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Abstract. In the literature, the delta and nabla derivatives have been considered separately in the
study of fuzzy number valued functions on time scales. In this paper, to unify these two derivatives for

fuzzy number valued functions, we propose a new dynamic derivative called the diamond-alpha deriva-

tive, defined via the generalized Hukuhara difference. We establish several fundamental properties of the
diamond-alpha derivative and investigate a particular class of fuzzy initial value problems on time scales

with respect to this new derivative. Additionally, we provide numerical examples to illustrate our results.
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1. Introduction

Dynamic equations on time scales theory is a relatively new field of study, and research in this area
is expanding considerably in the last 35 years. In order to combine continuous and discrete structures,
time scale theory was established. It enables simultaneous treatments to both difference and differential
equations and expands the results to dynamic equations. Basics of time-scale calculus and some recent
studies can be found in [1, 2, 6, 7, 12–15,18, 21, 22, 25]. However, it’s crucial to consider a lot of uncertain
aspects while attempting to fully explore a real-world phenomenon. Zadeh [35] developed fuzzy set
theory in order to define these ambiguous or inaccurate concepts. Kaleva [16] and Lakshmikantham
and Mohapatra [17] established and explored the theory of fuzzy differential equations (FDEs) and
its applications. One drawback of the Hukuhara differentiability-based methods is that the solution
to an FDE only exists for longer support lengths. Bede et al. [3] investigated generalized Hukuhara
differentiability in order to get over this drawback. And many authors [4, 20, 28] are enthusiastic about
this new differentiability concept for fuzzy number valued functions because of this favored benefit. Fard
and Bidgoli [10] investigated the calculus of fuzzy functions on time scales. In their study of fuzzy dynamic
equations on time scales, Vasavi et al. [31–34], by implementing the Hukuhara difference, introduced the
Hukuhara, 2nd type Hukuhara and generalized delta derivatives. The drawback of this derivative is that
it only applies to fuzzy number valued functions on time scales where the diameter increases with length.

To the best of our knowledge, the delta and nabla derivatives have been used independently to study
the derivatives of fuzzy number valued functions on time scales. The characteristics of generalized nabla
differentiability for fuzzy number valued functions on time scales via Hukuhara difference were presented
and examined by Leelavathi et al. [19]. Additionally, they acquired some generalized nabla differentiable
fuzzy number valued function embedding results. Furthermore, under generalized nabla differentiability,
they demonstrated a fundamental principle of a nabla integral calculus for fuzzy functions on time scales.
Fuzzy differential equations on time scales under generalized delta derivative were examined by Vasali
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et al [31]. In order to achieve solutions for FDEs with decreasing length of support, they established
the generalized delta derivative, which is based on four forms. These types of derivatives, in some cases
(such as time scales with discrete points), can only describe the change of functions only on the left
or right side of considered points. In order to provide a tool that can catch the change of functions
on both sides of points in time scales, dynamic derivatives, called the diamond alpha derivative has
been proposed by Sheng et al. [27]. This dynamic derivative is a convex linear combination of the delta
and nabla derivatives. Later, Roger et. al [26] redefined the diamond-alpha derivative independently
of the standard delta and nabla dynamic derivatives, and further examined its properties. In [30], they
introduced a dynamic derivative called diamond-alpha derivative via generalized Hukuhara difference for
interval valued functions on time scales. They furthermore studied a particular class of interval differential
equations with respect to the diamond-alpha derivative.

In this work, motivated by [30], we introduce a dynamic derivative called as the diamond-alpha de-
rivative, denoted as ⋄αgH , for fuzzy number valued functions on time scales via generalized Hukuhara
difference and Hausdorff metric for fuzzy sets and investigate its properties under different conditions on
time scale T. Through our main results, we establish foundational results concerning the existence and
uniqueness of the ⋄αgH -derivative for fuzzy functions. Additionally, we explore conditions under which
fuzzy functions are ⋄αgH -differentiable at both dense and isolated points on the time scale, providing
criteria for the existence of limits in these contexts. The final results address the differentiability of
the r-level sets of fuzzy functions, particularly under monotonicity ”length conditions”. These results
enhance the understanding of ⋄αgH -differentiability in fuzzy functions and its applications within fuzzy
differential equations on time scales.

This paper’s outline is as follows: We give some basic definitions and results relating to the calculus
of time scales and fuzzy sets in Section 2. In Section 3, we present the main results and provide some
examples to illustrate some of the results. In Section 4, we consider a particular class of fuzzy initial
value problems on time scales and present some numerical examples.

2. Preliminaries

Definition 1. [6] A nonempty closed subset of the real numbers R is called a time scale, often denoted
by T.

Definition 2. [6] The function σ : T → R defined by

σ(t) = inf{s ∈ T : s > t}

is called the forward jump operator. Additionally, we set inf ∅ := supT.

Definition 3. [6] The function ρ : T → R defined by

ρ(t) = sup{s ∈ T : s < t}

is called the backward jump operator. Additionally, we set sup∅ := inf T.

Definition 4. [6] If σ(t) > t, then t ∈ T is said to be a right-scattered point.

Definition 5. [6] If ρ(t) < t, then t ∈ T is said to be a left-scattered point.

Definition 6. [6] If σ(t) = t and t ̸= supT, then t ∈ T is said to be a right-dense point.

Definition 7. [6] If ρ(t) = t and t ̸= inf T, then t ∈ T is said to be a left-dense point.

Definition 8. [6] The function µ : T → [0,∞) defined by µ(t) = σ(t) − t is called the (forward)
graininess.

Definition 9. [6] The function ν : T → [0,∞) defined by ν(t) = t−ρ(t) is called the backward graininess.

Additionally, we define the following notations for simplicity in the definitions and theorems throughout
this paper: µst = σ(s)− t and νst = t− ρ(s).
The set Tκ is defined as follows: if T has a left-scattered maximum m, then Tκ := T \ {m}. If no such
maximum exists, then Tκ := T. Similarly, the set Tκ is defined as follows: if T has a right-scattered
minimum m, then Tκ := T \ {m}. If no such minimum exists, then Tκ := T.
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Definition 10. [6] Let h : T → R be a function and let s ∈ Tκ. We define (∆h)(s) as the number (if it
exists) that satisfies the following property: for any ϵ > 0, there exists a neighborhood NT of s given by
NT := (s− δ, s+ δ) ∩ T for some δ > 0 such that

|[h(σ(s))− h(t)]− (∆h)(s)[σ(s)− t]| ≤ ϵ|σ(s)− t|
for all t ∈ NT. The value (∆h)(s) is called the delta derivative of h at s.

Definition 11. [6] Let h : T → R be a function, and let s ∈ Tκ. We define (∇h)(s) as the number (if
it exists) that satisfies the following property: for any ϵ > 0, there is a neighborhood NT of s given by
NT := (s− δ, s+ δ) ∩ T for some δ > 0 such that

|[h(ρ(s))− h(t)]− (∇h)(s)[ρ(s)− t]| ≤ ϵ|ρ(s)− t|
for all t ∈ NT. The value (∇h)(s) is referred to as the nabla derivative of h at s.

Definition 12. [26] Let h : T → R be a function and s ∈ Tκ ∩ Tκ. Then the ⋄α-derivative of h at the
point s ∈ Tκ

κ, denoted by (⋄αh)(s), is the number (provided it exists) that satisfies the following property:
for any ϵ > 0, there is a neighborhood NT of s given by NT := (s− δ, s+ δ) ∩ T for some δ > 0 such that

|α|h(σ(s))− h(t)||νst|+ (1− α)|h(ρ(s))− h(t)||µst| − (⋄αh)(s)|νstµst| ≤ ϵ|νstµst|,
for any t ∈ NT. Here, (⋄αh)(s) referred to as the diamond-alpha derivative of h at s.

Definition 13. [35] A fuzzy set u in a universe of discourse U is represented by a function u : U → [0, 1],
where u(x) indicates the membership degree of x to the fuzzy set u.

We use F (U) to denote the set of all fuzzy subsets of U .

Definition 14. [23] Let u : U → [0, 1] be a fuzzy set. The r-level sets of u are defined as

ur = {x ∈ U : u(x) ≥ r}
for 0 < r ≤ 1. The 0-level set of u

u0 = cl {x ∈ U : u(x) > 0}
is called the support of the fuzzy set u. Here, cl denotes the closure of the set u.

Definition 15. [23] Let u : R → [0, 1] be a fuzzy subset of the real numbers. Then, u is said to be a
fuzzy number if it fulfills the following criteria:

(1) u is normal, which means that there exists an x0 ∈ R such that u(x0) = 1.
(2) u is quasi-concave, which means that for all λ ∈ [0, 1], the inequality u(λx + (1 − λ)y) ≥

min{u(x), u(y)} holds.
(3) u is upper semicontinuous on R, which means that for any ϵ > 0, there exists a δ > 0 such that

u(x)− u(x0) < ϵ whenever |x− x0| < δ.
(4) u is compactly supported, which means that the closure cl{x ∈ R : u(x) > 0} is compact.

We use FN (R) to denote the set of all fuzzy numbers of R.

Definition 16. Let a1 ≤ a2 ≤ a3 be real numbers. The fuzzy number denoted by u = (a1, a2, a3) is called
a triangular fuzzy number whose membership function is

u(x) =


x−a1

a2−a1
, a1 ≤ x ≤ a2,

a3−x
a3−a2

, a2 ≤ x ≤ a3,

0, otherwise.

Definition 17. [29] Let u, v ∈ FN (R). The generalized Hukuhara difference (gH-difference) is the fuzzy
number w, if it exists, such that

u⊖gH v = w ⇐⇒ u = v + w or v = u+ (−1)w.

Since level sets of a fuzzy number are closed and bounded intervals, we will denote r-level set of a fuzzy
number u by ur = [u−

r , u
+
r ] and its length by len(ur) = u+

r − u−
r .

Remark 1. The criteria for the existence of w = u⊖gH v in FN (R) are as follows:
Case (i):

• w−
r = u−

r − v−r and w+
r = u+

r − v+r
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• Here, w−
r must be increasing, w+

r must be decreasing, and it must hold that w−
r ≤ w+

r for all r
in [0, 1].

Case (ii):

• w−
r = u+

r − v+r and w+
r = u−

r − v−r
• Similarly, w−

r must be increasing, w+
r must be decreasing, and w−

r ≤ w+
r must hold for all r in

[0, 1].

Theorem 1. [5, 29] Let u, v ∈ FN (R). If gH-difference u⊖gH v ∈ FN (R) exists, then
(u⊖gH v)r = [min{u−

r − v−r , u
+
r − v+r },max{u−

r − v−r , u
+
r − v+r }].

Definition 18. [8] The metric D∞ : FN (R)× FN (R) → R+ ∪ {0} defined by

D∞(u, v) = sup
r∈[0,1]

max
{∣∣u−

r − v−r
∣∣ , ∣∣u+

r − v+r
∣∣} ,

where ur = [u−
r , u

+
r ], vr = [v−r , v

+
r ], is called Hausdorff metric for fuzzy numbers.

The Hausdorff metric provides a way to measure the distance between two fuzzy sets by considering
their level sets. This metric allows researchers to compare the similarity or dissimilarity of fuzzy sets in
a rigorous mathematical way. Specifically, it can be used to quantify how far apart two fuzzy sets are
based on their support and their membership functions.

Theorem 2. [8]
Let a, b, c, d ∈ FN (R) and m ∈ R. The Hausdorff metric satisfies the followings:

(1) D∞ (a+ c, b+ c) = D∞ (a, b) .
(2) D∞ (ma,mb) = |m|D∞ (a, b) .
(3) D∞ (a+ b, c+ d) ≤ D∞ (a, c) +D∞ (b, d) .

3. Generalized Hukuhara Diamond-Alpha Derivative of Fuzzy Valued Functions on
Time Scales

Definition 19. [31] Let f : T → FN (R) be a fuzzy function and let s ∈ Tκ. The generalized Hukuhara
delta derivative of f at s, if it exists, is a fuzzy number (∆gHf) (s) ∈ FN (R) such that for any given
ϵ > 0, there exists a neighborhood NT(s, δ) = (s− δ, s+ δ) ∩ T for some δ > 0, such that for all t ∈ NT,
f(σ(s))⊖gH f(t) exists and we have

D∞(f(σ(s))⊖gH f(t), (∆gHf)(s)µst) ≤ ϵ |µst| .

Definition 20. [19] Let f : T → FN (R) be a fuzzy function and let s ∈ Tκ. The generalized Hukuhara
nabla derivative of f at s, if it exists, is a fuzzy number (∇gHf) (s) ∈ FN (R) such that for any given
ϵ > 0, there exists a neighborhood NT(s, δ) = (s− δ, s+ δ) ∩ T for some δ > 0, such that for all t ∈ NT,
f(t)⊖gH f(ρ(s)) exists and we have

D∞(f(t)⊖gH f(ρ(s)), (∇gHf)(s)νst) ≤ ϵ |νst| .

Definition 21. Let f : T → FN (R) be a fuzzy function and let s ∈ Tκ
κ. The generalized Hukuhara

diamond-alpha derivative of f at s, if it exists, is a fuzzy number
(
⋄αgHf

)
(s) ∈ FN (R) such that for any

given ϵ > 0, there exists a neighborhood NT(s, δ) = (s − δ, s + δ) ∩ T for some δ > 0, such that for all
t ∈ NT f(σ(s))⊖gH f(t) and f(t)⊖gH f(ρ(s)) exist and we have

D∞(α[f(σ(s))⊖gH f(t)]νst + (1− α)[f(t)⊖gH f(ρ(s))]µst, (⋄αgHf)(s)µstνst) ≤ ϵ |µstνst| .

Theorem 3. Let f : T → FN (R) be a fuzzy function and s ∈ Tκ
κ.

(
⋄αgHf

)
(s) ∈ FN (R) is unique, if it

exists.

Proof. Let s ∈ Tκ
κ. Assume

(
⋄αgHf

)
1
(s) and

(
⋄αgHf

)
2
(s) are ⋄αgH -derivative of f at s. Let ϵ > 0 be

arbitrary. Then there exists a δ > 0 such that for any t ∈ NT(s, δ) we have

D∞
(
α
[
f(σ(s))⊖gH f(t)

]
νst + (1− α)

[
f(t)⊖gH f(ρ(s))

]
µst,(

⋄αgHf
)
1
(s)µst νst

)
≤ ϵ

2
|µst νst| ,

D∞
(
α
[
f(σ(s))⊖gH f(t)

]
νst + (1− α)

[
f(t)⊖gH f(ρ(s))

]
µst,
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⋄αgHf

)
2
(s)µst νst

)
≤ ϵ

2
|µst νst| .

D∞
( (

⋄αgHf
)
1
(s),

(
⋄αgHf

)
2
(s)

)
=

1

|µst νst|
D∞

( (
⋄αgHf

)
1
(s)µst νst,

(
⋄αgHf

)
2
(s)µst νst

)

=
1

|µst νst|
D∞


(
⋄αgHf

)
1
(s)µst νst + α

[
f(σ(s))⊖gH f(t)

]
νst

+(1− α)
[
f(t)⊖gH f(ρ(s))

]
µst,(

⋄αgHf
)
2
(s)µst νst + α

[
f(σ(s))⊖gH f(t)

]
νst

+(1− α)
[
f(t)⊖gH f(ρ(s))

]
µst


≤ 1

|µst νst|
D∞

( (
⋄αgHf

)
1
(s)µst νst, α

[
f(σ(s))⊖gH f(t)

]
νst

+ (1− α)
[
f(t)⊖gH f(ρ(s))

]
µst

)
+

1

|µst νst|
D∞

( (
⋄αgHf

)
2
(s)µts νts, α

[
f(σ(s))⊖gH f(t)

]
νst

+ (1− α)
[
f(t)⊖gH f(ρ(s))

]
µst

)
≤ 1

|µst νst|
ϵ

2
|µst νst|+

1

|µst νst|
ϵ

2
|µst νst|

≤ ϵ.

Therefore,
(
⋄αgHf

)
1
(s) =

(
⋄αgHf

)
2
(s). □

Theorem 4. Let f : T → FN (R) be a function and s ∈ Tκ
κ a dense point. Then f is ⋄αgH-differentiable

at s if and only if the limit

lim
t→s

f(s)⊖gH f(t)

s− t
exists and (

⋄αgHf
)
(s) = lim

t→s

f(s)⊖gH f(t)

s− t
.

Proof. Since s is dense, σ(s) = ρ(s) = s. Hence, we obtain

α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
= α

f(s)⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(s)

νst

= α
f(s)⊖gH f(t)

µst

+ (1− α)
f(s)⊖gH f(t)

µst

= (α+ 1− α)
f(s)⊖gH f(t)

µst

=
f(s)⊖gH f(t)

µst

.

So, we have

D∞

(
f(s)⊖gH f(t)

µst

,
(
⋄αgHf

)
(s)

)
< ϵ.

Therefore, (
⋄αgHf

)
(s) = lim

t→s

f(s)⊖gH f(t)

s− t
.

□

Theorem 5. Let f : T → FN (R) be a function and s ∈ Tκ
κ be an isolated point. Then f is ⋄αgH-

differentiable at s and(
⋄αgHf

)
(s) = α

f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

Proof. Since s is an isolated point, we have

lim
t→s

[
α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst

]
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= α
f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

Hence, we obtain that f is ⋄αgH -differentiable at s and(
⋄αgHf

)
(s) = α

f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

□

Theorem 6. Let f : T → FN (R) be a fuzzy function and s ∈ Tκ
κ. Assume f is ∆gH and ∇gH differentiable

at s. Then, f is ⋄αgH-differentiable at s and

(⋄αgHf)(s) = α(∆gHf)(s) + (1− α)(∇gHf)(s).

Proof. Let ϵ > 0 be given. Since f is ∆gH and ∇gH differentiable at s, there exists δ > 0 such that for
any t ∈ NT(s, δ) = (s− δ, s+ δ) ∩ T, we have

D∞(f(σ(s))⊖gH f(t), (∆gHf)(s)µst) ≤ ϵ

2
|µst| ,

D∞(f(t)⊖gH f(ρ(s)), (∇gHf)(s)νst) ≤ ϵ

2
|νst| .

It follows that

D (α [f(σ(s))⊖gH f(t)] νst, α(∆gHf)(s)µstνst) ≤ ϵα

2
|µstνst| ,

D ((1− α) [f(t)⊖gH f(ρ(s))]µst, (1− α)(∇gHf)(s)µstνst) ≤ ϵ(1− α)

2
|µstνst| .

We get

D

(
α
[
f(σ(s))⊖gH f(t)

]
νst + (1− α)

[
f(t)⊖gH f(ρ(s))

]
µst, (α(∆gHf)(s) + (1− α)(∇gHf)(s)) µst νst

)
≤ D

(
α
[
f(σ(s))⊖gH f(t)

]
νst, α(∆gHf)(s)µst νst

)
+D

(
(1− α)

[
f(t)⊖gH f(ρ(s))

]
µst, (1− α)(∇gHf)(s)µst νst

)
≤ ϵα

2
|µst νst|+

ϵ(1− α)

2
|µst νst|

≤ ϵ |µst νst| .

Therefore, f is ⋄αgH - differentiable at s and

(⋄αgHf)(s) = α(∆gHf)(s) + (1− α)(∇gHf)(s).

□

Theorem 7. Let f : T → FN (R) be a function and the r-level sets of f be

fr(t) =
[
f−
r (t), f+

r (t)
]

for any t ∈ T and r ∈ [0, 1], where f−
r : T → R and f+

r : T → R are the left and right end-points of the
r-level sets. Assume len(fr(t)) := f+

r (t)−f−
r (t) is monotone on a neigborhood NT(s, δ) = (s−δ, s+δ)∩T

for some δ > 0 and f is ⋄αgH- differentiable at s ∈ Tκ
κ. Then, f−

r and f+
r are ⋄α-differentiable at s as

well. Moreover,

(1) if len(fr(t)) is increasing on a neighborhood of s ∈ Tκ
κ, then(

⋄αgHf
)
r
(s) =

[(
⋄αf−

r

)
(s),

(
⋄αf+

r

)
(s)

]
,

(2) if len(fr(t)) is decreasing on a neighborhood of s ∈ Tκ
κ, then(

⋄αgHf
)
r
(s) =

[(
⋄αf+

r

)
(s),

(
⋄αf−

r

)
(s)

]
.

Proof. (1) Assume that len(fr(t) is increasing on NT(s, δ) = (s−δ, s+δ)∩T for some δ > 0, σ(s) ̸= t
and ρ(s) ̸= t for any fixed r ∈ [0, 1]. Let us consider the following cases.
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Case 1: Let ρ(s) < t < σ(s). Hence, µst = σ(s) − t > 0 and νst = t − ρ(s) > 0. Since len(fr(t)) is
increasing on NT(s, δ) we have len(f(σ(s))) > len(f(t)) and len(f(t)) > len(f(ρ(s))) for any
t ∈ NT(s, δ). Let

g(t) := α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
.

By Remark 1 and some interval arithmetics, we obtain[
g−r (t), g

+
r (t)

]
=

[
α
f−
r (σ(s))− f−

r (t)

µst

+ (1− α)
f−
r (t)− f−

r (ρ(s))

νst
,

α
f+
r (σ(s))− f+

r (t)

µst

+ (1− α)
f+
r (t)− f+

r (ρ(s))

νst

]
.

Case 2: Let t > σ(s). Hence, µst = σ(s)− t < 0 and νst = t− ρ(s) > 0. Since len(fr(t)) is increasing on
NT(s, δ) we have len(f(σ(s))) < len(f(t)) and len(f(t)) > len(f(ρ(s))) for any t ∈ NT(s, δ). Let

g(t) := α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
.

By Remark 1 and some interval arithmetics, we obtain[
g−r (t), g

+
r (t)

]
=

[
α
f−
r (σ(s))− f−

r (t)

µst

+ (1− α)
f−
r (t)− f−

r (ρ(s))

νst
,

α
f+
r (σ(s))− f+

r (t)

µst

+ (1− α)
f+
r (t)− f+

r (ρ(s))

νst

]
.

Case 3: Let t < ρ(s). Hence, µst = σ(s)− t > 0 and νst = t− ρ(s) < 0. Since len(fr(t)) is increasing on
NT(s, δ) we have len(f(σ(s))) > len(f(t)) and len(f(t)) < len(f(ρ(s))) for any t ∈ NT(s, δ). Let

g(t) := α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
.

Similarly, by Remark 1 and some interval arithmetics, we obtain[
g−r (t), g

+
r (t)

]
=

[
σ
f−
r (σ(s))− f−

r (t)

µst

+ (1− α)
f−
r (t)− f−

r (ρ(s))

νst
,

α
f+
r (σ(s))− f+

r (t)

µst

+ (1− α)
f+
r (t)− f+

r (ρ(s))

νst

]
.

Furthermore, since f is ⋄αgH - differentiable at s, we derive

lim
t→s

[
α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst

]
=

(
⋄αgHf

)
(s) ∈ FN (R).

The proof of (2) can be done similarly. □

Definition 22. Let f : T → FN (R) be a function and the r-level sets of f be

fr(t) =
[
f−
r (t), f+

r (t)
]

for any t ∈ T and r ∈ [0, 1], where f−
r : T → R and f+

r : T → R are the left and right end-points of the
r-level sets. Assume that f is ⋄αgH- differentiable at s ∈ Tκ

κ. Then, f is said to be

(1) ⋄αgH1- differentiable at s if(
⋄αgHf

)
r
(s) =

[(
⋄αf−

r

)
(s),

(
⋄αf+

r

)
(s)

]
,

(2) ⋄αgH2- differentiable at s if(
⋄αgHf

)
r
(s) =

[(
⋄αf+

r

)
(s),

(
⋄αf−

r

)
(s)

]
.

Theorem 8. Let f : T → FN (R) be a function and the r-level sets of f be

fr(t) =
[
f−
r (t), f+

r (t)
]

for any t ∈ T and r ∈ [0, 1], where f−
r : T → R and f+

r : T → R are left and right end-points of the
r-level sets. Assume that f is ⋄αgH- differentiable at s ∈ Tκ

κ.
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(1) If f is ⋄αgH1- differentiable on NT (s, δ), then f has non-decreasing length of the closure of its
support.

(2) If f is ⋄αgH2- differentiable on NT (s, δ), then f has non-increasing length of the closure of its
support.

Proof. (1) Assume f is ⋄αgH1- differentiable on NT(s, δ) and len(fr(t)) is decreasing length of the

closure of its support for some t ∈ NT(s, δ) for any fixed r ∈ [0, 1]. Then, by Theorem 7 we have(
⋄αgHf

)
0
(t) =

[(
⋄αf+

0

)
(t),

(
⋄αf−

0

)
(t)

]
,

which contradicts with the fact that f is ⋄αgH1- differentiable on NT(s, δ)̇. Hence, f has non-
decreasing length of the closure of its support.

(2) Assume f is ⋄αgH2- differentiable on NT(s, δ) and len(fr(t)) is increasing length of the closure of

its support for some t ∈ NT(s, δ) for any fixed r ∈ [0, 1]. Then, by Theorem 7 we have(
⋄αgHf

)
0
(t) =

[(
⋄αf−

0

)
(t),

(
⋄αf+

0

)
(t)

]
.

which contradicts with the fact that f is ⋄αgH2- differentiable on NT(s, δ)̇. Hence, f has non-
decreasing length of the closure of its support.

□

3.1. Examples.

Example 1. Consider the time scale T = hZ = {hn : n ∈ Z, h > 0} and let f : [0,∞)T → FN (R) be a
function such that f(t) = (1, 2, 3)t. The r-level sets of f are fr(t) = [1 + r, 3− r] t. By Theorem 5 , f is
⋄αgH-differentiable at any s ∈ [h,∞)T such that(

⋄αgHf
)
(s) = α

f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

Since len(fr(t)) = 2t(1− r), which is increasing for any fixed r ∈ [0, 1], we have(
⋄αgHf

)
r
(s) =

[(
⋄αf−

r

)
(s),

(
⋄αf+

r

)
(s)

]
.

Let α = 1
2 , then we have(

⋄ 1
2 f−

r

)
(s) =

1

2

f−
r (σ(s))− f−

r (s)

µ(s)
+

1

2

f−
r (s)− f−

r (ρ(s))

ν(s)

=
1

2

[
f−
r (s+ h)− f−

r (s)

h
+

f−
r (s)− f−

r (s− h)

h

]
=

1

2

[
(1 + r)(s+ h)− (1 + r)s

h
+

(1 + r)s− (1 + r)(s− h)

h

]
= 1 + r.

Similarly we can obtain
(
⋄ 1

2 f+
r

)
(s) = 3 − r. Therefore,

(
⋄

1
2

gHf
)
r
(s) = [1 + r, 3 − r] and

(
⋄

1
2

gHf
)
(s) =

(1, 2, 3).

Example 2. Consider the time scale T = {
√
n : n ∈ N} and let f : T → FN (R) be a function such that

f(t) = (1, 2, 3) 1
t2 . The r-level sets of f are fr(t) = [1 + r, 3− r] 1

t2 and

len(fr(t)) =
1

t2
(3− r − 1− r)

=
1

t2
(2− 2r)

=
2

t2
(1− r),

which is decreasing for any fixed r ∈ [0, 1]. Hence, f is ⋄αgH-differentiable at s ∈ [
√
2,∞)T with(

⋄αgHf
)
r
(s) =

[(
⋄αf+

r

)
(s),

(
⋄αf−

r

)
(s)

]
,
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where (
⋄αf−

r

)
(s) = α

f−
r (σ(s))− f−

r (s)

µ(s)
+ (1− α)

f−
r (s)− f−

r (ρ(s))

ν(s)

= α

1+r
σ2(s) −

1+r
s2

σ(s)− s
+ (1− α)

1+r
s2 − 1+r

ρ2(s)

s− ρ(s)

= α
1+r
s2+1 − 1+r

s2√
s2 + 1− s

+ (1− α)
1+r
s2 − 1+r

s2−1

s−
√
s2 − 1

.

and (
⋄αf+

r

)
(s) = α

f+
r (σ(s))− f+

r (s)

µ(s)
+ (1− α)

f+
r (s)− f+

r (ρ(s))

ν(s)

= α
3−r
s2+1 − 3−r

s2√
s2 + 1− s

+ (1− α)
3−r
s2 − 3−r

s2−1

s−
√
s2 − 1

.

4. Fuzzy Initial Value Problems on time scales with Generalized Hukuhara
Diamond-Alpha Derivatives

In this section, we consider the following fuzzy initial value problem (FIVP):

(⋄αgHy)(t) = f(t, y(t)), t ∈ (a, b)T ⊂ Tκ
κ (1)

y(t0) = y0, (2)

where f : (a, b)T × FN (R) → FN (R). Assume that r-level sets of y, f and ⋄αgHy are

yr(t) =
[
y−r (t), y

+
r (t)

]
,

fr(t) =
[
f−
r (t), f+

r (t)
]
,

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].

There are two cases to be considered:

Case 1: len(yr) is increasing. By Theorem 7, we obtain

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].

Therefore, FIVP (1)-(2) can be expressed by the system:

(⋄αy−r )(t) = f−
r (t, y−r (t), y

+
r (t)),

(⋄αy+r )(t) = f+
r (t, y−r (t), y

+
r (t)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

where r ∈ [0, 1] and t ∈ (a, b)T.
Case 2: len(yr) is decreasing. By Theorem 7, we obtain

(⋄αgHy)r(t) = [(⋄αy+r )(t), (⋄αy−r )(t)].

Therefore, FIVP (1)-(2) can be expressed by

(⋄αy−r )(t) = f+
r (t, y−r (t), y

+
r (t)),

(⋄αy+r )(t) = f−
r (t, y−r (t), y

+
r (t)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

where r ∈ [0, 1] and t ∈ (a, b)T.

Assume T = {t0, t1, t2, ..., tN+1 : ti < ti+1,∀i ∈ 0, N} with Tκ = T\{tN+1}, Tκ = T\{t0} and
Tκ
κ = Tκ ∩ Tκ. Since T is an isolated time scale, according to Theorem 5 we obtain

(⋄αy−r )(t) = α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
,
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(⋄αy+r )(t) = α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
.

Hence, Case 1 and Case 2 become

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= f−

r (ti, y
−
r (ti), y

+
r (ti)),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= f+

r (ti, y
−
r (ti), y

+
r (ti)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

and

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= f+

r (ti, y
−
r (ti), y

+
r (ti)),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= f−

r (ti, y
−
r (ti), y

+
r (ti)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

respectively.

4.1. Numerical Examples. Now we will give some numerical examples. Triangular fuzzy numbers are
widely used in fuzzy applications. They offer a straightforward and efficient means of representing and
handling uncertainty and vagueness in data. Therefore, in numerical examples, fuzzy constants and initial
conditions will be represented as triangular fuzzy numbers.

Example 3. Let T = hZ and let us consider the following FIVP:

(⋄αgHy)(t) = −y(t), t ∈ (0, 5)hZ, (3)

y(0) = y(σ(h)) = y(h) = (−1, 0, 1). (4)

Assume r-level sets of y and ⋄αgHy are

yr(t) =
[
y−r (t), y

+
r (t)

]
,

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].
By using the method above, we obtain the following two systems:

Case1: Under ⋄αgH1-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y+r (ti),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y−r (ti),

y−r (0) = y−r (h) = −1 + r,

y+r (0) = y+r (h) = 1− r.

Case2: Under ⋄αgH2-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y−r (ti),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y+r (ti),

y−r (0) = y−r (h) = −1 + r,

y+r (0) = y+r (h) = 1− r.

The approximate and true solutions to these systems for h = 1
10 , α = 0.8, and r = 0 are illustrated in

Figure 1 and Figure 2. In these figures, since the end points of the solutions do not switch, these solutions
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exist on [0, 5] in both cases. We observe that switching of the end points of the solution may occur, and
the error in the approximate solution may increase as we change α. In Case 1, when we set α = 0.43,
switching occurs at t = 27

10 , which implies that ⋄αgH1-differentiability does not exist after t = 19
5 . And in

Case 2, when we set α = 0.53, switching occurs at t = 19
5 , which implies that ⋄αgH2-differentiability does

not exist after t = 19
5 ; also see Figure 3.

Figure 1. 0-level solutions to Case 1.

Figure 2. 0-level solutions to Case 2.

Example 4. Let T = hZ and let us consider the following FIVP:

(⋄αgHy)(t) = −y(t) + (1, 2, 3)e−t, t ∈ (0, 5)hZ, (5)

y(0) = y(σ(h)) = y(h) = (−2, 0, 2). (6)

Assume r-level sets of y and ⋄αgHy are

yr(t) =
[
y−r (t), y

+
r (t)

]
,

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].
By using the method above, we obtain the following two systems:

Case1: Under ⋄αgH1-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y+r (ti) + (1 + r)e−t,
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Figure 3. 0-level solutions to Case 2.

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y−r (ti) + (3− r)e−t,

y−r (0) = y−r (h) = −2 + 2r,

y+r (0) = y+r (h) = 2− 2r.

Case2: Under ⋄αgH2-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y+r (ti) + (1 + r)e−t,

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y−r (ti) + (3− r)e−t,

y−r (0) = y−r (h) = −2 + 2r,

y+r (0) = y+r (h) = 2− 2r.

Figure 4 and Figure 5 illustrate the approximate and true solutions of these systems for h = 1
15 , α = 0.6,

and r = 0. In both figures, we have fuzzy solutions within the interval [0, 5] as there is no switching at the
endpoints. In Case 1, setting α = 0.45 causes switching at t = 49

15 , indicating that ⋄αgH1-differentiability

in a neighborhood of t = 49
15 . In Case 2, setting α = 0.53 causes switching at t = 19

5 , indicating that

⋄αgH2-differentiability in a neighborhood of t = 19
5 .

Figure 4. 0-level solutions to Case 1.
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Figure 5. 0-level solutions to Case 2.

5. Conclusions

We have introduced the diamond-alpha derivative for fuzzy number valued functions on time scales
by employing the generalized Hukuhara difference. Additionally, we have established some fundamental
properties of this derivative and applied it to a specific class of fuzzy initial value problems on time scales.
Numerical examples demonstrate the existence of approximate solutions under certain parameter settings
with potential switching in the end points of the level sets of the solutions as the parameter α varies. Such
switching can affect the accuracy of approximate solutions and the existence of ⋄αgH1-differentiability or
⋄αgH2-differentiability. These results enhance the understanding of the behavior of ⋄αgH -differentiability in
fuzzy functions and its applications within fuzzy differential equations on time scales.
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116 S. BAYEĞ, F. R. MERT
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