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ABSTRACT. In the literature, the delta and nabla derivatives have been considered separately in the
study of fuzzy number valued functions on time scales. In this paper, to unify these two derivatives for
fuzzy number valued functions, we propose a new dynamic derivative called the diamond-alpha deriva-
tive, defined via the generalized Hukuhara difference. We establish several fundamental properties of the
diamond-alpha derivative and investigate a particular class of fuzzy initial value problems on time scales
with respect to this new derivative. Additionally, we provide numerical examples to illustrate our results.
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1. INTRODUCTION

Dynamic equations on time scales theory is a relatively new field of study, and research in this area
is expanding considerably in the last 35 years. In order to combine continuous and discrete structures,
time scale theory was established. It enables simultaneous treatments to both difference and differential
equations and expands the results to dynamic equations. Basics of time-scale calculus and some recent
studies can be found in [1,/2}[6l7, 12H15L(18}21,22}25]. However, it’s crucial to consider a lot of uncertain
aspects while attempting to fully explore a real-world phenomenon. Zadeh [35] developed fuzzy set
theory in order to define these ambiguous or inaccurate concepts. Kaleva |16] and Lakshmikantham
and Mohapatra [17] established and explored the theory of fuzzy differential equations (FDEs) and
its applications. One drawback of the Hukuhara differentiability-based methods is that the solution
to an FDE only exists for longer support lengths. Bede et al. [3] investigated generalized Hukuhara
differentiability in order to get over this drawback. And many authors [4,20L28] are enthusiastic about
this new differentiability concept for fuzzy number valued functions because of this favored benefit. Fard
and Bidgoli [10] investigated the calculus of fuzzy functions on time scales. In their study of fuzzy dynamic
equations on time scales, Vasavi et al. [31H34], by implementing the Hukuhara difference, introduced the
Hukuhara, 2nd type Hukuhara and generalized delta derivatives. The drawback of this derivative is that
it only applies to fuzzy number valued functions on time scales where the diameter increases with length.

To the best of our knowledge, the delta and nabla derivatives have been used independently to study
the derivatives of fuzzy number valued functions on time scales. The characteristics of generalized nabla
differentiability for fuzzy number valued functions on time scales via Hukuhara difference were presented
and examined by Leelavathi et al. [19]. Additionally, they acquired some generalized nabla differentiable
fuzzy number valued function embedding results. Furthermore, under generalized nabla differentiability,
they demonstrated a fundamental principle of a nabla integral calculus for fuzzy functions on time scales.
Fuzzy differential equations on time scales under generalized delta derivative were examined by Vasali
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et al [31]. In order to achieve solutions for FDEs with decreasing length of support, they established
the generalized delta derivative, which is based on four forms. These types of derivatives, in some cases
(such as time scales with discrete points), can only describe the change of functions only on the left
or right side of considered points. In order to provide a tool that can catch the change of functions
on both sides of points in time scales, dynamic derivatives, called the diamond alpha derivative has
been proposed by Sheng et al. [27]. This dynamic derivative is a convex linear combination of the delta
and nabla derivatives. Later, Roger et. al [26] redefined the diamond-alpha derivative independently
of the standard delta and nabla dynamic derivatives, and further examined its properties. In 30|, they
introduced a dynamic derivative called diamond-alpha derivative via generalized Hukuhara difference for
interval valued functions on time scales. They furthermore studied a particular class of interval differential
equations with respect to the diamond-alpha derivative.

In this work, motivated by [30], we introduce a dynamic derivative called as the diamond-alpha de-
rivative, denoted as ogy, for fuzzy number valued functions on time scales via generalized Hukuhara
difference and Hausdorff metric for fuzzy sets and investigate its properties under different conditions on
time scale T. Through our main results, we establish foundational results concerning the existence and
uniqueness of the ofy-derivative for fuzzy functions. Additionally, we explore conditions under which
fuzzy functions are o‘g"H—differentiable at both dense and isolated points on the time scale, providing
criteria for the existence of limits in these contexts. The final results address the differentiability of
the r-level sets of fuzzy functions, particularly under monotonicity ”length conditions”. These results
enhance the understanding of ogy-differentiability in fuzzy functions and its applications within fuzzy
differential equations on time scales.

This paper’s outline is as follows: We give some basic definitions and results relating to the calculus
of time scales and fuzzy sets in Section 2. In Section 3, we present the main results and provide some
examples to illustrate some of the results. In Section 4, we consider a particular class of fuzzy initial
value problems on time scales and present some numerical examples.

2. PRELIMINARIES

Definition 1. [6] A nonempty closed subset of the real numbers R is called a time scale, often denoted
by T.

Definition 2. [6] The function o : T — R defined by
o(t)=inf{s € T: s>t}
1s called the forward jump operator. Additionally, we set inf & := sup T.
Definition 3. [6] The function p: T — R defined by
p(t) =sup{s € T:s <t}
1s called the backward jump operator. Additionally, we set sup @ := inf T.
Definition 4. [6] If o(t) > t, thent € T is said to be a right-scattered point.
Definition 5. [0] If p(t) < t, then t € T is said to be a left-scattered point.
Definition 6. [6/ Ifo(t) =1t and t #supT, then t € T is said to be a right-dense point.
Definition 7. [0] If p(t) =t and t # inf T, then t € T is said to be a left-dense point.

Definition 8. [0/ The function p : T — [0,00) defined by p(t) = o(t) —t is called the (forward)
graininess.

Definition 9. [6] The function v : T — [0,00) defined by v(t) = t—p(t) is called the backward graininess.

Additionally, we define the following notations for simplicity in the definitions and theorems throughout
this paper: py, = o(s) —t and vy =t — p(s).
The set T* is defined as follows: if T has a left-scattered maximum m, then T* := T \ {m}. If no such
maximum exists, then T® := T. Similarly, the set T, is defined as follows: if T has a right-scattered
minimum m, then Ty := T\ {m}. If no such minimum exists, then T, := T.
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Definition 10. [6] Let h: T — R be a function and let s € T". We define (Ah)(s) as the number (if it
exists) that satisfies the following property: for any e > 0, there exists a neighborhood Nt of s given by
Np:=(s—09,s+0)NT for some § >0 such that

[[h(o(s)) = h(B)] = (Ah)(s)[o(s) — 1] < €|a(s) — ]
for allt € Ny. The value (Ah)(s) is called the delta derivative of h at s.
Definition 11. /6] Let h : T — R be a function, and let s € T,,. We define (Vh)(s) as the number (if

it exists) that satisfies the following property: for any € > 0, there is a neighborhood Nt of s given by
Np:=(s—09,s+0)NT for some § > 0 such that

[[h(p(5)) = h(®)] = (VA)(s)[p(s) = 1]| < elp(s) — 1|
for allt € Ny. The value (Vh)(s) is referred to as the nabla derivative of h at s.
Definition 12. [20] Let h : T — R be a function and s € T® N T,. Then the o*-derivative of h at the

point s € T%, denoted by (0*h)(s), is the number (provided it exists) that satisfies the following property:
for any € > 0, there is a neighborhood Nt of s given by Ny := (s — 0,8+ 6) N'T for some § > 0 such that

lalh(o(s)) = h(O)|vse| + (1 = @) [hlp(s)) = h(®)l|pgr] = (“R)(8)|Vsttigr] < €lvsepi,
for any t € Ny. Here, (0*h)(s) referred to as the diamond-alpha derivative of h at s.

Definition 13. [35] A fuzzy set u in a universe of discourse U is represented by a function u : U — [0, 1],
where u(x) indicates the membership degree of x to the fuzzy set u.

We use F(U) to denote the set of all fuzzy subsets of U.
Definition 14. [25] Let u: U — [0,1] be a fuzzy set. The r-level sets of u are defined as
ur ={z €U :u(x) >r}
for 0 <r < 1. The 0-level set of u
uo=cl{z e U :u(z) >0}
1s called the support of the fuzzy set u. Here, cl denotes the closure of the set u.
Definition 15. [25] Let u : R — [0,1] be a fuzzy subset of the real numbers. Then, u is said to be a

fuzzy number if it fulfills the following criteria:

(1) w is normal, which means that there exists an xo € R such that u(xo) = 1.

(2) u is quasi-concave, which means that for all X € [0,1], the inequality u(Ax + (1 — N)y) >
min{u(z),u(y)} holds.

(3) u is upper semicontinuous on R, which means that for any e > 0, there exists a § > 0 such that
u(z) — u(xo) < € whenever |z — xo| < 4.

(4) w is compactly supported, which means that the closure cl{x € R : u(x) > 0} is compact.

We use Fy(R) to denote the set of all fuzzy numbers of R.

Definition 16. Let a1 < as < ag be real numbers. The fuzzy number denoted by u = (a1, a9, as) is called
a triangular fuzzy number whose membership function is

r—ay
a1 ST <ag,

_ az—x
u(az) - as—asz’ ag S X S as,
0, otherwise.

Definition 17. [29] Let u,v € Fx(R). The generalized Hukuhara difference (gH-difference) is the fuzzy
number w, if it exists, such that

USggv=w<=u=v+w orv=u+(—1)w.

Since level sets of a fuzzy number are closed and bounded intervals, we will denote r-level set of a fuzzy

number u by w, = [u;,u;] and its length by len(u,) = v — u; .

Remark 1. The criteria for the ezistence of w = u Sg4, v in Fx(R) are as follows:
Case (i):

® W, =U, — U,
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+

T must be decreasing, and it must hold that w. < w; for all r

e Here, w,” must be increasing, w
in [0,1].
Case (ii):
o w. =ul —vl and w =u; — v
o Similarly, w,” must be increasing, w," must be decreasing, and w, < w; must hold for all r in
[0,1].
Theorem 1. [5,29] Let u,v € Fn(R). If gH-difference u ©4u v € Fn(R) exists, then

(u Ogr v), = minfu; — v wf — v} max{u; — o, uf — v

Definition 18. [§/ The metric Dy : Fn(R) x Fy(R) — RT U {0} defined by
Doo(u,v) = sup max {|u, —v. |, |uf —vf|},
rel0,1]

where u, = [u,,u}], v, = [v,,v,], is called Hausdorff metric for fuzzy numbers.

T T

The Hausdorff metric provides a way to measure the distance between two fuzzy sets by considering
their level sets. This metric allows researchers to compare the similarity or dissimilarity of fuzzy sets in
a rigorous mathematical way. Specifically, it can be used to quantify how far apart two fuzzy sets are
based on their support and their membership functions.

Theorem 2. [§]
Let a, b, ¢, d € FN(R) and m € R. The Hausdorff metric satisfies the followings:
(1) Doo (a+¢,b+¢) = Dy (a,b).
(2) Doo (ma,mb) = |m| Do (a,b) .
(3) Do (a+b,c+d) < Do (a,¢) + Do (b, d) .

3. GENERALIZED HUKUHARA DIAMOND-ALPHA DERIVATIVE OF Fuzzy VALUED FUNCTIONS ON
TIME SCALES

Definition 19. [31] Let f : T — Fn(R) be a fuzzy function and let s € T*. The generalized Hukuhara
delta derivative of f at s, if it exists, is a fuzzy number (Mg f) (s) € Fn(R) such that for any given
€ > 0, there exists a neighborhood Nt(s,0) = (s — 3,5+ ) NT for some § > 0, such that for all t € Nr,
flo(s)) ©qm f(t) exists and we have

Doo(f(a(s)) ©gm f(1), (Agr[)(8)ise) < €]pil-

Definition 20. [19] Let f : T — Fn(R) be a fuzzy function and let s € T,. The generalized Hukuhara
nabla derivative of f at s, if it exists, is a fuzzy number (Vyu f) (s) € Fn(R) such that for any given
€ > 0, there exists a neighborhood Np(s,6) = (s —3d,s+ ) NT for some § > 0, such that for all t € Nr,
f(t) ©gm f(p(s)) exists and we have
Doo(f(t) Sgr f(p(5)), (Vau [)(s)vst) < €lval.
Definition 21. Let f : T — Fn(R) be a fuzzy function and let s € T%. The generalized Hukuhara
diamond-alpha derivative of f at s, if it exists, is a fuzzy number (<>ng) (s) € Fn(R) such that for any
given € > 0, there exists a neighborhood Nt(s,0) = (s — d,s + ) N'T for some § > 0, such that for all
t € Nr f(o(s)) ©qu f(t) and f(t) Sqm f(p(s)) exist and we have
Do (alf(o(s)) ©gu f(O)lvse + (1 — a)[f () Ogn f(p(s))ttsts (Ogm[)(s)msevst) < €lpovsel -

Theorem 3. Let f: T — Fy(R) be a fuzzy function and s € TE. (<>;"Hf) (s) € Fn(R) is unique, if it
exists.

Proof. Let s € Tf. Assume (O?Hf)l (s) and (<>2‘Hf)2 (s) are ofy-derivative of f at s. Let ¢ > 0 be
arbitrary. Then there exists a § > 0 such that for any t € Np(s,d) we have

Doo(a[f(0(5)) ©gir F()] ver + (1 — @) [£(£) St F(p())] trses
(Ong)l (8) Hst Vst) < % ‘,U'st Vst| s
Doo(a[f(0(5)) @9 F(E)] vor + (1= @) [£(t) Sgr F(p(9)] ot
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a €
(Ong)2 (S) st VSt) 5 ‘:ust V5t|
Doo((0gr f), (5), (0gr f), (5))
Dm((ong)l(S)lu‘stVSt ( )2 .u'stl/t)

(o gH(f)l (s;[us(t Ve + a[(f
1 1-a ) Sgn f(p
D [(f

B |ust VStI

- |ftsr Vst - ( ng)Q(S)iu‘stV t + o
+(1 =) [f(t) ©gn |
1

S|MtVst|Doo((<>ng) ()Mtu [ (U(S
+ (1 =) [f(t) ©gm f(p(3))] bst)

| t1V5t|D (( ng) (8) tys Vis, Oé[f(a(s)) OgH f(t)] Vet
+(1—a)[f()egH F(p())] 1ar)
1

|/~Lst VStl 2

+

i vetl + st Vst

I
|:U“stl/S ‘2

IN A
"

Therefore, (o‘;Hf)l (s) = <O(ngf)2 (s). O

Theorem 4. Let f: T — Fn(R) be a function and s € T% a dense point. Then f is oy -differentiable
at s if and only if the limit

lim f(s) egH f(t)
t—s s—t
exists and £s) i)
o . O
(5 F) () = Jim =2 222

Proof. Since s is dense, o(s) = p(s) = s. Hence, we obtain

af<a<s>>uegﬂ 1O | 1- i ot flp(s) _ amiwf@) 1w M
SR AL IO (1- a)w
:ust :u’st
= (a+1- Q)J%«s)igbrf@)
_ [5G f()
N’st '
So, we have
Do (W (o5 f) <s>) <e
Therefore,
(o552f) (5) = lim w

Theorem 5. Let f : T — Fn(R) be a function and s € T% be an isolated point. Then f is OH
differentiable at s and

o ey @) Oy £5) | F(5) Ot Fpls)
(canf) (s) = 1(s) T(1-a) v(s) .
Proof. Since s is an isolated point, we have
i [ L) S0 FO) | (1O Sgn F05)

t—s Wt Vst
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TS f) |y ) S F(6(9))
- 0 7P
Hence, we obtain that f is ¢fy-differentiable at s and
o i L) Ean F(9) () Sgr F(p(s))
(Ong) (S) - N’(S) + (1 ) Z/(S) .

d

Theorem 6. Let f : T — Fn(R) be a fuzzy function and s € T, Assume f is Agg and V gi differentiable
at s. Then, [ is ogy-differentiable at s and

(g f)(s) = a(Bgu f)(s) + (1 = a)(Vgm f)(s)-

Proof. Let € > 0 be given. Since f is Ay and Vg differentiable at s, there exists § > 0 such that for
any ¢t € Np(s,d) = (s —d,s+ ) N'T, we have

Doo(f(0(s)) Ogr f(1), (Agu [)(s)prsr) < % st

Doo(f(8) Squt F(p(s)): (Vo Ds)ve) < 5 vl
It follows that
D ([f(0(s)) Sqit (O] vats a(Bgr f)(Dtavst) < T vl
D ((1—a) [f(t) Sgr F(p()] trars (1 — ) (Vo f)(8)pgyvs) < 6(1; vt

We get

D (a [f(0(s)) ©on f(O)] v + (1 = @) [£(£) Sgr F(p(5))] ot ((Dgrr ) (5) + (1 = ) (Vo [)(5)) pra Vst)

< D(a[f(o(s) ©gm F(B)] ver, a(Dgu f)(s) gy vst)

+D((1 = a)[f(t) ©an F(p(5))] t1ar, (1 = ) (Vg ) (8) praq vt )
e(l — a)
2

(0%
<+ |u’st VStl +

|/'1‘st VSt‘
S € :ust V3t| ‘

Therefore, f is ofy- differentiable at s and

(g f)(s) = a(Bgu f)(s) + (1 = a)(Vgm f)(s)-

Theorem 7. Let f : T — Fx(R) be a function and the r-level sets of f be
Fo(t) = [£7 (), £ (1))

foranyt € T andr €[0,1], where f,7 : T — R and f,;7 : T — R are the left and right end-points of the
r-level sets. Assume len(f-(t)) := f;F(t)— f(t) is monotone on a neigborhood Nt (s,8) = (s—48,s+)NT
for some & > 0 and f is ofy- differentiable at s € Ty.. Then, f;~ and I are o%-differentiable at s as
well. Moreover,

(1) if len(fr(t)) is increasing on a neighborhood of s € Tt then

K

(oguf), (s) = [("f;7) (), (" f7) ()] ,
(2) if len(fr(t)) is decreasing on a neighborhood of s € T%, then
(oguf), () = [(o“£F) (s), (o2 f7) ()] -

Proof. (1) Assume that len(f.(¢) is increasing on Nr(s,d) = (s—0,s+0)NT for some § > 0, o(s) # ¢
and p(s) # t for any fixed r € [0, 1]. Let us consider the following cases.
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Case 1: Let p(s) < t < o(s). Hence, py, = o(s) =t > 0 and vy = t — p(s) > 0. Since len(f-(t)) is
increasing on Ny(s,d) we have len(f(o(s))) > len(f(t)) and len(f(t)) > len(f(p(s))) for any
t € Np(s,0). Let

o(t) = af(a(S»fjH o (1- a)f(t) Gglitf(p(S)).

By Remark [I] and some interval arithmetics, we obtain

7 050) = [o OO 0=t
SN () SO S],

Case 2: Let t > o(s). Hence, iy, = 0(s) —t < 0 and vy =t — p(s) > 0. Since len(f.(t)) is increasing on

Nr(s,d) we have len( (0(s))) < len(f(t)) and len(f(t)) > len(f(p(s))) for any ¢t € Ny(s,d). Let

o(t) = o1 0(8) Sgn F() (1 _a)f(t) Ogtt f(p(s))

st Vst

By Remark [I] and some interval arithmetics, we obtain

fr(o(s)) = fr ()

fr () = £ (p(s))

o7 (0,7 (1)) = [0 =T (1 o T B
SONF | () £ )]

Case 3: Let t < p(s). Hence, gy = o(s) —t > 0 and vs =t — p(s) < 0. Since len(f.(t)) is increasing on
Nr(s,9) we have len( o(s))) > len(f(t)) and len(f(t)) < len(f(p(s))) for any t € Ny(s,d). Let

o(t) = o f0(8) Sgn £() a _a)f(t) g F(p(s)

Hst Vst
Similarly, by Remark [I] and some interval arithmetics, we obtain

O T AL AU AR AL
oA @) = f,7(1) F—a) £ = £ ()]
st Vst
Furthermore, since f is " differentiable at s, we derive

lim af(O'(S))M@tgH f(t) (- a)f(t) @glitf(p(S)) _ (o f) (5) € Fx(®).

The proof of (2) can be done similarly. O
Definition 22. Let f : T — Fn(R) be a function and the r-level sets of f be
fr(6) = [ @), £ ()]

foranyt € T andr €[0,1], where f,7 : T — R and f,;7 : T — R are the left and right end-points of the
r-level sets. Assume that f is oy~ differentiable at s € T};. Then, f is said to be

(1) oG- differentiable at s if
(oguf), (8) = [(“f;7) (). (¢ fF) ()],
(2) oo~ differentiable at s if
(oguf), () = [(“FF) (s), (7 f;7) (9)] -
Theorem 8. Let f : T — Fx(R) be a function and the r-level sets of f be
Frlt) = [£7 (), £ (®)]

foranyt € T andr € [0,1], where f7 : T — R and f;¥ : T — R are left and right end-points of the
r-level sets. Assume that f is gy dzﬁerentmble at s € TE.
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(1) If f is oy, - differentiable on Nr(s,d), then f has non-decreasing length of the closure of its
support.

(2) If f is O me- differentiable on Nr(s,0), then f has non-increasing length of the closure of its
support.

Proof. (1) Assume f is 0%y - differentiable on Ny(s,d) and len(f,(t)) is decreasing length of the
closure of its support for some ¢ € Nr(s,d) for any fixed r € [0,1]. Then, by Theorem [7| we have

(5 f)g (0 = [(o"f57) (1), (" f5") ()]

which contradicts with the fact that f is ofy- differentiable on Nr(s,d). Hence, f has non-
decreasing length of the closure of its support.

(2) Assume f is of,- differentiable on Nr(s,d) and len(f,(t)) is increasing length of the closure of
its support for some ¢t € Np(s,d) for any fixed r € [0,1]. Then, by Theorem [7| we have

(g f)o () = [(«"fo) (1): (o f5) ()] -

which contradicts with the fact that f is ofy,- differentiable on NT(5,55. Hence, f has non-

decreasing length of the closure of its support.
O

3.1. Examples.

Example 1. Consider the time scale T = hZ = {hn :n € Z,h > 0} and let f : [0,00)r — Fn(R) be a
function such that f(t) = (1,2,3)t. The r-level sets of f are f.(t) =[1+7r,3 —r]t. By Theorem[y, f is
0% -differentiable at any s € [h, 00)r such that

oy (05 Sgn £(5) F(5) S (p(5)
() () (o) O

Since len(f.(t)) = 2t(1 — r), which is increasing for any fized r € [0,1], we have

(0guf), () =[(c“£;7) (), ("£) (5)] -

+(1-a)

Let o = %, then we have

(e2f7) () =

s+h IS0 +ﬂ(s)—ﬁ(s—h)}

h

=N~ N R N

= ;
[lJrr s+h (1+r)s+(1+r)5(1+7")(5h)}
+

Similarly we can obtain (O%f;") (s) = 3 —r. Therefore, (og%Hf) (s)=[14+r3—7r] and (og%Hf) (s) =
(1,2,3). '

Example 2. Consider the time scale T = {\/n:n € N} and let f: T — Fy(R) be a function such that
f(t) =(1,2,3)%. The r-level sets of f are f,(t) =[1+7,3—r] % and

len(fr(t)) = %2(3—7”—1—7“)
= %2(2—27“)
= %(1_T)>

which is decreasing for any fized r € [0,1]. Hence, f is o5y -differentiable at s € [V2, 00) 1 with

(5 f), (s) = [("£) (5), (" £;7) (5],
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where
ape _ fi(a(s) = £ (s) fr (s) = [ (p(s))
(<> fr)(s) = « 1(3) +(1-a) o(5)
o GG
- Uass 72 +(1-a) sz sS
i( : ¥ e )+
- \/52+1—5+(17a)5—\/52—1
and
o _ N (a(s) = £ (s) +(s) = £ (p(s))
(0 fj) (S) = « /1'(5 + (1 - Oé) V(S)
3—r 3—r 3—r 3—r
a 241 82 + (1 o Oé) 52 s2—1
Vs2+1—3s s—vs?—1

4. Fuzzy INITIAL VALUE PROBLEMS ON TIME SCALES WITH GENERALIZED HUKUHARA
DI1AMOND-ALPHA DERIVATIVES

In this section, we consider the following fuzzy initial value problem (FIVP):
(oguy)(t) = [f(t.y(t)), t€(a,b)r C T
y(to) = o,
where f: (a,b)r x Fy(R) — Fn(R). Assume that r-level sets of y, f and of;y are
ye(®) = [y (0,55 0],
@) = [, 0],
(oguy)r(t) [(%y, ) (1), (o%y, ) (1))
There are two cases to be considered:

Case 1: len(y,) is increasing. By Theorem we obtain
(oguy)r(t) = [(o“y; )(1), (o“y. ) (1)]-
Therefore, FIVP — can be expressed by the system:
Y )t) = fr (o (0,57 (1),

Yyt = [ty 1),y (1),
Yy () = Yo
y;r(tO) = y(J)rrv

where r € [0,1] and ¢ € (a, b)r.
Case 2: len(y,) is decreasing. By Theorem [7, we obtain

(0guy)r () = [(“y)(1), (oyy ) (1))
Therefore, FIVP — can be expressed by
Yy )(t) = £ty 1),y (1),

(“yN)(t) = [ty (1), 4 (1)),
Yy (to) = Yors
y (to) = vor

where r € [0,1] and t € (a, b)T.

111

Assume T = {t07t1,t2,...,tN+1 ot < ti+1,V’L' (S O,N} with TF = T\{tN+1}, T, = T\{to} and

TZ =T*NT,. Since T is an isolated time scale, according to Theorem [5| we obtain

oy _ Y (i) —y () _ oY )~y (tia)
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o+ _ Gy i) — il (8) Y ) — g (ti)
Hence, Case 1 and Case 2 become
oY (tH;)(tZ)yr_ (t:) f(1-a) Yr (ti)y_(z;_(til) £ty (8), u (1)),
ayﬁ(tﬁlll)(t:)yf(ti) +(1-a) yﬁ(fi)y—(tyj(ti—ﬁ F by (8,5 (8),
Yr (to) Yors
y;r(t()) y$7
and
el S0y g It g ), (0)
+ _ T +(+.Y — oyt (+;
T 7 R (YA RO
Yy (to) Yors
y:’r(tO) y(—)i_ra
respectively.

4.1. Numerical Examples. Now we will give some numerical examples. Triangular fuzzy numbers are
widely used in fuzzy applications. They offer a straightforward and efficient means of representing and
handling uncertainty and vagueness in data. Therefore, in numerical examples, fuzzy constants and initial
conditions will be represented as triangular fuzzy numbers.

Example 3. Let T = hZ and let us consider the following FIVP:

(ogmy)(t) —y(t),t € (0,5)nz, 3)
y(0) = ylo(h) =y(h) = (=1,0,1). (4)
Assume r-level sets of y and oy are
yr(t) = [y (0), 57 ®)],
(oguy)r(t) = [(%y ) (1), (“y1) ().

By using the method above, we obtain the following two systems:
Casel: Under ogy, -differentiability, the FIVP yields the following system:

o (1) =y (i) oY) —y (fi)
Y (tiv1) — yit (i) ¥ —y i)
T ) L Ty = ),
Yy (0) =y, (h) ~1+m,

yr (0) =y (h) = 1-r

Case?2: Under oy, -differentiability, the FIVP yields the following system:

QY tiv) =y () (1- a)yf(ti) — Yy (tic1)

() ZO
oY (i) — y (83) Y ) — g (ti) s
p(ti) +{ ) v(t;) v (1),
Y. (0) =y, (h) = -1+,
yr (0) =y (h) = 1-r

The approzimate and true solutions to these systems for h = 1—10, a = 0.8, and r = 0 are illustrated in

Figure 1 and Figure 2. In these figures, since the end points of the solutions do not switch, these solutions
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exist on [0,5] in both cases. We observe that switching of the end points of the solution may occur, and
the error in the approximate solution may increase as we change a. In Case 1, when we set o = 0.43,
switching occurs at t = 2L, which implies that og‘Hl-dijj‘erentiability does not exist after t = 15—9. And in

10’
Case 2, when we set a = 0.53, switching occurs at t = 1—59, which implies that ¢y, -differentiability does
not exist after t = 1—59; also see Figure E
s0f T T ]
100
504 o yi-true
8
2 0 oy, -true
>
=50t y; —approximate
r
-100 | y; —approximate
-150
t
FIGURE 1. 0-level solutions to Case 1.
1.0 Fre T T T T —T — T
78
38
: 8
8
0.5F 888 -
i 'o," | o yi-true
I T000 | -
ool "”m.::: {1 o y -true
— o“..‘“. | & y'-approximate
. L ] - .
05| aﬁg‘ 1 ey —approximate
I ¢
gﬂ
e
“1.0bLa, I 1 T L 1 I
0 1 2 3 4 5

FIGURE 2. 0-level solutions to Case 2.

Example 4. Let T = hZ and let us consider the following FIVP:

(OgHy)(t) = _y(t) + (]-a 2, 3)67t’t € (0’ 5)hZ7 (5)
y(0) = ylo(h) =y(h) =(-2,0,2). (6)
Assume r-level sets of y and ofyy are
ye(t) = [y ),uf @),
(oguy)r(t) = [(c“y)(@), (c“y")(B)]-

By using the method above, we obtain the following two systems:
Casel: Under gy, -differentiability, the FIVP yields the following system:

oo (tiv1) =y, (i) a)yr_ (ti) =y (tiz1)
u(ts) v(t;)

+(1- = =yt t)+ (1 +r)e,
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1.0 g ; —— ; — =
F o
**
OQ‘
Q
05} % . ]
58 +
o3 » y; —true
3 1 -
0ol 3303083833 s g 8 1 y; —true
Tt 220308 0%33 # saﬁﬁﬁi""""',
02338999” ¢ : yF —approximate
®. - .
05 8292 ¢ ] y, —approximate
C'02
e
L 4 ]
) I T T T T T T T Y T S S S B
0 1 2 3 4 5

FIGURE 3. 0-level solutions to Case 2.

yr (ti) =yt (tioa)

a) =

oY (i) =y (4) —y(t) + (3 —7)e?,

+(1-

p(ti) v(t;)
Yy (0) =y, (h) = —2+2r
Yy (0) =y, (h) 2—2r

Case2: Under oy, -differentiability, the FIVP yields the following system:

oY (tiv1) =y, (t:) RS R C V et
,LL(ti) + (1 ) V(ti) Yr (tz) + (1 + ) s
Y (i) — vt (t) Cw g ) =y (i) et
“ w(ts) +(1-a) v(t;) = —y, () +B—r)e,
Y, (0) =y, (h) = —2+2n
Y (0) =yl (h) = 2-2r

Figure 4 and Figure 5 illustrate the approzimate and true solutions of these systems for h = %, a = 0.6,
andr = 0. In both figures, we have fuzzy solutions within the interval [0,5] as there is no switching at the

endpoints. In Case 1, setting o = 0.45 causes switching at t = ‘11—2, indicating that ong-diﬁerentiability

in a neighborhood of t = %. In Case 2, setting a = 0.53 causes switching at t = 15—9, indicating that
oo -differentiability in a neighborhood of t = %.
AT~ ~— T T~ T v T T T T T T T T T T T T T T T T 1]
200
o y'-true
o y,-true

y; —approximate

-200 | y; —approximate

-400 L.

FIGURE 4. 0-level solutions to Case 1.
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o y'-true

oy, -true

yi —approximate

y, —approximate

-
T T T T T T T T T

FIGURE 5. 0O-level solutions to Case 2.

5. CONCLUSIONS

We have introduced the diamond-alpha derivative for fuzzy number valued functions on time scales
by employing the generalized Hukuhara difference. Additionally, we have established some fundamental
properties of this derivative and applied it to a specific class of fuzzy initial value problems on time scales.
Numerical examples demonstrate the existence of approximate solutions under certain parameter settings
with potential switching in the end points of the level sets of the solutions as the parameter « varies. Such
switching can affect the accuracy of approximate solutions and the existence of of-differentiability or
o o-differentiability. These results enhance the understanding of the behavior of ofy-differentiability in
fuzzy functions and its applications within fuzzy differential equations on time scales.
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