
Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

Journal of Soft Computing

and

Artificial Intelligence
Journal homepage: https://dergipark.org.tr/en/pub/jscai

International

Open Access

Volume 05

Issue 02

December, 2024

41

Research Article

Cybersecurity in the Internet of Things: the Detection of the Types of Upcoming Digital Information

by Using Classification Techniques

Dima Raed Abu Khalil1 , Yousef Abuzir2

1,2 Faculty of Technology and Applied Sciences, Al-Quds Open University, Ramallah, Palestine

 ARTICLE INFO ABSTRACT

Article history:

Received October 30, 2024

Revised November 22, 2024

Accepted November 25, 2024

 This study addresses the critical challenge of Cyber-attacks detection (CAD) in

the Internet of Things (IoT) environment, specifically focusing on the

classification of non-malicious and malicious network traffic. The primary

objective is to enhance the accuracy and reliability of detection mechanisms

through the implementation of advanced machine learning models, particularly

the hybrid CNN-GRU-LSTM model. The study utilizes the SYN DoS dataset

from the Kitsune Network Attack Dataset to train and evaluate various models,

including Linear Discriminant Analysis (LDA), Logistic Regression, and the

CNN-GRU-LSTM model. The methodology includes a comprehensive

performance analysis of each model, employing metrics such as accuracy,

precision, recall, and F1-score. The results reveal that both LDA and Logistic

Regression achieved perfect accuracy (1.00), while the CNN-GRU-LSTM

model exhibited an accuracy of 0.998. Additionally, the CNN-GRU-LSTM

model demonstrated a high area under the curve (AUC) value of 0.8559,

indicating strong discriminatory power. The study further employs SHAP

(SHapley Additive exPlanations) for model interpretability, allowing for a

detailed analysis of feature importance and insights into model behavior. In

conclusion, the hybrid CNN-GRU-LSTM model offers a promising approach for

effective network attack detection while providing a basis for future

improvements in real-time applications and the exploration of additional

datasets.

Keywords:

Network Attack Detection

Internet of Things (IoT)

Machine Learning

Logistic Regression

Linear Discriminant

Analysis (LDA)

Deep Learning

1. Introduction

In the era of digital transformation, network

security has become a critical concern for

organizations worldwide. With the increasing

reliance on networked systems, the frequency and

sophistication of cyberattacks have escalated, posing

significant threats to data integrity, privacy, and

operational stability [1,2]. Network attacks,

including Distributed Denial of Service (DDoS) and

* Corresponding author

e-mail: yabuzir@qou.edu

DOI: 10.55195/jscai.1576195

Man-in-the-Middle (MitM) attacks, can disrupt

services and compromise sensitive information,

making it imperative to develop robust methods for

detecting and classifying these threats effectively [3,

4].

Traditional network attack detection methods,

often reliant on signature-based detection, struggle to

keep pace with the evolving nature of cyber threats.

Attackers continuously develop new methods to

https://dergipark.org.tr/en/pub/jscai
mailto:yabuzir@qou.edu
https://orcid.org/0009-0007-9597-1510
https://orcid.org/0000-0002-1220-1411

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

42

bypass signature-based defenses, highlighting the

limitations of these traditional approaches. False

positives and negatives further hamper the

effectiveness of these methods, leading to wasted

resources and potential security breaches [5] [6] [7].

Deep learning (DL), a subfield of artificial

intelligence, offers a promising solution for network

attack detection [9]. DL algorithms are effective at

identifying complex patterns within vast amounts of

dataset. By examining network traffic data, DL

models have the ability learn to distinguish between

normal and malicious network behavior, offering a

more adaptable and robust approach to network

attack detection [10] [11] [12].

This research explores the potential of deep

learning (DL) and machine learning (ML) techniques

for accurately predicting and detecting SYN DoS

attacks. We hypothesize that deep learning models

can outperform traditional methods due to their

superior pattern recognition capabilities [11]. We

will investigate the effectiveness of two machine

learning and a deep learning hybrid CNN-GRU-

LSTM model – for identifying SYN DoS attacks

within the Kitsune SYN DoS dataset

(https://www.kaggle.com/datasets/ymirsky/network-

attack-dataset-kitsune/data). Our evaluation will

compare the performance of these machine and deep

learning model, emphasizing key metrics such as

accuracy, precision, recall, and F1-score [12] [13].

The Problem Question is How can we accurately

classify and detect various types of network attacks

using machine and deep learning techniques, and

what are the most effective models for distinguishing

between harmful and benign network traffic?

The motivation behind this research stems from the

growing need for advanced and efficient solutions to

enhance network security. Traditional methods of

network attack detection often struggle with high

false-positive rates and limited adaptability to new

attack vectors. Machine learning offers the potential

to improve detection accuracy and adapt to evolving

threats by learning from historical data. By exploring

and comparing various machine learning models, this

research aims to identify the most effective

approaches for classifying network attacks, thereby

contributing to the development of more resilient

cybersecurity systems.

The novelty of this study lies in the integration of

CNN, GRU, and LSTM into a single hybrid model

that addresses the complexities of network traffic

data. Previous studies have largely relied on

individual models, such as CNNs for feature

extraction or LSTMs for sequence learning, but have

not explored the synergy between these architectures

in the context of network attack detection.

This study makes several key contributions to the

field of network security and machine learning:

• Comprehensive Evaluation of Models: The

study assesses and compares the performance of

Linear Discriminant Analysis (LDA), Logistic

Regression, and a hybrid CNN-GRU-LSTM

modelwithin the framework of network attack

classification. A comprehensive evaluation of

this hybrid approach, demonstrating its superior

accuracy and ability to handle class imbalance

in detecting both malicious and benign network

instances.

• Detailed Analysis of Network Attack Data: By

using the Kitsune Network Attack Dataset, the

study provides an in-depth analysis of various

attack types, including SYN DoS, and

demonstrates how machine learning models can

be applied to detect and classify these attacks.

• Model Interpretability: The use of SHAP

(SHapley Additive exPlanations) to explain the

models' predictions provides valuable

information about the factors influencing the

classification decisions, enhancing the

transparency and trustworthiness of the machine

learning models.

• The hybrid model that leverages the strengths of

CNN for spatial feature extraction, GRU for

short-term temporal dependencies, and LSTM

for capturing long-term temporal dependencies

in network traffic.

• The integration of advanced optimization

techniques such as dropout regularization and

early stopping to avoid overfitting and ensure

model generalization on unseen data.

This hybrid model provides a novel framework for

intrusion detection systems, improving both

accuracy and computational efficiency compared to

traditional and single-model approaches.

This study examines the development of machine

learning for network attack detection. It begins by

reviewing existing methods and datasets before

delving into model development using techniques

like LDA, logistic regression, and hybrid CNN-

GRU-LSTM. Model performance is evaluated using

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

43

standard metrics, and their effectiveness is analyzed

using interpretability tools like SHAP. The study

concludes by discussing the implications of the

findings for network security and outlining directions

for future research.

2. Literature Review

Researchers are increasingly interested in using

deep learning (DL) to create online network attack

detection. This is because machine learning (ML) and

DL techniques have been shown to be effective in

identifying cyberattacks launched from

compromised Internet of Things (IoT) devices [14],

[15].

One challenge with traditional ML-based network

attack detections is that they require a lot of labelled

data for training. To address this, a new approach

called Decentralized and Online Federated Learning

Intrusion Detection (DOF-ID) has been proposed.

This system allows collaborating devices to share

information and improve intrusion detection

performance across the network [16] [17].

Another promising technique is Deep Transfer

Learning (DTL), a type of DL that can be used to

enhance intrusion detection within industrial control

systems. DTL allows the system to gain insights from

data in one domain (such as general network traffic)

and apply insights to a different domain (such as

industrial control systems) [18] [19]. This can

improve detection accuracy and help mitigate threats

more effectively. Overall, these studies show that

advanced ML and DL techniques have a lot of

potential for improving the capabilities of online

network intrusion detection systems.

In the paper by Hussain et al. (2023), the authors

reviewed various intrusion detection models and the

threats posed to IoT systems by compromised

devices, emphasizing the use of ML and DL

techniques as effective defensive measures [15].

Mert et al. (2023) proposed the DOF-ID architecture,

which enhances intrusion detection by allowing IDSs

to learn from both local and remote data while

maintaining data privacy, showing significant

performance improvements on Kitsune and Bot-IoT

datasets [20]. Kheddar et al. (2023) provided a

comprehensive review of using deep transfer learning

(DTL) in industrial control networks for intrusion

detection, highlighting improvements in detection

accuracy and the use of multiple datasets and

evaluation metrics like accuracy and false alarm rate

[18].

Wasnik and Chavhan (2023) tested different DL

algorithms on public malware data. They found these

models work well, but need frequent updates to stay

ahead of changing attack patterns. The authors

propose a specific deep neural network (DNN) that

can adapt to dynamic network behavior. They

suggest constantly improving these models and

linking them to real-time monitoring for proactive

threat detection [20]. Ogundokun et al. (2023)

systematically reviewed the application of ML and

DL algorithms in IDS, analyzing various classifiers,

datasets, and frameworks used from 2016 to 2021,

and offering insights into recent advancements and

challenges [22].

Krishna et al. (2020) focused on building an IDS

that can also prevent attacks (DOS, Probe, R2L,

U2R). They used a Multi-Layer Perceptron (MLP)

deep learning model on the KDDCup99 dataset and

achieved high accuracy against different attack types.

Their system combines detection and prevention,

proving effective in real-time situations. The authors

recommend further development of the prevention

mechanisms and testing the system across diverse

network environments [23].

The study of (Fadel et al., 2022) proposed the

HDLIDP framework, combining signature-based and

deep learning techniques to improve DDoS attack

detection and prevention in SDNs, demonstrating

significant accuracy improvements through

experiments on traditional and SDN datasets [24].

The research by (Alghamdi, 2022) proposes a

hybrid intrusion detection model (PO-CFNN) for

securing Internet of Things (IoT) devices. It uses a

unique optimization technique and achieves high

performance on test datasets. The author suggests

adapting the model for more complex IoT scenarios

and improving its efficiency [25].

The review by (Monani et al., 2023) explores

different ways to analyze cyber threats using data,

like predicting denial-of-service attacks. The study

suggests combining these methods for stronger

defenses [26].

Deep Learning for Network Security: The survey

of (Auwal, 2022) highlights how deep learning can

improve network intrusion detection compared to

traditional methods. It identifies areas for further

research, like exploring techniques that don't require

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

44

as much labeled data [27].

The study of (Hnamte & Hussain, 2023) proposes

a deep learning model using convolutional neural

networks to detect and classify network intrusions. It

shows promising results, but needs testing with more

diverse data to ensure real-world effectiveness [28].

Alabdulatif and Rizvi (2022) addressed the

improvement of Kitsune Network Intrusion

Detection (NID) using machine learning techniques.

They evaluated various tree algorithm variants on

Kitsune datasets, ultimately recommending the Fine

Tree algorithm for better performance. The main

metrics used were effectiveness and efficiency. The

results indicated that the Fine Tree algorithm

outperformed other tree variants in terms of

improving Kitsune NID's accuracy and reliability

[29].

The study by Malliga et al. (2022) examines the

efficacy of deep learning techniques in identifying

DoS/DDoS attacks. They concluded that deep

learning is capabile of managing these evolving

threats [30]. Sujatha et al. (2023) examined the

application of deep reinforcement learning (DRL) for

network intrusion detection [31]. They reported that

their DQL model achieve high degree and impressive

accuracy in identifying intrusion.

Mohammed et al. (2023) in their review on

machine learning and deep learning stratigies for

DDoS detection in Software-Defined Networking

(SDN) frameworks. Their results reveal highlight a

growing interest in utilizing these techniques, with

challenges related to datasets [32]. In a similar vein,

Omarov et al. (2022) explore current techniques for

detecting network intrusions in Internet of Things

(IoT) scenarios. They point out the lack of

computational models and formal justification of

attacks as key challenges in this area [33].

Researchers are exploring various Machine

Learning (ML) and Deep Learning (DL) techniques

to improve cyberattack detection. These techniques

address challenges like data privacy, adaptability,

and evolving threats. Studies recommend ongoing

model refinement, using advanced algorithms, and

testing in real-world scenarios. Overall, these

advancements in ML and DL are crucial for building

robust and adaptable cyberattack detection systems to

combat cyber threats.

Table 1 Summary for some researches in applying ML and DL in network attack detection

Reference Problem ML/DL Techniques Evaluation Metrics Main Results

Hussain et al.

(2023)

IoT-based cyber-

attacks due to device

proliferation

ML, DL Not specified Effective control

against IoT-originated

attacks

Mert et al.

(2023)

Limited applicability

of ML-based IDSs

due to private local

data

Federated learning Accuracy,

computation time

Improved intrusion

detection performance

across nodes

Kheddar et al.

(2023)

Protecting industrial

control systems from

various threats

Deep Transfer

Learning

Accuracy, F-score,

false alarm rate

Enhanced IDS

performance with

scarce labeled data

Ogundokun et

al. (2023)

Lack of

comprehensive

studies on ML for

IDS

ML, DL algorithms Not specified Insights into

advancements and

challenges from 2016-

2021

Fadel et al.

(2022)

DDoS attacks on

SDN controllers

Hybrid Deep Learning Classification

accuracy

Significant

improvement in

detection accuracy

Alabdulatif

and Rizvi

(2022)

Improving Kitsune

NID

Variants of Tree

algorithms (Simple

Tree, Medium Tree,

Coarse Tree, RUS

Boosted, Bagged Tree)

Confusion Matrix,

Speed, Accuracy

Fine Tree algorithm

outperformed others

Malliga,

Nandhini,

Kogilavani

(2022)

Detecting

DoS/DDoS attacks

Deep learning models Various performance

metrics

Deep learning models

have improved

detection capabilities

but need further

enhancement

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

45

Sujatha et al.

(2023)

Network intrusion

detection

Deep Q-Learning

(DQL)

Accuracy, recall rate,

precision

DQL model achieved

91.4% accuracy,

outperforming other

models

Bahashwan et

al. (2023)

Detecting DDoS

attacks in SDN

ML, DL, hybrid

approaches

Evaluation based on

Various performance

metrics (Accuracy)

and unrealistic

datasets

Ensemble, hybrid, and

single ML-DL

approaches are most

used but need

improvement

Omarov et al.

(2022)

Network intrusion

detection

Taxonomy of detection

technologies

Evaluation of

advanced research

topics

Highlights need for

computational models

and formal attack

justification

3. Methodology

In this study, we implemented a systematic and

robust methodology to address the challenges posed

by network attack detection using machine learning

techniques. Our approach involves several key

stages, from data acquisition and preprocessing to

model training, evaluation, and interpretability. The

goal is to develop effective and interpretable models

that can accurately classify network traffic as benign

or malicious. Figure 1, presents a conceptual diagram

illustrating the methodology for network attack

detection research. The diagram highlights the

workflow from data acquisition through model

evaluation and interpretability.

Figure 1 A conceptual diagram illustrating the methodology

Data Acquisition: The first step involves sourcing

the Kitsune Network Attack Dataset, specifically the

SYN DoS dataset. It provides a rich set of features

related to various types of network attacks. This

dataset serves as the foundation for our study,

offering diverse and representative samples for

model training and evaluation.

Data Preprocessing: Once the data is acquired, it

undergoes extensive preprocessing. This stage

includes data exploration to understand the structure

and quality of the dataset, followed by cleaning and

normalization to prepare the data for model training.

Outlier detection and handling are also performed to

ensure the data's integrity and improve model

performance.

Feature Engineering: Feature engineering is a

crucial step where we select and refine the features

used in model training. This step applies techniques

such as SHAP (SHapley Additive exPlanations) to

assess feature significance and comprehend the

impact of different features on model predictions.

This step ensures that the models leverage the most

relevant information for accurate classification.

Model Training: We then train a variety of

machine learning models to address the classification

task. The models include Linear Discriminant

Analysis (LDA), Logistic Regression, and a hybrid

CNN-GRU-LSTM model. Each model is trained and

fine-tuned to optimize its performance in detecting

network attacks.

Model Evaluation: The trained models are

evaluated using several metrics to assess their

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

46

performance. Metrics such as accuracy, precision,

recall, and F1-score are calculated to provide a

comprehensive view of each model's effectiveness.

Error analysis is also conducted to identify any

patterns in misclassification and areas for

improvement.

Model Interpretability: To ensure that the models

are not only effective but also interpretable, we use

SHAP analysis to explain model predictions. This

step involves visualizing SHAP values to understand

how different features influence the model's

decisions, providing transparency and trust in the

model's outputs.

The methodology outlined here integrates these

steps into a coherent process aimed at developing

robust and interpretable models for network attack

detection. By systematically addressing each phase

of the study, we aim to enhance the reliability and

practical applicability of machine learning solutions

in network security.

3.1 Dataset and Preprocessing

3.1.1. Description of the Kitsune Network Attack

Dataset

The Kitsune Network Attack Dataset is a

comprehensive dataset designed to facilitate the

analysis and classification of various network

attacks. It includes network traffic data captured from

a simulated environment where different types of

network attacks were introduced. The dataset is

hosted on Kaggle and provides CSV files with

detailed information about network traffic, including

both benign and malicious activities.

The dataset encompasses a wide range of attack

types, such as:

• ARP MitM (Address Resolution Protocol Man-

in-the-Middle)

• SYN DoS (SYN Denial of Service)

• Active Wiretap

Each type of attack is represented by specific CSV

files containing attributes related to the network

traffic during the attack. Key attributes typically

include time-related features, packet counts, and

other metrics essential for understanding the nature

and impact of the attacks.

The research utilized the SYN DoS dataset from

the Kitsune Network Attack Dataset to analyze and

evaluate network attack detection systems. This

dataset specifically focuses on SYN flood attacks, a

common type of denial-of-service attack that targets

the TCP handshake process. By leveraging the SYN

DoS dataset, the study aims to develop and test

detection algorithms that can effectively identify and

mitigate such attacks, thereby enhancing network

security measures.

3.1.2. Data Exploration and Preprocessing Steps

Data Inspection: Initial exploration of the dataset

involves using methods such as df.info(), df.head()

(Figure 2), and df.describe() to understand the

structure, size, and summary statistics of the dataset.

The output in Figure 2 the intial five rows and first

115 columns of the SYN DoS dataset, are presented,

as well as relevant information about the DataFrame.

Figure 3, shows a summary statistics table for the

DataFrame df. By default, it calculates the count,

mean, standard deviation, minimum, 25th percentile,

median, 75th percentile, and maximum values for

each numeric column in the DataFrame. The output

shows summary statistics for all 115 columns in the

DataFrame. The first column, Count, shows the

number of non-null values in each column. The Mean

column shows the average value for each column,

and the Standard column shows the standard

deviation. The lowest column displays the minimum

value, and the 25% column displays the 25th

percentile. The 50% column displays the average,

and the 75% column displays the 75th percentile.

Finally, the Maximum column displays the

maximum value for each column. Here we notice that

the count values for all columns are the same, which

indicates that there are no missing values in the

DataFrame. In addition, the mean values for columns

107-115 are very small, indicating that these columns

may contain mostly zero values.

These methods provide insights into data types,

missing values, and the basic distribution of feature

values.

Figure 2 Output of df.info() and df.head().

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

47

Figure 3 Summary of the distribution of data in a DataFrame using df.describe().

To effectively analyze and evaluate network attack

detection systems using the SYN DoS dataset from

the Kitsune Network Attack Dataset, a series of

preprocessing steps are undertaken.

• Missing Values and Data Integrity: The dataset

is checked for missing values using the isnull()

function. Figure 4, shows that there are no

missing values in the DataFrame df. Each

column has 0 missing values, shown as 0 for

each column. Columns with missing data are

identified and handled appropriately, either by

imputing missing values or removing columns

or rows with excessive missing data.

• Feature Scaling: Features are scaled to ensure

that all variables contribute equally to the model

training process. Standard scaling (mean = 0,

variance = 1) or Min-Max scaling (rescaling to

a range of 0 to 1) is applied depending on the

nature of the features and the requirements of the

machine learning models used.

• Data Splitting: Using the train_test_split

function from sklearn.model_selection,The

dataset is split into training and testing. This

confirms that the model is evaluated on unseen

data, providing an unbiased assessment of its

performance.

Figure 4 Demonstrates that the DataFrame df contains

no missing values.

3.1.3. Handling Outliers and Feature Engineering

1 Outlier Detection and Removal: Outliers are

identified using the Interquartile Range (IQR)

method. This involves calculating the IQR for

each feature and removing data points that fall

outside the range defined by 1.5 times the IQR

above the third quartile (Q3+1.5×IQR) and

below the first quartile (Q1−1.5×IQR).

Removing outliers helps in improving the

model’s robustness and preventing skewed

results. After filtering, the logistic regression

model is applied to this refined dataset, which

enhances the reliability of the analysis and

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

48

ensures that the predictions made by the model

are based on more accurate data.

2 Feature Engineering: Feature engineering

involves creating new features or modifying

existing ones to enhance the model's predictive

power. In this dataset:

• Aggregation: New features may be created by

aggregating raw packet counts into statistical

measures such as mean, variance, or frequency

of specific attack patterns.

• Normalization: Certain features may be

normalized to bring all values within a common

scale, making it easier for machine learning

algorithms to converge.

• Dimensionality Reduction: Approaches like

Principal Component Analysis (PCA) might be

used to lessen the number of features while

preserving most of the data's variance. This

helps in managing computational complexity

and potentially improving model performance.

3 Feature Selection: Feature selection involves

identifying the most pertinent features for the

classification task. Utilizing methods like

correlation analysis (using df.corr()) aid in

exploring the relationships between features and

selecting those that have the most substantial

effect on the target variable. Redundant or highly

correlated features may be removed to simplify

the model and reduce overfitting. The code

correlation = df.corr() calculates the pairwise

correlation coefficients between all columns in

the DataFrame df and stores the result in a new

DataFrame correlation. This is the correlation

matrix of the df DataFrame. In Figure 5, Each

cell in the matrix represents a Pearson correlation

coefficient between two columns in the

DataFrame. All diagonal elements are 1, because

the correlation of the column with itself is always

1.

A correlation matrix can help to identify which

columns in a DataFrame are closely associated with

one another. For instance, columns 2 and 112 showa

correlation coefficient of 0.19972, reflecting a weak

positive correlation. In contrast, columns 2 and 115

have a correlation coefficient of -0.002829,

indicating a very weak negative correlation.

It is vital to understand that correlation

relationship, does not necessarily mean that one

variable influences the other (not causation).

Additionally, important to note that the correlation

matrix only captures linear relationships between

variables, so it may not detect nonlinear

relationships.

Figure 5 Represents a Pearson correlation coefficient between columns in the DataFrame

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

49

Encoding Categorical Variables: If the dataset

includes categorical variables, these are encoded into

numerical values using techniques like one-hot

encoding or label encoding. This ensures that the

machine learning models can process all types of data

effectively.

Through these preprocessing steps, the dataset can

be prepared for robust machine learning analysis,

ensuring that the models trained on this data are both

accurate and reliable.

4. Machine Learning Models

This section covers the materials and tools used in

the study, including libraries, model architectures,

and computational resources. It should provide the

technical depth, particularly in terms of describing

the methods, tools, and resources in more detail.

4.1. Tools and Libraries

For building and evaluating the machine learning

models, the following tools and libraries were

employed:

• TensorFlow/Keras: Used for designing and

training the neural network models, including

the CNN, GRU, and LSTM components. These

libraries provide high-level APIs for deep

learning model construction, optimization, and

evaluation.

• Scikit-learn: Used for implementing classical

machine learning models like Logistic

Regression and Linear Discriminant Analysis

(LDA). Additionally, Scikit-learn was used for

model evaluation and metrics calculation, such

as accuracy, precision, recall, and F1-score.

• SHAP (SHapley Additive exPlanations):

Utilized for model interpretability. SHAP values

were used to explain the impact of individual

features on the model’s predictions, helping to

understand the factors driving the classification

results.

• Matplotlib/Seaborn: These Python libraries

were used for visualizing model performance,

including confusion matrices, ROC curves, and

SHAP value plots.

• Pandas: Used for data preprocessing, including

feature extraction, cleaning, and data splitting

into training and test sets.

• NumPy: Essential for handling large numerical

data arrays, especially in the context of deep

learning and time-series analysis.

• GPU Resources: Models were trained using

GPU-enabled instances (e.g., NVIDIA Tesla

P100) to accelerate the training process of deep

neural networks, which typically require

substantial computational power.

4.2. Model Architectures and Hyperparameters

The machine learning models implemented in this

study include:

1. Linear Discriminant Analysis (LDA): A

statistical method used for classification

based on finding linear decision boundaries

between classes.

o Key Parameters: Regularization

method (shrinkage), solver, and

priors.

2. Logistic Regression: A simple yet effective

algorithm for binary classification tasks,

utilized as a baseline in our model

comparison.

o Key Parameters: Regularization

type (L2), solver (saga), and

learning rate.

3. Hybrid CNN-GRU-LSTM Model [34]:

The hybrid model integrates three

components—Convolutional Neural

Networks (CNN), Gated Recurrent Units

(GRU), and Long Short-Term Memory

networks (LSTM)—to handle both spatial

and temporal features of network traffic

data.

o CNN Architecture:

▪ Layers: Convolutional

layers followed by pooling

layers.

▪ Activation Function: ReLU.

▪ Regularization: Dropout

(0.3), batch normalization.

▪ Optimizer: Adam optimizer

with learning rate decay.

o GRU Architecture:

▪ Layers: Stacked GRU units

to model sequential

dependencies.

▪ Activation Function: Tanh.

▪ Regularization: Dropout

(0.3).

o LSTM Architecture:

▪ Layers: LSTM units with

time-sequence dependency

modeling.

▪ Activation Function: Tanh.

▪ Regularization: Dropout

(0.3).

o Hyperparameters: The hybrid

model was trained for 50 epochs,

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

50

using a batch size of 32 and Adam

optimizer with an initial learning

rate of 0.001. Early stopping with a

patience of 5 epochs was employed

to prevent overfitting.

o Dropout: Applied to both GRU and

LSTM layers to mitigate

overfitting.

4.3. Computational Resources

The training of deep learning models (CNN, GRU,

LSTM, and hybrid models) required substantial

computational resources:

• Hardware: NVIDIA Tesla P100 GPUs

were used for faster model training, given

the complexity and high computational

requirements of deep learning models.

• Cloud Infrastructure: Models were trained

on cloud computing platforms (e.g., Google

Cloud Platform and Amazon Web

Services (AWS)) to access GPU resources

on-demand and facilitate parallel processing

during training.

4.4. Evaluation Metrics

The performance of the models was assessed using

a variety of evaluation metrics, including:

• Accuracy: Measures the overall percentage

of correct predictions.

• Precision and Recall: Precision (True

Positives / (True Positives + False

Positives)) and Recall (True Positives /

(True Positives + False Negatives)) were

evaluated for both the benign and malicious

classes to understand the model’s ability to

correctly classify each type of traffic.

• F1-Score: The harmonic mean of precision

and recall, used to balance both metrics in

the case of imbalanced datasets.

• ROC Curve and AUC: The Receiver

Operating Characteristic curve was plotted,

and the Area Under the Curve (AUC) was

calculated to evaluate the model's ability to

discriminate between benign and malicious

traffic.

• Mean Squared Error (MSE): Used for

regression-based evaluation, where

applicable.

• SHAP Values [40]: Applied to interpret the

contribution of each feature in the final

model prediction, providing insights into

which features (e.g., packet size, source IP

address) are most influential in identifying

malicious behavior.

4.5. Overview of Linear Discriminant Analysis

(LDA)

Linear Discriminant Analysis (LDA) is a

supervised classification technique aimed at finding

a linear combination of features that optimally

distinguishes and separates multiple or different

classes of objects or events. The primary goal of LDA

is dimensionality reduction while preserving as much

class discriminatory information as possible. LDA

works by projecting the data onto a lower-

dimensional space, which maximizes the distance

between the means of different classes and minimizes

the variance within each class. This projection is

particularly useful in scenarios where the number of

features is much greater than the number of samples.

In network attack classification, LDA can aid and

facilitate the identification of malicious traffic from

legitimate traffic, enhancing effective classification

[34].

The dataset is split into training and testing sets

with the help of the train_test_split function from

sklearn.model_selection. Subsequently, the LDA

model is fitted to the training set and employed to

predict labels for both the training and test sets.

Figure 6 illustrates a classification results and

accuracy analysis report for both the training and test

datasets. The report includes precision, recall, and F1

score for each category.

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

51

Figure 6 LDA Model Performance Summary

Figure 7 Plot LDA Model Performance Summary

The Mean Squared Error (MSE) for the training

data is 0.0019711738082625716 and for the testing

data the error is 0.0019774284481228143, as

illustrated in (Figure 8). This indicates that the LDA

model's predictions for both the training and testing

data are generally very close to the actual values,

demonstrating a low error rate.

Figure 8 The Mean Squared Error (MSE) for the

training data and for the testing data

4.6. Logistic Regression and Its Application

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

52

Logistic Regression is a statistical model used for

binary classification problems. It estimates the

probability of a binary outcome based on one or more

predictor variables. The logistic function (or sigmoid

function) is used to model the relationship between

the dependent variable and independent variables,

providing outputs in the range (0, 1) that can be

interpreted as probabilities. In network security,

Logistic Regression is employed to classify network

traffic as either benign or malicious based on various

features extracted from the traffic data [41]. This

method is valued for its simplicity and

interpretability, making it suitable for initial

explorations and benchmarking against more

complex models. In this case, multiclass

(multi_class='ovr') and solver 'lbfgs' are used to

handle the solution, and 11 job jobs (n_jobs=11) are

used to speed up training. The results of the Logistic

Regression model provide a detailed view of its

performance across various metrics. Below is a

breakdown of the key points and their interpretations:

1. Accuracy (Test Accuracy): The model achieved

an accuracy of 1.00 on the test set. This perfect

accuracy indicates that the model correctly predicted

all the test samples. It suggests that the model has

generalized well to unseen data and is highly

effective in classifying the test data. This is a strong

performance indicator but could also imply potential

overfitting, especially if the test set is not sufficiently

diverse or if the dataset is small.

2. Average Absolute Error (AAE): Training Data

AAE: The average absolute error on the training data

is 0.0021. This low average absolute error indicates

that the model's predictions are very close to the

actual values for the training data. It reflects the

model's accuracy in predicting the training samples,

suggesting that the model fits the training data well.

3. Mean Squared Error (MSE): Test Data MSE:

The mean squared error on the test set is 0.00217. The

MSE measures the average squared difference

between the predicted values and the actual values on

the test set. A low MSE value signifies that the

model’s predictions are close to the actual values,

reflecting good performance. However, while the

MSE is low, it is essential to ensure that the model's

performance is consistently good across different

datasets and not just due to the test set's

characteristics.

Table 1 provides a summary of the performance

metrics for the Logistic Regression model,

highlighting its effectiveness in classifying network

traffic as either benign or malicious. The metrics

include accuracy, Average Absolute Error (AAE),

and Mean Squared Error (MSE) that demonstrate the

model's capability in distinguishing between the two

classes.

The Logistic Regression model demonstrates

excellent performance with perfect accuracy on the

test set, very low average absolute error on the

training data, and a low mean squared error on the

test set. These results indicate that the model is highly

effective in classification tasks and has a good fit on

both training and test data. The outlier exclusion

analysis using the IQR helps to improve the quality

of the dataset, ensuring that the logistic regression

model can make more reliable predictions. The

results indicate that the model performs exceptionally

well, both in training and on unseen data, showcasing

its effectiveness in classifying the target variable

accurately.

Table 1 Summarizes the performance metrics of the

Logistic Regression model.

Metric Value Interpretation

Test

Accuracy

1.00 Indicates perfect

classification of all

test samples. Shows

strong generalization.

Average

Absolute

Error

(AAE)

0.0021 Reflects high accuracy

on training data, with

predictions very close

to actual values.

Mean

Squared

Error

(MSE)

0.00217 Provides an estimate

of prediction error on

the test set; low value

suggests good

performance.

4.7. CNN-GRU-LSTM Hybrid Model

The CNN-GRU-LSTM hybrid model combines

Convolutional Neural Networks (CNNs), GRUs, and

LSTMs to leverage the strengths of each architecture.

CNNs are used to extract spatial features from data,

such as patterns in network traffic data, which are

then processed by GRUs and LSTMs to capture

temporal dependencies [42]. This hybrid approach

aims to enhance the model's ability to learn both

spatial and temporal features, improving its

performance in complex classification tasks like

network attack detection.

The CNN-GRU-LSTM hybrid model combines

the power of CNN for feature extraction, GRU for

efficient sequence learning, and LSTM for handling

long-term dependencies. The following is the pseudo

code for CNN-GRU-LSTM Hybrid Model:

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

53

CNN-GRU-LSTM Hybrid Model Pseudo Code

def cnn_gru_lstm_hybrid(input_data):

 # Step 1: Input Layer

 X = input_data # Input data (network traffic as

sequence or time series)

 # Step 2: CNN Layer for Feature Extraction

 Conv1 = Conv2D(filters=64, kernel_size=3,

activation='relu')(X)

 Pool1 = MaxPooling2D(pool_size=2)(Conv1)

 # Step 3: GRU Layer for Sequence Learning

 GRU1 = GRU(units=128,

return_sequences=True)(Pool1)

 GRU2 = GRU(units=128)(GRU1)

 # Step 4: LSTM Layer for Long-Term Dependencies

 LSTM1 = LSTM(units=128,

return_sequences=True)(GRU2)

 LSTM2 = LSTM(units=128)(LSTM1)

 # Step 5: Fully Connected Layer

 Flattened = Flatten()(LSTM2)

 Dense1 = Dense(units=256,

activation='relu')(Flattened)

 # Step 6: Output Layer

 Output = Dense(units=1,

activation='sigmoid')(Dense1) # Binary classification

 # Step 7: Compile Model

 model = Model(inputs=X, outputs=Output)

 model.compile(optimizer='adam',

loss='binary_crossentropy', metrics=['accuracy'])

 # Step 8: Train Model

 model.fit(X_train, y_train, epochs=10,

batch_size=32, validation_data=(X_val, y_val))

 return model

Table 2 presents a comprehensive overview of the

CNN-GRU-LSTM model's performance, including

key metrics and computational efficiency.

The CNN-GRU-LSTM model demonstrates high

performance in terms of accuracy, precision, recall,

and other metrics, showing it effectively classifies

data and maintains a low rate of false positives and

omissions. However, the high False Negative Rate

suggests that it may miss a significant number of

positive cases. The model's computational intensity

is also reflected in its considerable test time, which

might impact its practicality in real-time applications.

The AUC score further validates the model's good

capability in classifying between positive and

negative instances (Figure 9).

Table 2 Summarizes the performance metrics and test time of the CNN-GRU-LSTM model

Metric Value Interpretation

Accuracy 0.998 99.8% accuracy indicates high performance in classifying

test data.

Precision 0.998 99.8% precision indicates few false positives; model is

reliable in predicting positives.

Recall 0.998 99.8% recall reflects the model’s effectiveness in

identifying actual positives.

F1-Score 0.997 99.7% F1-score balances precision and recall well.

True Negative Rate (TNR) 0.999 99.9% TNR shows high effectiveness in predicting

negatives.

Matthew's Correlation

Coefficient (MCC)

0.494 Moderate MCC indicates some correlation but room for

improvement.

Negative Predictive Value

(NPV)

0.998 99.8% NPV suggests the model is effective in predicting

true negatives.

False Discovery Rate (FDR) 0.078 7.8% FDR indicates a low rate of false positives.

False Negative Rate (FNR) 0.735 73.5% FNR shows many actual positives are missed.

False Omission Rate (FOR) 0.002 0.2% FOR is very low, indicating rare false omissions of

negatives.

False Positive Rate (FPR) 0.00006 0.006% FPR shows a very low rate of false positives.

Test Time 645.40

seconds

The model requires significant time for testing, reflecting

computational intensity.

AUC 0.8559 AUC of 0.8559 shows strong performance in

distinguishing between classes.

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

54

Figure 9 The area under the ROC curve (AUC).

4.8. Hyperparameters and Model Training

Hyperparameters are critical parameters that are

set before the training process and influence the

performance of machine learning models. For LDA,

hyperparameters include the choice of the solver and

regularization parameters. In Logistic Regression,

hyperparameters such as the regularization strength

(C) and solver type are important for controlling

overfitting and optimization [43]. For neural network

models, hyperparameters include the number of

layers, number of units per layer, learning rate, batch

size, and number of epochs.

By leveraging these models and techniques, the

research aims to build a robust classification

framework for detecting and categorizing network

attacks, providing valuable insights into the

effectiveness and efficiency of different machine

learning approaches.

4.9. Advancements in CNN, GRU, and LSTM

Models

In recent years, significant advancements have

been made in the field of deep learning, particularly

in models like Convolutional Neural Networks

(CNN), Gated Recurrent Units (GRU), and Long

Short-Term Memory (LSTM) networks, which have

greatly enhanced their performance in complex tasks

such as network attack detection. These

improvements address several challenges inherent to

earlier versions of these models, particularly in terms

of model efficiency, generalization, and handling

long-term dependencies.

Convolutional Neural Networks (CNN): Modern

CNN architectures have incorporated techniques

such as batch normalization, adaptive pooling, and

skip connections to improve convergence and reduce

overfitting. These enhancements enable CNNs to

better capture spatial features in network traffic data,

making them effective for feature extraction from

complex network flow data. Residual networks

(ResNets) and DenseNets, which introduce skip

connections between layers, allow deeper CNNs to

be trained more effectively, enabling more robust

feature extraction for detecting malicious traffic

patterns.

Gated Recurrent Units (GRU) and Long Short-

Term Memory (LSTM): Recent advances in GRU

and LSTM architectures have addressed the

limitations of traditional recurrent neural networks

(RNNs), particularly the vanishing gradient problem.

New techniques, such as the peephole connections in

LSTMs and the GRU with attention mechanisms,

have improved their ability to capture long-term

dependencies and complex temporal patterns in

sequential data. Additionally, these architectures

have been integrated with advanced optimization

algorithms, such as Adam and RMSprop, which have

significantly improved convergence rates and model

stability during training. GRU and LSTM networks

are now better equipped to handle the temporal nature

of network traffic, which is essential for accurate

attack detection over time.

These recent advancements have been

incorporated into the hybrid CNN-GRU-LSTM

model used in this study, enabling the model to better

capture both spatial and temporal features of network

traffic. By combining the strengths of CNNs for

feature extraction, GRUs for temporal sequence

learning, and LSTMs for long-term dependency

capture, the hybrid model is particularly well-suited

for the complex task of detecting network attacks.

5. Model Evaluation

Evaluating the performance of machine learning

models is crucial for understanding their

effectiveness in classification tasks. This involves

using various metrics that measure different aspects

of model performance, including accuracy, precision,

recall, F1-score, and more. Here’s a consolidated

overview of key metrics and a comparative analysis

of different models:

5.1. Metrics for Performance Evaluation

• Accuracy: Accuracy measures the proportion of

correctly classified instances out of the total

instances and is calculated as:

Accuracy=Number of Correct Predictions/Total

Number of Predictions. While accuracy provides

a general sense of the model's performance, it can

be misleading in imbalanced datasets [44].

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

55

• Precision: Precision, or positive predictive

value, indicates the proportion of true positives

out of all predicted positives: Precision=True

PositivesTrue/ (True Positives + False Positives).

This metric is crucial when the cost of false

positives is high, such as in detecting network

attacks [45].

• Recall: Recall, or sensitivity, measures the

proportion of true positives out of all actual

positives: Recall=True Positives/ (True

Positives+False Negatives).

• Recall is particularly important in scenarios

where failing to detect a positive instance is

critical (Powers, 2011).

• F1-Score: The F1-score is the harmonic mean of

precision and recall, calculated as:

• F1-Score= 2 *((Precision*Recall)/ (Precision +

Recall)). It is especially useful for imbalanced

datasets, as it accounts for both false positives

and false negatives [40].

• ROC Curve and AUC: The Receiver Operating

Characteristic (ROC) curve plots the true

positive rate (recall) against the false positive rate

at various thresholds. The Area Under the Curve

(AUC) provides an aggregate measure of

performance across all classification thresholds,

with 1 indicating perfect classification and 0.5

indicating no discriminative power [47].

5.2. Comparative Analysis of Model Performance

To assess the performance of various models, we

compare Linear Discriminant Analysis (LDA),

Logistic Regression, and a hybrid model combining

Convolutional Neural Networks (CNN), Gated

Recurrent Units (GRU), and Long Short-Term

Memory networks (LSTM). The comparison focuses

on several critical aspects:

1 Accuracy: Reflects how well the model predicts

both classes.

2 Precision, Recall, and F1-Score: Provide insights

into the model's performance on each class,

particularly in imbalanced datasets.

3 Error Metrics: Include Mean Squared Error

(MSE) to gauge prediction accuracy and model

reliability.

4 Test Time: Measures the time required for the

model to make predictions on the test set,

indicating computational efficiency.

In this section, we provide a detailed interpretation

of the performance metrics for three different

models: Linear Discriminant Analysis (LDA),

Logistic Regression, and the CNN-GRU-LSTM

hybrid model. Table 3 summarizes the performance

metrics and test time for each model, highlighting

their strengths and weaknesses in classification

tasks. Each model has its strengths and weaknesses,

which are critical to understanding their effectiveness

in classification tasks. By examining these models

closely, we can identify their capabilities and

limitations in handling various types of data,

particularly in the context of detecting malicious

versus non-malicious instances. Below, we outline

the strengths and weaknesses of each model to

facilitate a comprehensive understanding of their

performance.

• LDA Model:

o Strengths: Achieves perfect precision, recall,

and F1-scores for the "not malicious" class,

indicating exceptional performance on this

majority class.

o Weaknesses: Performs poorly on the

"malicious" class, with a low recall of 0.24,

suggesting difficulties in identifying malicious

instances due to class imbalance.

o Overall: Highly accurate but skewed towards

the majority class, indicating a need for

improvement in handling the minority class.

• Logistic Regression Model:

o Strengths: Achieves perfect accuracy,

precision, and recall across both classes,

demonstrating robustness in classification with

minimal deviation.

o Weaknesses: No significant weaknesses are

noted, as it performs well on both classes.

o Overall: Provides reliable and accurate

classification.

• CNN-GRU-LSTM Model:

o Strengths: Exhibits high accuracy, precision,

and recall, with an impressive F1-score,

effectively distinguishing between classes as

indicated by a high AUC value.

o Weaknesses: High False Negative Rate (FNR),

indicating that it misses a significant number of

positive instances, which can impact its utility

in critical detection scenarios.

o Test Time: Significant computational

complexity is reflected in its longer test time

(645.40 seconds).

o Overall: Strong in classification performance

but comes with trade-offs in computational

time and higher False Negative Rate.

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

56

Table 3 Summary of Model Performance and Test Time

Metric LDA Model Logistic Regression Model CNN-GRU-LSTM Model

Accuracy 1.00 1.00 0.998

Precision (Not Malicious) 1.00 1.00 0.998

Recall (Not Malicious) 1.00 1.00 0.998

F1-Score (Not Malicious) 1.00 1.00 0.997

Precision (Malicious) 0.90 1.00 0.998

Recall (Malicious) 0.24 1.00 0.998

F1-Score (Malicious) 0.38 1.00 0.997

Macro-Average Precision 0.95 1.00 0.998

Macro-Average Recall 0.62 1.00 0.998

Macro-Average F1-Score 0.58 1.00 0.997

Weighted-Average Precision 0.98 1.00 0.998

Weighted-Average Recall 0.75 1.00 0.998

Weighted-Average F1-Score 0.77 1.00 0.997

True Negative Rate (TNR) N/A N/A 0.999

Matthew's Correlation Coefficient (MCC) N/A N/A 0.494

Negative Predictive Value (NPV) N/A N/A 0.998

False Discovery Rate (FDR) N/A N/A 0.078

False Negative Rate (FNR) N/A N/A 0.735

False Omission Rate (FOR) N/A N/A 0.002

False Positive Rate (FPR) N/A N/A 0.00006

AUC N/A N/A 0.8559

Test Time N/A N/A 645.40 seconds

In conclusion, Linear Discriminant Analysis

(LDA) and Logistic Regression are simpler models

that achieve high accuracy but face challenges related

to class imbalance, particularly concerning the

"malicious" class. In contrast, the CNN-GRU-LSTM

model offers a more balanced performance with high

precision and recall for both classes; however, it

requires longer training and testing times due to its

complexity. When selecting a model, it is essential to

consider the trade-offs between performance and

computational resources. While the CNN-GRU-

LSTM model is preferable for scenarios that demand

high accuracy and effective handling of class

imbalance, LDA or Logistic Regression may be

sufficient for situations prioritizing computational

efficiency. This comprehensive overview of model

performance metrics supports informed decision-

making in choosing the most suitable model for

specific classification tasks.

In addition to describing the improvements in the

CNN, GRU, and LSTM models, we have expanded

the comparative analysis between our hybrid CNN-

GRU-LSTM model and other state-of-the-art models

used for network attack detection.

Our approach has been compared with traditional

machine learning models such as Logistic Regression

and Linear Discriminant Analysis (LDA), as well as

with other deep learning models, including Fully

Connected Networks and Single-Model CNN or

LSTM architectures. This comparison not only

highlights the strengths of our hybrid model but also

demonstrates how it outperforms simpler models in

handling complex, imbalanced datasets with both

spatial and temporal dependencies.

• Logistic Regression and Linear Discriminant

Analysis are simpler models that offer high accuracy

in certain contexts, but they are less effective in

capturing the intricate, nonlinear relationships found

in complex data like network traffic. These models

struggle with class imbalance, which is common in

attack detection, and cannot model sequential

dependencies in the data.

• Fully Connected Networks (FNNs) and

Single-Model CNN/LSTM architectures are

effective for certain types of data but fall short in

handling both spatial features (as seen in CNN) and

temporal dependencies (as seen in GRU/LSTM).

While CNNs excel at extracting features, they do not

explicitly model sequential dependencies, and while

LSTMs are good at modeling time-series data, they

lack the capacity for complex feature extraction.

The CNN-GRU-LSTM hybrid model, by

combining these techniques, has been shown to be

superior in handling both spatial and temporal

features simultaneously, which is crucial for network

attack detection where attack patterns often span both

dimensions.

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

57

6. Model Interpretability- SHAP (SHapley

Additive exPlanations)

Model interpretability is crucial for understanding

how machine learning models make predictions and

for building trust in their outputs. SHAP (SHapley

Additive exPlanations) is a powerful framework for

interpreting complex machine learning models.

SHAP values are based on Shapley values from

cooperative game theory, which provide a unified

measure of feature importance by fairly distributing

the prediction among all input features [48].

SHAP values decompose a model's prediction into

contributions from each feature, offering a clear

explanation of how each feature impacts the final

prediction. This approach allows for consistent

interpretation across different models, whether they

are tree-based methods, neural networks, or any other

complex algorithms. By assigning a Shapley value to

each feature, SHAP helps identify which features are

driving model decisions and to what extent. Recent

advancements have extended SHAP to handle high-

dimensional and complex data efficiently, making it

a valuable tool in various domains, including network

security [48].

6.1. Application of SHAP for Feature Importance

Analysis

In the context of network attack detection, SHAP

can be applied to analyze feature importance and

understand model behavior. By calculating SHAP

values for individual predictions, it is possible to

determine which features are most influential in

classifying a particular network traffic instance as

benign or malicious. For example, in a model trained

on network traffic data, SHAP can reveal which

features, such as packet size, source IP address, or

protocol type, contribute most significantly to the

prediction of an attack or a benign activity.

The process involves the following steps:

Model Training: Train a machine learning model

using network traffic data. This model can be a neural

network, tree-based model, or any other suitable

algorithm. The deep model is built and trained using

Keras, where the model consists of an input layer, a

hidden layer with a ReLU activation function, and an

output layer with a sigmoid activation function. The

model is assembled using the specified loss

parameter and evaluation criteria. Figure 10 shows

the progress of training the model over 10 episodes

(epochs) and the evaluation on the test data after each

episode. Each line in the output contains the

following information: - `Epoch n/m`: where `n`

shows the current episode number and `m` the total

number of episodes. After training is completed, the

model is evaluated using the test data, showing the

average accuracy and loss of the model on the test

data.

This model performs several steps to verify and

explore the data before building the deep model.

These steps are: Checking shapes, Filtering Invalid

Values, Distribution Check, Test on Small Sample,

and Data Exploration [40].

Figure 10 The progress of training the model over 10 episodes (epochs)

SHAP Value Calculation: Use the SHAP library to

compute Shapley values for each feature. This

involves generating a set of predictions for the input

data and calculating the contribution of each feature

to these predictions. Figure 11 indicates the process

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

58

of calculating SHAP values for the specified instance

using the SHAP parser.

Figure 11 Output indicates the process of calculating SHAP values for the specified instance

Feature Importance Analysis: Analyze the SHAP

values to identify the most influential features. This

helps in understanding which aspects of the network

traffic data are most predictive of different types of

attacks. Figure 12 shows how Feature 1 and Feature

2 contribute to a specific prediction. If Feature 1 has

a wide distribution and its SHAP value is high for a

particular data point, it indicates that this feature

significantly influenced the prediction for that

instance.

Figure 12 The distribution of two features.

By applying SHAP, practitioners can gain insights

into the importance of various features and make

informed decisions about feature selection and model

refinement [40].

6.2. Visualization of SHAP Values

Visualizing SHAP values enhances the

interpretability of machine learning models by

providing intuitive and comprehensive

representations of feature importance. Several types

of visualizations are commonly used [40]:

Force Plots: Force plots display the contribution of

each feature to a specific prediction. They show how

features push the prediction score towards or away

from the predicted class. For example, in network

attack detection, a force plot can illustrate how

different features contribute to classifying a

particular network packet as malicious [49]. Figure

13 shows the contribution of each feature in

determining the output.

Figure 13 Force Plot SHAP values for the specified instance

Summary Plots: Summary plots aggregate SHAP

values across all instances and provide a global view

of feature importance. Each point on the plot

represents the SHAP value of a feature for an

individual instance, colored by the feature value. This

visualization helps identify which features have the

most significant impact across the entire dataset [49].

Figure 14 displays a simplified plot of the SHAP

values calculated for each feature in the dataset, using

90 instances (10 to 100) and the specified number of

samples (500). This helps in understanding the

impact of each feature on the predictions made by the

model.

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

59

Figure 14 Summary Plots aggregate SHAP values across all instances and provide a global view of feature importance

Figure 14 provides insights into feature importance

and direction. Features located farther from the center

of the plot have a stronger influence on the model's

predictions, with features 1, 5, and 7 exhibiting

notable impact. The direction of a feature's influence

is indicated by the sign of its SHAP value: positive

values suggest an increase in the prediction, while

negative values imply a decrease. While not

explicitly shown, the plot also hints at potential

feature interactions, which can be further explored by

analyzing combinations of features and their

corresponding SHAP values.

By employing these visualizations, stakeholders

can better understand model behavior, validate the

model's decisions, and gain actionable insights into

the factors driving network attack detection.

7. Results and Discussion

This section details the performance metrics of three

models: Linear Discriminant Analysis (LDA),

Logistic Regression, and the CNN-GRU-LSTM

hybrid model, summarized in Table 3. Each model

exhibits distinct strengths and weaknesses in their

ability to classify network traffic as either benign or

malicious.

1. Linear Discriminant Analysis (LDA): LDA

achieved an impressive accuracy of 99.8%

on the test data. This high accuracy indicates

that LDA effectively differentiates between

not malicious and malicious network traffic.

However, LDA's performance might be

limited in handling non-linear relationships

and complex attack patterns due to its

reliance on linear decision boundaries.

2. Logistic Regression: The Logistic

Regression model also performed

exceptionally well, with an accuracy of

100% on the test set. This indicates that the

model correctly classified all test instances.

The model's high accuracy and low mean

squared error suggest it is effective for the

current dataset. However, logistic regression

might not capture complex relationships in

the data as well as more sophisticated

models.

3. CNN-GRU-LSTM model: Exhibited high

accuracy (0.998) and precision (0.998), with

impressive recall (0.998) for the "malicious"

class. However, it showed a high false

negative rate (0.735), indicating that it

misses a significant number of positive

instances. Despite these limitations, the

model achieved a strong AUC of 0.8559,

reflecting its effectiveness in distinguishing

between benign and malicious traffic. The

computational complexity of this model is

evident in its longer test time of 645.40

seconds.

4. Error Metrics: The models generally

exhibited low mean squared errors and high

F1-scores, reflecting their ability to balance

precision and recall effectively. Notably, the

CNN-GRU-LSTM model showed a well-

rounded performance with high accuracy,

precision, recall, and F1-score, but also

revealed areas for improvement, such as the

False Negative Rate (FNR) and False

Discovery Rate (FDR).

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

60

In summary, while the LDA and Logistic

Regression models demonstrate high accuracy, they

struggle with class imbalance, particularly

concerning malicious instances. In contrast, the

CNN-GRU-LSTM model balances performance with

complexity, making it preferable for scenarios

demanding high accuracy, despite its longer

processing times.

5. 8. Conclusions and Future Work

In conclusion, this research contributes valuable

insights into the application of machine learning

models for network attack detection and sets the stage

for future advancements in the field. The

recommendations and potential improvements

outlined provide a roadmap for enhancing the

effectiveness, efficiency, and interpretability of

network security solutions.

This study presents a robust framework for

network attack detection by integrating advanced

machine learning techniques and model

interpretability tools. The hybrid CNN-GRU-LSTM

model demonstrated strong performance with an

accuracy of 0.998 and effectively capturing complex

patterns in network traffic data. The utilization of the

SYN DoS dataset from the Kitsune Network Attack

Dataset provided a solid foundation for our analysis

and model training, ensuring that our findings are

grounded in realistic and relevant data. Furthermore,

the application of SHAP values not only enhanced

the interpretability of the model but also offered

valuable insights into feature importance, thereby

building trust in the model's predictions.

Looking ahead, future work can explore several

avenues to further improve network attack detection

systems. One potential direction is the incorporation

of additional datasets to enhance the model's

generalizability and robustness against diverse attack

vectors. Moreover, experimenting with ensemble

methods that combine the strengths of multiple

algorithms could yield even better performance.

Another important aspect is the exploration of real-

time detection capabilities, enabling the model to

operate in live network environments where prompt

response to threats is crucial.

Additionally, ongoing research into explainable AI

(XAI) techniques can enhance our understanding of

model decisions, allowing practitioners to interpret

complex interactions between features more

effectively. Lastly, developing user-friendly

visualization tools for SHAP outputs could assist

security analysts in quickly identifying critical

indicators of attacks, facilitating faster decision-

making processes. Through these future endeavors,

we aim to advance the field of network security and

contribute to creating safer digital environments.

References

[1]. Barry, B., Chan, H. A. Barry, B., Chan, H. (2010),

Intrusion Detection Systems, In: Stavroulakis, P.,

Stamp, M. (eds): Handbook of Information and

Communication Security pp193-205, SpringerLink.

DOI:10.1007/978-3-642-04117-4_10.

[2]. Ashiku L. and Dagli C.H. (2021). Network

Intrusion Detection System using Deep Learning,

Procedia Computer Science 2021, 185(1):239-247

[3]. Gottapu S. R. and Krishna S. P. (2023), A Novel

Approach for Detection of DoS / DDoS Attack in

Network Environment using Ensemble Machine

Learning Model. International Journal on Recent and

Innovation Trends in Computing and Communication

11(9):244-253. DOI:

10.17762/ijritcc.v11i9.8340ISBN: 2321-8169

[4]. Gottapu S. R. and Krishna S. P. (2024),

Exploring a novel framework for DoS/DDoS attack

detection and simulation in contemporary networks,

January 2024i-manager’s Journal on Software

Engineering 18(3):43. DOI:10.26634/jse.18.3.20596

[5]. Inuwa, M. M., & Das, R. (2024). A comparative

analysis of various machine learning methods for

anomaly detection in cyber-attacks on IoT networks.

Internet of Things, 26, 101162.

https://doi.org/10.1016/j.iot.2024.101162

[6]. Becerra-Suarez, F.L., Tuesta-Monteza, V.A.,

Mejia-Cabrera, H.I., Arcila-Diaz, J. (2024).

Performance Evaluation of Deep Learning Models for

Classifying Cybersecurity Attacks in IoT

Networks. Informatics 2024, 11, 32.

https://doi.org/10.3390/informatics11020032

[7]. Liu, H.; Lang, B. Machine Learning and Deep

Learning Methods for Intrusion Detection Systems: A

Survey. Appl. Sci. 2019, 9, 4396.

https://doi.org/10.3390/app9204396

[8]. Amutha S., Kavitha R., Srinivasan R. and Kavitha

M., "Secure network intrusion detection system using

NID-RNN based Deep Learning," 2022 International

Conference on Advances in Computing,

Communication and Applied Informatics (ACCAI),

Chennai, India, 2022, pp. 1-5, doi:

10.1109/ACCAI53970.2022.9752526.

[9]. Liao, H., Murah, M. Z., Hasan, M. K., Aman, A.

H. M., Fang, J., Hu, X., & Khan, A. U. R. (2024). A

Survey of Deep Learning Technologies for Intrusion

Detection in Internet of Things. IEEE Access. vol.12,

pp.4745-4761, 2024.

[10]. Tossou, S., Qorib, M., & Kacem, T. (2023,

October). Anomaly Based Intrusion Detection System:

https://doi.org/10.1016/j.iot.2024.101162
https://doi.org/10.3390/informatics11020032

Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

61

A Deep Learning Approach. In 2023 International

Symposium on Networks, Computers and

Communications (ISNCC) (pp. 1-6). IEEE. Doha,

Qatar, 2023, pp. 1-6, doi:

10.1109/ISNCC58260.2023.10323740.

[11]. Rani, S., & Kumar, S. (2023, May). Unleashing

the Power of Machine and Deep Learning for

Advanced Network Intrusion Detection: An Analysis

and Exploration. In 2023 International Conference on

Advances in Computing, Communication and Applied

Informatics (ACCAI) IEEE, Chennai, India, 2023, pp.

1-9, doi: 10.1109/ACCAI58221.2023.10200892.

[12]. Pandathara A. (2023). A Comprehensive

Examination of Literature Exploring the

Implementation of Machine Learning to Network

Security's Intrusion Detection Systems. International

Journal of Advanced Research in Science,

Communication and Technology, doi:

10.48175/ijarsct-8605

[13]. Hussain, A., Sharif, H., Rehman, F., Kirn, H.,

Sadiq, A., Khan, M. S., Riaz, A., Ali, C. N., &

Chandio, A. H. (2023). A systematic review of

intrusion detection systems in internet of things using

ML and DL. In 2023 4th International Conference on

Computing, Mathematics and Engineering

Technologies (iCoMET) (pp. 1-5). IEEE.

https://doi.org/10.1109/iCoMET57998.2023.1009914

2

[14]. Nakip M., Gül B. C., Gelenbe E. (2023).

Decentralized Online Federated G-Network Learning

for Lightweight Intrusion Detection. In 2023 31st

International Symposiumon Modeling, Analysis, and

Simulation of Computer andTelecommunication

Systems (MASCOTS). IEEE, 2023, pp. 1–8.

DOI:10.1109/MASCOTS59514.2023.10387644

[15]. Zhu, S., Xu, X., Zhao, J., & Xiao, F. (2024). Lkd-

stnn: A lightweight malicious traffic detection method

for internet of things based on knowledge distillation.

IEEE Internet of Things Journal, vol. 11, no. 4, pp.

6438-6453, 15 Feb.15, 2024.

[16]. Kheddar, H., Himeur, Y., & Awad, A. I. (2023).

Deep transfer learning for intrusion detection in

industrial control networks: A comprehensive review.

Journal of Network and Computer Applications, 220,

103760. https://doi.org/10.1016/j.jnca.2023.103760

[17]. Sunil, C. K., Reddy, S., Kanber, S. G., Sandeep,

V. R., & Patil, N. (2023). Comparative analysis of

intrusion detection system using ML and DL

techniques. In Hybrid Intelligent Systems (pp. 736-

745). Springer, Cham. https://doi.org/10.1007/978-3-

031-27409-1_67

[18]. Mert, Nakip., Baran, Can, Gül., Erol, Gelenbe.

(2023). Decentralized Online Federated G-Network

Learning for Lightweight Intrusion Detection.

arXiv.org, doi: 10.48550/arXiv.2306.13029

[19]. Wasnik P. and Chavhan N., "A Review Paper on

Designing Intelligent Intrusion Detection System

Using Deep Learning," 2023 11th International

Conference on Emerging Trends in Engineering &

Technology - Signal and Information Processing

(ICETET - SIP), Nagpur, India, 2023, pp. 1-6, doi:

10.1109/ICETET-SIP58143.2023.10151563.

[20]. Ogundokun R. O., Basil U., Babatunde A. N.,

Abdulahi A. T., Adenike A. R. and Adebiyi A. A.,

"Intrusion Detection Systems Based on Machine

Learning Approaches: A Systematic Review," 2023

International Conference on Science, Engineering and

Business for Sustainable Development Goals (SEB-

SDG), Omu-Aran, Nigeria, 2023, pp. 01-04, doi:

10.1109/SEB-SDG57117.2023.10124506.

[21]. Krishna, A., Lal, A., Mathewkutty, A. J., Jacob,

D. S., & Hari, M. (2020, July). Intrusion detection and

prevention system using deep learning. In 2020

International Conference on Electronics and

Sustainable Communication Systems (ICESC) (pp.

273-278). IEEE.

[22]. Fadel, M. M., El-Ghamrawy, S. M., Ali-Eldin, A.

M., Hassan, M. K., & El-Desoky, A. I. (2022).

HDLIDP: A Hybrid Deep Learning Intrusion

Detection and Prevention Framework. Computers,

Materials & Continua, 73(2).

[23]. Alghamdi, Mohammed I., A Hybrid Model for

Intrusion Detection in IoT Applications, Wireless

Communications and Mobile Computing, 2022,

4553502, 9 pages, 2022.

https://doi.org/10.1155/2022/4553502

[24]. Monani A. Bhusnale O. Borade K. Madali R.

(2023). Analysing Cyber Threats: A Comprehensive

Literature Review on Data-Driven Approaches,

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), Volume 9, Issue 3, pp.188-

193, May-June-2023. Available at doi :

https://doi.org/10.32628/CSEIT2390351

[25]. Auwal, Sani, Iliyasu. (2022). A Survey of

Network Intrusion Detection Techniques Using Deep

Learning. International Journal of Engineering

Research in Computer Science and Engineering, doi:

10.36647/ijercse/09.08.art017

[26]. [28] Hnamte V., Hussain J. (2023). Network

Intrusion Detection using Deep Convolution Neural

Network. 4th International Conference for Emerging

Technology (INCET). doi:

10.1109/INCET57972.2023.10170202

[27]. Alabdulatif, A., & Rizvi, S.S.H. (2022). Machine

learning approach for improvement in kitsune NID.

Intelligent Automation & Soft Computing, 32(2), 827-

840. https://doi.org/10.32604/iasc.2022.021879

https://doi.org/10.1007/978-3-031-27409-1_67
https://doi.org/10.1007/978-3-031-27409-1_67

 Khalil D.R.A & Abuzir Y., Journal of Soft Computing and Artificial Intelligence 05 (02): 41-62, 2024

62

[28]. Malliga, S., Nandhini, P. S., & Kogilavani, S. V.

(2022). A comprehensive review of deep learning

techniques for the detection of (distributed) denial of

service attacks. Information Technology and Control,

doi: 10.5755/j01.itc.51.1.29595

[29]. Sujatha, V., Prasanna, K. L., Niharika, K.,

Charishma, V., & Sai, K. B. (2023). Network intrusion

detection using deep reinforcement learning. 2023 7th

International Conference on Computing

Methodologies and Communication (ICCMC), 1146-

1150.

https://doi.org/10.1109/ICCMC56507.2023.10083673

[30]. Mohammed, A., Bahashwan, A.A., Manickam,

S., Al-Amiedy, T.A., Aladaileh, M.A., & Hasbullah,

I.H. (2023). A systematic literature review on machine

learning and deep learning approaches for detecting

DDoS attacks in software-defined networking.

Sensors, 23(9), 4441.

https://doi.org/10.3390/s23094441

[31]. Omarov, B., Asqar, M., Sadybekov, R.,

Koishiyeva, T., Bazarbayeva, A., & Uxikbayev, Y.

(2022). IoT network intrusion detection: A brief

review. 2022 International Conference on Smart

Information Systems and Technologies (SIST), 1-5.

https://doi.org/10.1109/SIST54437.2022.9945763

[32]. Tahreeem, M., Andleeb, I., Hussain, B. Z., &

Hameed, A. (2022, December). Machine learning-

based Android intrusion detection systems. Paper

presented at the International Conference on Data

Intensive Applications & Their Challenges

(Computatia X), Jaipur, India. Aligarh Muslim

University, University of Windsor, Texas A&M

University.

[33]. Gonaygunta, H. (2023). Machine learning

algorithms for detection of cyber threats using logistic

regression. International Journal of Smart Sensor and

Adhoc Network, 3(4), 36-42.

https://doi.org/10.47893/IJSSAN.2023.1229

[34]. Pandey, G., Kumar, A. K., & Jha, M. (2024).

Human activity recognition using CNN-LSTM-GRU

model. International Research Journal on Advanced

Engineering Hub (IRJAEH), 2(04), 889-894.

https://doi.org/10.47392/IRJAEH.2024.012

[35]. Bhattarai, A., Gyawali, U., Verma, A., & Ranga,

V. (2024). Improving intrusion detection in a software-

defined network using hybrid CNN and Bi-LSTM.

Proceedings of the 2024 IEEE International

Conference on Artificial Intelligence and

Computational Applications (ICAAIC).

https://doi.org/10.1109/icaaic60222.2024.10575090

[36]. Abdulhakim, A., & Ilyas, M. (2024). Deep

learning for smart grid intrusion detection: A hybrid

CNN-LSTM-based model. International Journal of

Artificial Intelligence & Applications (IJAIA), 15(3),

1-10. https://doi.org/10.5121/ijaia.2024.15301

[37]. Al-Aql, N. (2024). Hybrid RNN-LSTM networks

for enhanced intrusion detection in vehicle CAN

systems. Journal of Electrical Systems, 33(1), 1-8.

https://doi.org/10.52783/jes.3318

[38]. Poornachander, V., Kumar, K. S., & Jagadish, S.

(2024). DDoS attack intrusion detection system with

CNN and LSTM hybridization. Proceedings of the 2nd

International Conference on Sustainable Computing

and Smart Systems (ICSCSS), Coimbatore, India, 1-6.

https://doi.org/10.1109/ICSCSS60660.2024.10625330

[39]. Lv, H., & Ding, Y. (2024). A hybrid intrusion

detection system with K-means and CNN+LSTM. EAI

Endorsed Transactions on Scalable Information

Systems, 11(6). https://doi.org/10.4108/eetsis.5667

[40]. Abu Khalil, D., & Abuzir, Y. (n.d.). Detecting

and Analyzing Network Attacks: A Time-Series

Analysis Using the Kitsune Dataset. Journal of

Emerging Computer Technologies, 5(1), 9-23.

https://doi.org/10.57020/ject.1563146.

[41]. Gür, Y. E. (2024). Comparative Analysis of Deep

Learning Models for Silver Price Prediction: CNN,

LSTM, GRU and Hybrid Approach. Akdeniz İİBF

Dergisi, 24(1), 1-13.

https://doi.org/10.25294/auiibfd.1404173

[42]. Scikit-learn. (2021). scikit-learn: Machine

Learning in Python. Retrieved from https://scikit-

learn.org/

[43]. Hayel, R., Hindi, K. M., Hosny, M. I., & Alharbi,

R. (2024). A selective LVQ algorithm for improving

instance reduction techniques and its application for

text classification. Journal of Intelligent & Fuzzy

Systems. https://doi.org/10.3233/JIFS-235290

[44]. Davis, J., & Goadrich, M. (2006). The

relationship between Precision-Recall and ROC

curves. Proceedings of the 23rd International

Conference on Machine Learning (ICML 2006).

[45]. Van Rijsbergen, C. J. (1979). Information

Retrieval. Butterworth-Heinemann.

[46]. Fawcett, T. (2006). An introduction to ROC

analysis. Pattern Recognition Letters, 27(8), 861-874.

[47]. Lundberg, S. M., & Lee, S. I. (2017). A unified

approach to interpreting model predictions.

Proceedings of the 31st International Conference on

Neural Information Processing Systems (NeurIPS

2017), 4765-4774.

[48]. Lundberg, S. M., Erion, G., & Lee, S. I. (2020).

Explainable AI for Trees: From Local Explanations to

Global Understanding. Proceedings of the 2020

Conference on Fairness, Accountability, and

Transparency (FAccT 2020), 418-429.

https://doi.org/10.47893/IJSSAN.2023.1229
https://scikit-learn.org/
https://scikit-learn.org/

