 

evaluate network attack detection systems. This 

dataset specifically focuses on SYN flood attacks, a 

common type of denial-of-service attack that targets 

the TCP handshake process. By leveraging the SYN 

DoS dataset, the study aims to develop and test 

detection algorithms that can effectively identify and 

mitigate such attacks, thereby enhancing network 

security measures. 

 

3.1.2. Data Exploration and Preprocessing Steps 

Data Inspection: Initial exploration of the dataset 

involves using methods such as df.info(), df.head() 

(Figure 2), and df.describe() to understand the 

structure, size, and summary statistics of the dataset. 

The output in Figure 2 the intial five rows and first 

115 columns of the SYN DoS dataset, are presented, 

as well as relevant information about the DataFrame.  

Figure 3, shows a summary statistics table for the 

DataFrame df. By default, it calculates the count, 

mean, standard deviation, minimum, 25th percentile, 

median, 75th percentile, and maximum values for 

each numeric column in the DataFrame. The output 

shows summary statistics for all 115 columns in the 

DataFrame. The first column, Count, shows the 

number of non-null values in each column. The Mean 

column shows the average value for each column, 

and the Standard column shows the standard 

deviation. The lowest column displays the minimum 

value, and the 25% column displays the 25th 

percentile. The 50% column displays the average, 

and the 75% column displays the 75th percentile. 

Finally, the Maximum column displays the 

maximum value for each column. Here we notice that 

the count values for all columns are the same, which 

indicates that there are no missing values in the 

DataFrame. In addition, the mean values for columns 

107-115 are very small, indicating that these columns 

may contain mostly zero values.  

These methods provide insights into data types, 

missing values, and the basic distribution of feature 

values. 

Figure 2 Output of df.info() and df.head(). 
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Figure 3 Summary of the distribution of data in a DataFrame using df.describe(). 

 

To effectively analyze and evaluate network attack 

detection systems using the SYN DoS dataset from 

the Kitsune Network Attack Dataset, a series of 

preprocessing steps are undertaken. 

• Missing Values and Data Integrity: The dataset 

is checked for missing values using the isnull() 

function. Figure 4, shows that there are no 

missing values in the DataFrame df. Each 

column has 0 missing values, shown as 0 for 

each column. Columns with missing data are 

identified and handled appropriately, either by 

imputing missing values or removing columns 

or rows with excessive missing data. 

• Feature Scaling: Features are scaled to ensure 

that all variables contribute equally to the model 

training process. Standard scaling (mean = 0, 

variance = 1) or Min-Max scaling (rescaling to 

a range of 0 to 1) is applied depending on the 

nature of the features and the requirements of the 

machine learning models used. 

• Data Splitting: Using the train_test_split 

function from sklearn.model_selection,The 

dataset is split into training and testing. This 

confirms that the model is evaluated on unseen 

data, providing an unbiased assessment of its 

performance. 

 

 
Figure 4 Demonstrates that the DataFrame df contains 

no missing values. 

3.1.3. Handling Outliers and Feature Engineering 

1 Outlier Detection and Removal: Outliers are 

identified using the Interquartile Range (IQR) 

method. This involves calculating the IQR for 

each feature and removing data points that fall 

outside the range defined by 1.5 times the IQR 

above the third quartile (Q3+1.5×IQR) and 

below the first quartile (Q1−1.5×IQR). 

Removing outliers helps in improving the 

model’s robustness and preventing skewed 

results. After filtering, the logistic regression 

model is applied to this refined dataset, which 

enhances the reliability of the analysis and 
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ensures that the predictions made by the model 

are based on more accurate data. 

2 Feature Engineering: Feature engineering 

involves creating new features or modifying 

existing ones to enhance the model's predictive 

power. In this dataset: 

• Aggregation: New features may be created by 

aggregating raw packet counts into statistical 

measures such as mean, variance, or frequency 

of specific attack patterns. 

• Normalization: Certain features may be 

normalized to bring all values within a common 

scale, making it easier for machine learning 

algorithms to converge. 

• Dimensionality Reduction: Approaches like 

Principal Component Analysis (PCA) might be 

used to lessen the number of features while 

preserving most of the data's variance. This 

helps in managing computational complexity 

and potentially improving model performance. 

3 Feature Selection: Feature selection involves 

identifying the most pertinent features for the 

classification task. Utilizing methods like 

correlation analysis (using df.corr()) aid in 

exploring the relationships between features and 

selecting those that have the most substantial 

effect on the target variable. Redundant or highly 

correlated features may be removed to simplify 

the model and reduce overfitting. The code 

correlation = df.corr() calculates the pairwise 

correlation coefficients between all columns in 

the DataFrame df and stores the result in a new 

DataFrame correlation. This is the correlation 

matrix of the df DataFrame. In Figure 5, Each 

cell in the matrix represents a Pearson correlation 

coefficient between two columns in the 

DataFrame. All diagonal elements are 1, because 

the correlation of the column with itself is always 

1. 

A correlation matrix can help to identify which 

columns in a DataFrame are closely associated with 

one another. For instance, columns 2 and 112 showa 

correlation coefficient of 0.19972, reflecting a weak 

positive correlation. In contrast, columns 2 and 115 

have a correlation coefficient of -0.002829, 

indicating a very weak negative correlation. 

It is vital to understand that correlation 

relationship, does not necessarily mean that one 

variable influences the other (not causation). 

Additionally, important to note that the correlation 

matrix only captures linear relationships between 

variables, so it may not detect nonlinear 

relationships. 

 

 

 

 
 

Figure 5 Represents a Pearson correlation coefficient between columns in the DataFrame
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Encoding Categorical Variables: If the dataset 

includes categorical variables, these are encoded into 

numerical values using techniques like one-hot 

encoding or label encoding. This ensures that the 

machine learning models can process all types of data 

effectively. 

Through these preprocessing steps, the dataset can 

be prepared for robust machine learning analysis, 

ensuring that the models trained on this data are both 

accurate and reliable. 

 

4. Machine Learning Models 

This section covers the materials and tools used in 

the study, including libraries, model architectures, 

and computational resources. It should provide the 

technical depth, particularly in terms of describing 

the methods, tools, and resources in more detail. 

4.1. Tools and Libraries 

For building and evaluating the machine learning 

models, the following tools and libraries were 

employed: 

• TensorFlow/Keras: Used for designing and 

training the neural network models, including 

the CNN, GRU, and LSTM components. These 

libraries provide high-level APIs for deep 

learning model construction, optimization, and 

evaluation. 

• Scikit-learn: Used for implementing classical 

machine learning models like Logistic 

Regression and Linear Discriminant Analysis 

(LDA). Additionally, Scikit-learn was used for 

model evaluation and metrics calculation, such 

as accuracy, precision, recall, and F1-score. 

• SHAP (SHapley Additive exPlanations): 

Utilized for model interpretability. SHAP values 

were used to explain the impact of individual 

features on the model’s predictions, helping to 

understand the factors driving the classification 

results. 

• Matplotlib/Seaborn: These Python libraries 

were used for visualizing model performance, 

including confusion matrices, ROC curves, and 

SHAP value plots. 

• Pandas: Used for data preprocessing, including 

feature extraction, cleaning, and data splitting 

into training and test sets. 

• NumPy: Essential for handling large numerical 

data arrays, especially in the context of deep 

learning and time-series analysis. 

• GPU Resources: Models were trained using 

GPU-enabled instances (e.g., NVIDIA Tesla 

P100) to accelerate the training process of deep 

neural networks, which typically require 

substantial computational power. 

 

4.2. Model Architectures and Hyperparameters 

The machine learning models implemented in this 

study include: 

1. Linear Discriminant Analysis (LDA): A 

statistical method used for classification 

based on finding linear decision boundaries 

between classes. 

o Key Parameters: Regularization 

method (shrinkage), solver, and 

priors. 

2. Logistic Regression: A simple yet effective 

algorithm for binary classification tasks, 

utilized as a baseline in our model 

comparison. 

o Key Parameters: Regularization 

type (L2), solver (saga), and 

learning rate. 

3. Hybrid CNN-GRU-LSTM Model [34]: 

The hybrid model integrates three 

components—Convolutional Neural 

Networks (CNN), Gated Recurrent Units 

(GRU), and Long Short-Term Memory 

networks (LSTM)—to handle both spatial 

and temporal features of network traffic 

data. 

o CNN Architecture: 

▪ Layers: Convolutional 

layers followed by pooling 

layers. 

▪ Activation Function: ReLU. 

▪ Regularization: Dropout 

(0.3), batch normalization. 

▪ Optimizer: Adam optimizer 

with learning rate decay. 

o GRU Architecture: 

▪ Layers: Stacked GRU units 

to model sequential 

dependencies. 

▪ Activation Function: Tanh. 

▪ Regularization: Dropout 

(0.3). 

o LSTM Architecture: 

▪ Layers: LSTM units with 

time-sequence dependency 

modeling. 

▪ Activation Function: Tanh. 

▪ Regularization: Dropout 

(0.3). 

o Hyperparameters: The hybrid 

model was trained for 50 epochs, 
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using a batch size of 32 and Adam 

optimizer with an initial learning 

rate of 0.001. Early stopping with a 

patience of 5 epochs was employed 

to prevent overfitting. 

o Dropout: Applied to both GRU and 

LSTM layers to mitigate 

overfitting. 

4.3. Computational Resources 

The training of deep learning models (CNN, GRU, 

LSTM, and hybrid models) required substantial 

computational resources: 

• Hardware: NVIDIA Tesla P100 GPUs 

were used for faster model training, given 

the complexity and high computational 

requirements of deep learning models. 

• Cloud Infrastructure: Models were trained 

on cloud computing platforms (e.g., Google 

Cloud Platform and Amazon Web 

Services (AWS)) to access GPU resources 

on-demand and facilitate parallel processing 

during training. 

4.4. Evaluation Metrics 

The performance of the models was assessed using 

a variety of evaluation metrics, including: 

• Accuracy: Measures the overall percentage 

of correct predictions. 

• Precision and Recall: Precision (True 

Positives / (True Positives + False 

Positives)) and Recall (True Positives / 

(True Positives + False Negatives)) were 

evaluated for both the benign and malicious 

classes to understand the model’s ability to 

correctly classify each type of traffic. 

• F1-Score: The harmonic mean of precision 

and recall, used to balance both metrics in 

the case of imbalanced datasets. 

• ROC Curve and AUC: The Receiver 

Operating Characteristic curve was plotted, 

and the Area Under the Curve (AUC) was 

calculated to evaluate the model's ability to 

discriminate between benign and malicious 

traffic. 

• Mean Squared Error (MSE): Used for 

regression-based evaluation, where 

applicable. 

• SHAP Values [40]: Applied to interpret the 

contribution of each feature in the final 

model prediction, providing insights into 

which features (e.g., packet size, source IP 

address) are most influential in identifying 

malicious behavior. 

 

4.5. Overview of Linear Discriminant Analysis 

(LDA) 

Linear Discriminant Analysis (LDA) is a 

supervised classification technique aimed at finding 

a linear combination of features that optimally 

distinguishes and separates multiple or different 

classes of objects or events. The primary goal of LDA 

is dimensionality reduction while preserving as much 

class discriminatory information as possible. LDA 

works by projecting the data onto a lower-

dimensional space, which maximizes the distance 

between the means of different classes and minimizes 

the variance within each class. This projection is 

particularly useful in scenarios where the number of 

features is much greater than the number of samples. 

In network attack classification, LDA can aid and 

facilitate the identification of malicious traffic from 

legitimate traffic, enhancing effective classification 

[34].  

The dataset is split into training and testing sets 

with the help of the train_test_split function from 

sklearn.model_selection. Subsequently, the LDA 

model is fitted to the training set and employed to 

predict labels for both the training and test sets. 

Figure 6 illustrates a classification results and 

accuracy analysis report for both the training and test 

datasets. The report includes precision, recall, and F1 

score for each category. 
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Figure 6 LDA Model Performance Summary 

 

 
Figure 7 Plot LDA Model Performance Summary 

 

The Mean Squared Error (MSE) for the training 

data is 0.0019711738082625716 and for the testing 

data the error is 0.0019774284481228143, as 

illustrated in (Figure 8). This indicates that the LDA 

model's predictions for both the training and testing 

data are generally very close to the actual values, 

demonstrating a low error rate. 

 
Figure 8 The Mean Squared Error (MSE) for the 

training data and for the testing data 

 

4.6. Logistic Regression and Its Application 
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Logistic Regression is a statistical model used for 

binary classification problems. It estimates the 

probability of a binary outcome based on one or more 

predictor variables. The logistic function (or sigmoid 

function) is used to model the relationship between 

the dependent variable and independent variables, 

providing outputs in the range (0, 1) that can be 

interpreted as probabilities. In network security, 

Logistic Regression is employed to classify network 

traffic as either benign or malicious based on various 

features extracted from the traffic data [41]. This 

method is valued for its simplicity and 

interpretability, making it suitable for initial 

explorations and benchmarking against more 

complex models. In this case, multiclass 

(multi_class='ovr') and solver 'lbfgs' are used to 

handle the solution, and 11 job jobs (n_jobs=11) are 

used to speed up training. The results of the Logistic 

Regression model provide a detailed view of its 

performance across various metrics. Below is a 

breakdown of the key points and their interpretations: 

1. Accuracy (Test Accuracy): The model achieved 

an accuracy of 1.00 on the test set. This perfect 

accuracy indicates that the model correctly predicted 

all the test samples. It suggests that the model has 

generalized well to unseen data and is highly 

effective in classifying the test data. This is a strong 

performance indicator but could also imply potential 

overfitting, especially if the test set is not sufficiently 

diverse or if the dataset is small. 

2. Average Absolute Error (AAE): Training Data 

AAE: The average absolute error on the training data 

is 0.0021. This low average absolute error indicates 

that the model's predictions are very close to the 

actual values for the training data. It reflects the 

model's accuracy in predicting the training samples, 

suggesting that the model fits the training data well. 

3. Mean Squared Error (MSE): Test Data MSE: 

The mean squared error on the test set is 0.00217. The 

MSE measures the average squared difference 

between the predicted values and the actual values on 

the test set. A low MSE value signifies that the 

model’s predictions are close to the actual values, 

reflecting good performance. However, while the 

MSE is low, it is essential to ensure that the model's 

performance is consistently good across different 

datasets and not just due to the test set's 

characteristics. 

Table 1 provides a summary of the performance 

metrics for the Logistic Regression model, 

highlighting its effectiveness in classifying network 

traffic as either benign or malicious. The metrics 

include accuracy, Average Absolute Error (AAE), 

and Mean Squared Error (MSE) that demonstrate the 

model's capability in distinguishing between the two 

classes. 

The Logistic Regression model demonstrates 

excellent performance with perfect accuracy on the 

test set, very low average absolute error on the 

training data, and a low mean squared error on the 

test set. These results indicate that the model is highly 

effective in classification tasks and has a good fit on 

both training and test data. The outlier exclusion 

analysis using the IQR helps to improve the quality 

of the dataset, ensuring that the logistic regression 

model can make more reliable predictions. The 

results indicate that the model performs exceptionally 

well, both in training and on unseen data, showcasing 

its effectiveness in classifying the target variable 

accurately. 

 

Table 1 Summarizes the performance metrics of the 

Logistic Regression model. 

Metric Value Interpretation 

Test 

Accuracy 

1.00 Indicates perfect 

classification of all 

test samples. Shows 

strong generalization. 

Average 

Absolute 

Error 

(AAE) 

0.0021 Reflects high accuracy 

on training data, with 

predictions very close 

to actual values. 

Mean 

Squared 

Error 

(MSE) 

0.00217 Provides an estimate 

of prediction error on 

the test set; low value 

suggests good 

performance. 

 

4.7.  CNN-GRU-LSTM Hybrid Model 

The CNN-GRU-LSTM hybrid model combines 

Convolutional Neural Networks (CNNs), GRUs, and 

LSTMs to leverage the strengths of each architecture. 

CNNs are used to extract spatial features from data, 

such as patterns in network traffic data, which are 

then processed by GRUs and LSTMs to capture 

temporal dependencies [42]. This hybrid approach 

aims to enhance the model's ability to learn both 

spatial and temporal features, improving its 

performance in complex classification tasks like 

network attack detection.   

The CNN-GRU-LSTM hybrid model combines 

the power of CNN for feature extraction, GRU for 

efficient sequence learning, and LSTM for handling 

long-term dependencies. The following is the pseudo 

code for CNN-GRU-LSTM Hybrid Model: 
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# CNN-GRU-LSTM Hybrid Model Pseudo Code 

def cnn_gru_lstm_hybrid(input_data): 

    # Step 1: Input Layer 

    X = input_data  # Input data (network traffic as 

sequence or time series) 

    # Step 2: CNN Layer for Feature Extraction 

    Conv1 = Conv2D(filters=64, kernel_size=3, 

activation='relu')(X) 

    Pool1 = MaxPooling2D(pool_size=2)(Conv1) 

    # Step 3: GRU Layer for Sequence Learning 

    GRU1 = GRU(units=128, 

return_sequences=True)(Pool1) 

    GRU2 = GRU(units=128)(GRU1) 

    # Step 4: LSTM Layer for Long-Term Dependencies 

    LSTM1 = LSTM(units=128, 

return_sequences=True)(GRU2) 

    LSTM2 = LSTM(units=128)(LSTM1) 

    # Step 5: Fully Connected Layer 

    Flattened = Flatten()(LSTM2) 

    Dense1 = Dense(units=256, 

activation='relu')(Flattened) 

    # Step 6: Output Layer 

    Output = Dense(units=1, 

activation='sigmoid')(Dense1)  # Binary classification 

    # Step 7: Compile Model 

    model = Model(inputs=X, outputs=Output) 

    model.compile(optimizer='adam', 

loss='binary_crossentropy', metrics=['accuracy']) 

    # Step 8: Train Model 

    model.fit(X_train, y_train, epochs=10, 

batch_size=32, validation_data=(X_val, y_val)) 

    return model 

 

Table 2 presents a comprehensive overview of the 

CNN-GRU-LSTM model's performance, including 

key metrics and computational efficiency. 

The CNN-GRU-LSTM model demonstrates high 

performance in terms of accuracy, precision, recall, 

and other metrics, showing it effectively classifies 

data and maintains a low rate of false positives and 

omissions. However, the high False Negative Rate 

suggests that it may miss a significant number of 

positive cases. The model's computational intensity 

is also reflected in its considerable test time, which 

might impact its practicality in real-time applications. 

The AUC score further validates the model's good 

capability in classifying between positive and 

negative instances (Figure 9). 

 

 

Table 2 Summarizes the performance metrics and test time of the CNN-GRU-LSTM model 

Metric Value Interpretation 

Accuracy 0.998 99.8% accuracy indicates high performance in classifying 

test data. 

Precision 0.998 99.8% precision indicates few false positives; model is 

reliable in predicting positives. 

Recall 0.998 99.8% recall reflects the model’s effectiveness in 

identifying actual positives. 

F1-Score 0.997 99.7% F1-score balances precision and recall well. 

True Negative Rate (TNR) 0.999 99.9% TNR shows high effectiveness in predicting 

negatives. 

Matthew's Correlation 

Coefficient (MCC) 

0.494 Moderate MCC indicates some correlation but room for 

improvement. 

Negative Predictive Value 

(NPV) 

0.998 99.8% NPV suggests the model is effective in predicting 

true negatives. 

False Discovery Rate (FDR) 0.078 7.8% FDR indicates a low rate of false positives. 

False Negative Rate (FNR) 0.735 73.5% FNR shows many actual positives are missed. 

False Omission Rate (FOR) 0.002 0.2% FOR is very low, indicating rare false omissions of 

negatives. 

False Positive Rate (FPR) 0.00006 0.006% FPR shows a very low rate of false positives. 

Test Time 645.40 

seconds 

The model requires significant time for testing, reflecting 

computational intensity. 

AUC 0.8559 AUC of 0.8559 shows strong performance in 

distinguishing between classes. 
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Figure 9 The area under the ROC curve (AUC). 

 

4.8. Hyperparameters and Model Training 

Hyperparameters are critical parameters that are 

set before the training process and influence the 

performance of machine learning models. For LDA, 

hyperparameters include the choice of the solver and 

regularization parameters. In Logistic Regression, 

hyperparameters such as the regularization strength 

(C) and solver type are important for controlling 

overfitting and optimization [43]. For neural network 

models, hyperparameters include the number of 

layers, number of units per layer, learning rate, batch 

size, and number of epochs. 

By leveraging these models and techniques, the 

research aims to build a robust classification 

framework for detecting and categorizing network 

attacks, providing valuable insights into the 

effectiveness and efficiency of different machine 

learning approaches. 

4.9. Advancements in CNN, GRU, and LSTM 

Models 

In recent years, significant advancements have 

been made in the field of deep learning, particularly 

in models like Convolutional Neural Networks 

(CNN), Gated Recurrent Units (GRU), and Long 

Short-Term Memory (LSTM) networks, which have 

greatly enhanced their performance in complex tasks 

such as network attack detection. These 

improvements address several challenges inherent to 

earlier versions of these models, particularly in terms 

of model efficiency, generalization, and handling 

long-term dependencies. 

Convolutional Neural Networks (CNN): Modern 

CNN architectures have incorporated techniques 

such as batch normalization, adaptive pooling, and 

skip connections to improve convergence and reduce 

overfitting. These enhancements enable CNNs to 

better capture spatial features in network traffic data, 

making them effective for feature extraction from 

complex network flow data. Residual networks 

(ResNets) and DenseNets, which introduce skip 

connections between layers, allow deeper CNNs to 

be trained more effectively, enabling more robust 

feature extraction for detecting malicious traffic 

patterns. 

Gated Recurrent Units (GRU) and Long Short-

Term Memory (LSTM): Recent advances in GRU 

and LSTM architectures have addressed the 

limitations of traditional recurrent neural networks 

(RNNs), particularly the vanishing gradient problem. 

New techniques, such as the peephole connections in 

LSTMs and the GRU with attention mechanisms, 

have improved their ability to capture long-term 

dependencies and complex temporal patterns in 

sequential data. Additionally, these architectures 

have been integrated with advanced optimization 

algorithms, such as Adam and RMSprop, which have 

significantly improved convergence rates and model 

stability during training. GRU and LSTM networks 

are now better equipped to handle the temporal nature 

of network traffic, which is essential for accurate 

attack detection over time. 

These recent advancements have been 

incorporated into the hybrid CNN-GRU-LSTM 

model used in this study, enabling the model to better 

capture both spatial and temporal features of network 

traffic. By combining the strengths of CNNs for 

feature extraction, GRUs for temporal sequence 

learning, and LSTMs for long-term dependency 

capture, the hybrid model is particularly well-suited 

for the complex task of detecting network attacks. 

 

5. Model Evaluation 

Evaluating the performance of machine learning 

models is crucial for understanding their 

effectiveness in classification tasks. This involves 

using various metrics that measure different aspects 

of model performance, including accuracy, precision, 

recall, F1-score, and more. Here’s a consolidated 

overview of key metrics and a comparative analysis 

of different models: 

5.1. Metrics for Performance Evaluation 

• Accuracy: Accuracy measures the proportion of 

correctly classified instances out of the total 

instances and is calculated as:  

Accuracy=Number of Correct Predictions/Total 

Number of Predictions. While accuracy provides 

a general sense of the model's performance, it can 

be misleading in imbalanced datasets [44]. 
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• Precision: Precision, or positive predictive 

value, indicates the proportion of true positives 

out of all predicted positives: Precision=True 

PositivesTrue/ (True Positives + False Positives). 

This metric is crucial when the cost of false 

positives is high, such as in detecting network 

attacks [45]. 

• Recall: Recall, or sensitivity, measures the 

proportion of true positives out of all actual 

positives:  Recall=True Positives/ (True 

Positives+False Negatives).  

• Recall is particularly important in scenarios 

where failing to detect a positive instance is 

critical (Powers, 2011). 

• F1-Score: The F1-score is the harmonic mean of 

precision and recall, calculated as:  

• F1-Score= 2 *((Precision*Recall)/ (Precision + 

Recall)). It is especially useful for imbalanced 

datasets, as it accounts for both false positives 

and false negatives [40]. 

• ROC Curve and AUC: The Receiver Operating 

Characteristic (ROC) curve plots the true 

positive rate (recall) against the false positive rate 

at various thresholds. The Area Under the Curve 

(AUC) provides an aggregate measure of 

performance across all classification thresholds, 

with 1 indicating perfect classification and 0.5 

indicating no discriminative power [47]. 

 

5.2. Comparative Analysis of Model Performance 

To assess the performance of various models, we 

compare Linear Discriminant Analysis (LDA), 

Logistic Regression, and a hybrid model combining 

Convolutional Neural Networks (CNN), Gated 

Recurrent Units (GRU), and Long Short-Term 

Memory networks (LSTM). The comparison focuses 

on several critical aspects: 

1 Accuracy: Reflects how well the model predicts 

both classes. 

2 Precision, Recall, and F1-Score: Provide insights 

into the model's performance on each class, 

particularly in imbalanced datasets. 

3 Error Metrics: Include Mean Squared Error 

(MSE) to gauge prediction accuracy and model 

reliability. 

4 Test Time: Measures the time required for the 

model to make predictions on the test set, 

indicating computational efficiency. 

In this section, we provide a detailed interpretation 

of the performance metrics for three different 

models: Linear Discriminant Analysis (LDA), 

Logistic Regression, and the CNN-GRU-LSTM 

hybrid model. Table 3 summarizes the performance 

metrics and test time for each model, highlighting 

their strengths and weaknesses in classification 

tasks.  Each model has its strengths and weaknesses, 

which are critical to understanding their effectiveness 

in classification tasks. By examining these models 

closely, we can identify their capabilities and 

limitations in handling various types of data, 

particularly in the context of detecting malicious 

versus non-malicious instances. Below, we outline 

the strengths and weaknesses of each model to 

facilitate a comprehensive understanding of their 

performance. 

• LDA Model: 

o Strengths: Achieves perfect precision, recall, 

and F1-scores for the "not malicious" class, 

indicating exceptional performance on this 

majority class. 

o Weaknesses: Performs poorly on the 

"malicious" class, with a low recall of 0.24, 

suggesting difficulties in identifying malicious 

instances due to class imbalance. 

o Overall: Highly accurate but skewed towards 

the majority class, indicating a need for 

improvement in handling the minority class. 

• Logistic Regression Model: 

o Strengths: Achieves perfect accuracy, 

precision, and recall across both classes, 

demonstrating robustness in classification with 

minimal deviation. 

o Weaknesses: No significant weaknesses are 

noted, as it performs well on both classes. 

o Overall: Provides reliable and accurate 

classification. 

• CNN-GRU-LSTM Model: 

o Strengths: Exhibits high accuracy, precision, 

and recall, with an impressive F1-score, 

effectively distinguishing between classes as 

indicated by a high AUC value. 

o Weaknesses: High False Negative Rate (FNR), 

indicating that it misses a significant number of 

positive instances, which can impact its utility 

in critical detection scenarios. 

o Test Time: Significant computational 

complexity is reflected in its longer test time 

(645.40 seconds). 

o Overall: Strong in classification performance 

but comes with trade-offs in computational 

time and higher False Negative Rate. 
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Table 3 Summary of Model Performance and Test Time 

Metric LDA Model Logistic Regression Model CNN-GRU-LSTM Model 

Accuracy 1.00 1.00 0.998 

Precision (Not Malicious) 1.00 1.00 0.998 

Recall (Not Malicious) 1.00 1.00 0.998 

F1-Score (Not Malicious) 1.00 1.00 0.997 

Precision (Malicious) 0.90 1.00 0.998 

Recall (Malicious) 0.24 1.00 0.998 

F1-Score (Malicious) 0.38 1.00 0.997 

Macro-Average Precision 0.95 1.00 0.998 

Macro-Average Recall 0.62 1.00 0.998 

Macro-Average F1-Score 0.58 1.00 0.997 

Weighted-Average Precision 0.98 1.00 0.998 

Weighted-Average Recall 0.75 1.00 0.998 

Weighted-Average F1-Score 0.77 1.00 0.997 

True Negative Rate (TNR) N/A N/A 0.999 

Matthew's Correlation Coefficient (MCC) N/A N/A 0.494 

Negative Predictive Value (NPV) N/A N/A 0.998 

False Discovery Rate (FDR) N/A N/A 0.078 

False Negative Rate (FNR) N/A N/A 0.735 

False Omission Rate (FOR) N/A N/A 0.002 

False Positive Rate (FPR) N/A N/A 0.00006 

AUC N/A N/A 0.8559 

Test Time N/A N/A 645.40 seconds 

In conclusion, Linear Discriminant Analysis 

(LDA) and Logistic Regression are simpler models 

that achieve high accuracy but face challenges related 

to class imbalance, particularly concerning the 

"malicious" class. In contrast, the CNN-GRU-LSTM 

model offers a more balanced performance with high 

precision and recall for both classes; however, it 

requires longer training and testing times due to its 

complexity. When selecting a model, it is essential to 

consider the trade-offs between performance and 

computational resources. While the CNN-GRU-

LSTM model is preferable for scenarios that demand 

high accuracy and effective handling of class 

imbalance, LDA or Logistic Regression may be 

sufficient for situations prioritizing computational 

efficiency. This comprehensive overview of model 

performance metrics supports informed decision-

making in choosing the most suitable model for 

specific classification tasks. 

In addition to describing the improvements in the 

CNN, GRU, and LSTM models, we have expanded 

the comparative analysis between our hybrid CNN-

GRU-LSTM model and other state-of-the-art models 

used for network attack detection. 

Our approach has been compared with traditional 

machine learning models such as Logistic Regression 

and Linear Discriminant Analysis (LDA), as well as 

with other deep learning models, including Fully 

Connected Networks and Single-Model CNN or 

LSTM architectures. This comparison not only 

highlights the strengths of our hybrid model but also 

demonstrates how it outperforms simpler models in 

handling complex, imbalanced datasets with both 

spatial and temporal dependencies. 

• Logistic Regression and Linear Discriminant 

Analysis are simpler models that offer high accuracy 

in certain contexts, but they are less effective in 

capturing the intricate, nonlinear relationships found 

in complex data like network traffic. These models 

struggle with class imbalance, which is common in 

attack detection, and cannot model sequential 

dependencies in the data. 

• Fully Connected Networks (FNNs) and 

Single-Model CNN/LSTM architectures are 

effective for certain types of data but fall short in 

handling both spatial features (as seen in CNN) and 

temporal dependencies (as seen in GRU/LSTM). 

While CNNs excel at extracting features, they do not 

explicitly model sequential dependencies, and while 

LSTMs are good at modeling time-series data, they 

lack the capacity for complex feature extraction. 

The CNN-GRU-LSTM hybrid model, by 

combining these techniques, has been shown to be 

superior in handling both spatial and temporal 

features simultaneously, which is crucial for network 

attack detection where attack patterns often span both 

dimensions. 
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6. Model Interpretability- SHAP (SHapley 

Additive exPlanations) 

Model interpretability is crucial for understanding 

how machine learning models make predictions and 

for building trust in their outputs. SHAP (SHapley 

Additive exPlanations) is a powerful framework for 

interpreting complex machine learning models. 

SHAP values are based on Shapley values from 

cooperative game theory, which provide a unified 

measure of feature importance by fairly distributing 

the prediction among all input features [48]. 

SHAP values decompose a model's prediction into 

contributions from each feature, offering a clear 

explanation of how each feature impacts the final 

prediction. This approach allows for consistent 

interpretation across different models, whether they 

are tree-based methods, neural networks, or any other 

complex algorithms. By assigning a Shapley value to 

each feature, SHAP helps identify which features are 

driving model decisions and to what extent. Recent 

advancements have extended SHAP to handle high-

dimensional and complex data efficiently, making it 

a valuable tool in various domains, including network 

security [48]. 

6.1. Application of SHAP for Feature Importance 

Analysis 

In the context of network attack detection, SHAP 

can be applied to analyze feature importance and 

understand model behavior. By calculating SHAP 

values for individual predictions, it is possible to 

determine which features are most influential in 

classifying a particular network traffic instance as 

benign or malicious. For example, in a model trained 

on network traffic data, SHAP can reveal which 

features, such as packet size, source IP address, or 

protocol type, contribute most significantly to the 

prediction of an attack or a benign activity. 

The process involves the following steps: 

Model Training: Train a machine learning model 

using network traffic data. This model can be a neural 

network, tree-based model, or any other suitable 

algorithm. The deep model is built and trained using 

Keras, where the model consists of an input layer, a 

hidden layer with a ReLU activation function, and an 

output layer with a sigmoid activation function. The 

model is assembled using the specified loss 

parameter and evaluation criteria. Figure 10 shows 

the progress of training the model over 10 episodes 

(epochs) and the evaluation on the test data after each 

episode. Each line in the output contains the 

following information: - `Epoch n/m`: where `n` 

shows the current episode number and `m` the total 

number of episodes. After training is completed, the 

model is evaluated using the test data, showing the 

average accuracy and loss of the model on the test 

data. 

This model performs several steps to verify and 

explore the data before building the deep model. 

These steps are: Checking shapes, Filtering Invalid 

Values, Distribution Check, Test on Small Sample, 

and Data Exploration [40].  

 

 

Figure 10 The progress of training the model over 10 episodes (epochs)

SHAP Value Calculation: Use the SHAP library to 

compute Shapley values for each feature. This 

involves generating a set of predictions for the input 

data and calculating the contribution of each feature 

to these predictions. Figure 11 indicates the process 
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of calculating SHAP values for the specified instance 

using the SHAP parser. 

 

Figure 11 Output indicates the process of calculating SHAP values for the specified instance

Feature Importance Analysis: Analyze the SHAP 

values to identify the most influential features. This 

helps in understanding which aspects of the network 

traffic data are most predictive of different types of 

attacks. Figure 12 shows how Feature 1 and Feature 

2 contribute to a specific prediction. If Feature 1 has 

a wide distribution and its SHAP value is high for a 

particular data point, it indicates that this feature 

significantly influenced the prediction for that 

instance. 

 

Figure 12 The distribution of two features. 

By applying SHAP, practitioners can gain insights 

into the importance of various features and make 

informed decisions about feature selection and model 

refinement [40]. 

 

6.2. Visualization of SHAP Values 

Visualizing SHAP values enhances the 

interpretability of machine learning models by 

providing intuitive and comprehensive 

representations of feature importance. Several types 

of visualizations are commonly used [40]: 

Force Plots: Force plots display the contribution of 

each feature to a specific prediction. They show how 

features push the prediction score towards or away 

from the predicted class. For example, in network 

attack detection, a force plot can illustrate how 

different features contribute to classifying a 

particular network packet as malicious [49]. Figure 

13 shows the contribution of each feature in 

determining the output. 

 
Figure 13 Force Plot SHAP values for the specified instance

  

Summary Plots: Summary plots aggregate SHAP 

values across all instances and provide a global view 

of feature importance. Each point on the plot 

represents the SHAP value of a feature for an 

individual instance, colored by the feature value. This 

visualization helps identify which features have the 

most significant impact across the entire dataset [49]. 

Figure 14 displays a simplified plot of the SHAP 

values calculated for each feature in the dataset, using 

90 instances (10 to 100) and the specified number of 

samples (500). This helps in understanding the 

impact of each feature on the predictions made by the 

model. 
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Figure 14 Summary Plots aggregate SHAP values across all instances and provide a global view of feature importance

Figure 14 provides insights into feature importance 

and direction. Features located farther from the center 

of the plot have a stronger influence on the model's 

predictions, with features 1, 5, and 7 exhibiting 

notable impact. The direction of a feature's influence 

is indicated by the sign of its SHAP value: positive 

values suggest an increase in the prediction, while 

negative values imply a decrease. While not 

explicitly shown, the plot also hints at potential 

feature interactions, which can be further explored by 

analyzing combinations of features and their 

corresponding SHAP values. 

By employing these visualizations, stakeholders 

can better understand model behavior, validate the 

model's decisions, and gain actionable insights into 

the factors driving network attack detection. 

 

7. Results and Discussion 

This section details the performance metrics of three 

models: Linear Discriminant Analysis (LDA), 

Logistic Regression, and the CNN-GRU-LSTM 

hybrid model, summarized in Table 3. Each model 

exhibits distinct strengths and weaknesses in their 

ability to classify network traffic as either benign or 

malicious. 

1. Linear Discriminant Analysis (LDA): LDA 

achieved an impressive accuracy of 99.8% 

on the test data. This high accuracy indicates 

that LDA effectively differentiates between 

not malicious and malicious network traffic. 

However, LDA's performance might be 

limited in handling non-linear relationships 

and complex attack patterns due to its 

reliance on linear decision boundaries. 

2. Logistic Regression: The Logistic 

Regression model also performed 

exceptionally well, with an accuracy of 

100% on the test set. This indicates that the 

model correctly classified all test instances. 

The model's high accuracy and low mean 

squared error suggest it is effective for the 

current dataset. However, logistic regression 

might not capture complex relationships in 

the data as well as more sophisticated 

models. 

3. CNN-GRU-LSTM model: Exhibited high 

accuracy (0.998) and precision (0.998), with 

impressive recall (0.998) for the "malicious" 

class. However, it showed a high false 

negative rate (0.735), indicating that it 

misses a significant number of positive 

instances. Despite these limitations, the 

model achieved a strong AUC of 0.8559, 

reflecting its effectiveness in distinguishing 

between benign and malicious traffic. The 

computational complexity of this model is 

evident in its longer test time of 645.40 

seconds. 

4. Error Metrics: The models generally 

exhibited low mean squared errors and high 

F1-scores, reflecting their ability to balance 

precision and recall effectively. Notably, the 

CNN-GRU-LSTM model showed a well-

rounded performance with high accuracy, 

precision, recall, and F1-score, but also 

revealed areas for improvement, such as the 

False Negative Rate (FNR) and False 

Discovery Rate (FDR). 
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In summary, while the LDA and Logistic 

Regression models demonstrate high accuracy, they 

struggle with class imbalance, particularly 

concerning malicious instances. In contrast, the 

CNN-GRU-LSTM model balances performance with 

complexity, making it preferable for scenarios 

demanding high accuracy, despite its longer 

processing times. 

5. 8. Conclusions and Future Work 

In conclusion, this research contributes valuable 

insights into the application of machine learning 

models for network attack detection and sets the stage 

for future advancements in the field. The 

recommendations and potential improvements 

outlined provide a roadmap for enhancing the 

effectiveness, efficiency, and interpretability of 

network security solutions. 

This study presents a robust framework for 

network attack detection by integrating advanced 

machine learning techniques and model 

interpretability tools. The hybrid CNN-GRU-LSTM 

model demonstrated strong performance with an 

accuracy of 0.998 and effectively capturing complex 

patterns in network traffic data. The utilization of the 

SYN DoS dataset from the Kitsune Network Attack 

Dataset provided a solid foundation for our analysis 

and model training, ensuring that our findings are 

grounded in realistic and relevant data. Furthermore, 

the application of SHAP values not only enhanced 

the interpretability of the model but also offered 

valuable insights into feature importance, thereby 

building trust in the model's predictions. 

Looking ahead, future work can explore several 

avenues to further improve network attack detection 

systems. One potential direction is the incorporation 

of additional datasets to enhance the model's 

generalizability and robustness against diverse attack 

vectors. Moreover, experimenting with ensemble 

methods that combine the strengths of multiple 

algorithms could yield even better performance. 

Another important aspect is the exploration of real-

time detection capabilities, enabling the model to 

operate in live network environments where prompt 

response to threats is crucial. 

Additionally, ongoing research into explainable AI 

(XAI) techniques can enhance our understanding of 

model decisions, allowing practitioners to interpret 

complex interactions between features more 

effectively. Lastly, developing user-friendly 

visualization tools for SHAP outputs could assist 

security analysts in quickly identifying critical 

indicators of attacks, facilitating faster decision-

making processes. Through these future endeavors, 

we aim to advance the field of network security and 

contribute to creating safer digital environments. 
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