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1. INTRODUCTION

Some sequences of numbers have been studied over several years. In the literature, in mathematics and
physics, there are a lot of integer sequences, which are used in almost every field modern sciences. The
Fibonacci sequence is the famous integer sequence, which is defined by the following recurrence relation
Foy1 = By+Fyq

With the initial conditions F, = 0 and F, = 1.

Another well-known sequence is the Lucas sequence, which satisfies the following recurrence relation
Lpyry = Lp+Llp

with Lo =2 and L, = 1.

There are many generalizations of the Fibonacci and Lucas sequences [1,2,4]. Two of them was given by
Falcon and Plaza in [2,4] as follows:

For any integer number k > 1, the kth Fibonacci sequences {Fk,n}nEN is defined as for n> 1
Fk,n+1 = ka,n + Fk,n—l (1)
with initial conditions F, o = 0, F,; = 1.

If we take k = 1 in (1), we get the Fibonacci sequence: {0,1,1,2,3,5,8,...}.
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By setting k = 2 in (1), we obtain the Pell sequence: {0, 1, 2,5,12,29,70,...}.

The k-Lucas sequence {Lk'n}nEN is defined by the following recurrence relation for n, k > 1

Lin+1 = kLgn + Lin-1 (2)
Wlth Lk,O = 2, Lk.l = k

For k = 1in (2), the classical Lucas sequence is obtained: {2,1,3,4,7,11,18, ... }.
For k = 2 in (2), the Pell-Lucas sequence is obtained: {2, 2, 6, 14,34, 82,198,...}.

There are some properties for these numbers. Some of them are [2,4]:

* Forn e N' Fk,2n+1 = (Fk,n)2+(Fk,n+1)2; (3)
o Forn€eN,Fpn 1 Frnir — (Fk,n)z = (D", 4)
b For r > n, Lk.n—rLk,n+r - (Lk,n)z = (_1)n+rLk,2r + 2(_1)n+1’ (5)
e Forn€N,Fyon = Fenlin, (6)
b For n,me N, Lk,nLk,n+m = Lk,2n+m + (_1)nLk,m' (7)
e Formz=1, Lk,n+1Lk,m + Lk,nLk,m—l = (kz + 4‘) Fk,n+m- (8)

The period of the Fibonacci sequence mod m was first studied by Wall [12]. The recurrence part in the
sequence creates a new sequence and gives the length of the periods of these sequences. Furthermore
Kramer and Hoggatt [8] studied the periods of Fibonacci and Lucas sequences mod 2". Falcon and Plaza
[3] studied the period length of the k-Fibonacci sequence mod m. The period of such cyclic sequences is
known as Pisano period and the period-length is denoted by m;, (m).

Motivated by the above papers, we study the Pisano period for the k-Lucas sequence and we obtain
Pisano periods for the k-Fibonacci and k-Lucas sequences mod 2™.

2. PISANO PERIODS FOR THE K-FIBONACCI AND K-LUCAS SEQUENCES
Theorem 2.1. {L;, mod m }neN is a simple periodic sequence .

Proof. From the defining relation we write,

Lin-1= Lin+1-KLgn .

If Li¢y1 = Lystr (modm) and Ly, = L s (modm), then

Ly¢—q = kL s—1 (modm).

By continiuing this way, we get Ly ;g1 = Lxq (modm)and Ly,_s = Ly, (mod m).
So that {Lk,n mod m }nEN is a simple periodic sequence with t — s period.

Corollary 2.2. For m > 3 every Pisano period begins with 2, 3.
Theorem 2.3. If the prime factorization of m is m = [[ p;%, then

Tk (lem(pi®D) = lem (. (0:9).

Proof. The statement m, (p;°) is the length of the period of L, (mod p) implies that the sequence
Ly, (mod p;®), repeats only after blocks of length cm, (p;®) and the statement m;(m) is the period-
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length of the sequence Ly, (mod m), which is, L, (mod p;®) repeats after m;, (m) terms for all values
of i. Since any such number gives a period of L, (mod m), we conclude that 7 (m) = lem(m, (p;%)).

Corollary 2.4. If rl/m then m; (r)|m, (m).

Proof. If r | m, thenm = r.p;%1p,% ... p, . From Theorem 2.3, we get
T, (m) = lcm(nk(r), T, (P1°1), .oy Tk (pkek)) and from lcm definition m; ()|, (m).

Lemma 2.5. If k is an odd integer, then forn € N
i. Lgsn =0 (mod 2) 9)
ii. F 3, =0 (mod 2). (10)
Proof. i. We can give the proof by induction. For n = 1,
Lk,3 = k3 + 3k
Since k is an odd number, k3 + k is an even integer. Thus,
L3 = 0 (mod 2).
Suppose Ly 3, = 0 (mod 2). So,
Lk.3(n+1) = kLk,3n+2 + Lk,3n+1
= k(kLk,3n+1 + Lk,3n) + Lk,3n+1
= (k* + DLgsn+1 + kLk,an,
Since (k2 + 1) is an even integer and from induction hypothesis,
(kZ + 1)Lk,3n+1 + kLk,3n =0 (mOd 2)
Thus we get
Lk.3(n+1) =0 (mod 2)
ii. We can give the proof by induction. For n = 1, F, 3 = k? 4+ 1 and thus
Fi3 = 0 (mod 2).
Suppose Fj, 3, = 0 (mod 2). So,
Frsm+1) = kFian+2 + Fiane1
= k(kFizn+1 + Fisn) + Fianet
= (k* + 1)Fy3n41 + kFy 30
and thus we have
Fk,3(7’l+1) = 0 (mOd 2)
Lemma 2.6. If k is an even integer, then forn € N

i. Lgon =0 (mod 2) (11)
ii. Fon =0 (mod 2). (12)
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Proof. i. We can give the proof by induction. For n =1, L, = k? + 2 and thus

Ly, =0 (mod 2).

Suppose Ly ,» = 0 (mod 2).

For m = 0 and n is replaced by 2", we have the Eq. (7)

Lignsr = (Lizn)? + 2(=1)2"*?

and thus

Ly on+1 = 0 (mod 2).

ii. We can give the proof by induction. For n = 1, F, , = k and thus
Fi.2 = 0 (mod 2).

Suppose Fy,» = 0 (mod 2).

For n is replaced by 2", we get the Eq. (6)

Fpgne1 = FygnLy on.

From the Eqg. (11) and induction hypothesis can be formulated as

Fp on+1 = 0 (mod 2).

Lemma 2.7. If k is odd integer,

i. Fygon-1 =0 (mod2™)

ii. F3yn-1,1 =1 (mod 2™).

Proof. i. We can give the proof by induction. Forn = 1, F, 3 = k* + 1 and
Fi.3 = 0 (mod 2).

Suppose Fy 3 ,n-1 = 0 (mod 2™).

For n is replaced by 3.2™1, we have the Eq. (6)

Fk,3.2”= Fk,3.2"‘1 Lk,3.2"‘1.

From the Eq. (9) and induction hypothesis, Fy 3, = 0 (mod 2™*1) is satisfies.

ii. We can give the proof by induction. Forn = 1, Fi, = k3 + 2k and thus
Fi4 =1 (mod 2).

Suppose Fy, 3 ,n-1,4 = 1 (mod 2™).
For n is replaced by 3.2™71, we get the Eq. (3)

Fizanir = (Fk,3.2"—1)2 + (Fk,3.2"—1+1)2

(13)
(14)

(15)



217 Dursun TASCI, Giil OZKAN KIZILIRMAK/ GU J Sci, 31(1): 213-220 (2018)

From the Eqg. (10) and Eq. (13),

(Fi32n-1)* = 0 (mod 2™+1)

is satisfies. For n is replaced by 3.2™1, we have the Eq. (4)

(Fk,3.2n_1+1 )(Fk,3.2n_1—1) - (Fk,3.2"—1)2 = (_1)3.271-1 =1

Since Fy 3n-1_4 = Fyzon-1,q — Kk Fy3on-1and Fy 3,mn-1,1 = 1 (mod 2™), then
Fizan-141Fg 321 = 0 (mod 2™*1)

is satisfies. Since,

2 2
(Fk,3.2n—1+1 )(Fk,3.2n—1+1 —k Fk,3.2"—1)‘ (Fk,3.2"—1) = (Fk,3.2"—1+1) —k Fk,3.2”‘1+1 Fk,3.2"—1
—(Fgz.2n-1)?

and (F3,n-1)% = 0 (mod 2™*1) , then we get

2 2
(Fk,3.2"‘1+1 Y(Fizom-141 — k Fk,3.2"‘1)‘ (Fk,3.2”‘1) = (Fk,3.2"‘1+1) (mod 2™+1)
=1 (mod 2™*1) .

From the Eq. (15) we have Fy 3,41 = (Fk'3_2n—1+1)2 (mod 2™*1) and thus we have

Fi3an41 = 1 (mod 2™+1),

Lemma 2.8. If k is an even integer,

i. Fgon=0(mod?2") (16)
ii. Fypnyq =1 (mod?2M). a7
Proof. i. We can give the proof by induction. For n =1, F,, = k and since k is an even integer,
Fi.2 = 0 (mod 2).

Suppose Fj,» = 0 (mod 2™) .

For n is replaced by 2™, we have the Eq. (6)

Fy w1z Fioon Ly on.

From the Eq. (11) and induction hypothesis we get

Fyont1 = 0 (mod 2™+1).

ii. We can give the proof by induction. For n =1, F,3 =k*+1 and F3 = 1 (mod 2).

Suppose F ;nyq = 1 (mod 2™) .

For n is replaced by 2™, we have the Eq. (3)
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Frontiyq = (Fron)® 4+ (Franer)?

From the Eq. (12) and the Eqg. (16),

(Fi2n)? = 0 (mod 2™*1)

is satisfies. For n is replaced by 2™, we have the Eq. (4)

(Fk,2"+1 )(Fk,zn—1) - (Fk,zn)z = (—1)2n =1

From the induction hypothesis and the Eq. (16)

Fyongq Fion = 2™ (mod 2™+1)

is satisfies. Since k is an even integer, we get

k Fignyq Fion = 0 (mod 2741).

Thus we have

(Fr2ne1 ) (Fianar = k Fion )= (Fon)? = (Fiang1)® = k Fiongq Fion — (Fion)?
and since (Fj ,n)% = 0 (mod 2™*1), then we get

(Fk,2”+1 Y(Fiongr — Kk Fion )‘ (Fk,zn)z = (Fk,2”+1)2 (mod 2n+1) = 1 (mod 2n+1)-
From the Eq. (18) we have Fy ,n+1,q = (Fy2n41)?(mod 2™*1) and thus we get
Fign+1yq = 1 (mod 2™+1).

Theorem 2.9. The period of the k- Fibonacci sequences mod 2™ is

if kodd, 3.2n1
if k even, 2"

m@" =
Proof. The proof is obtain from Lemma 2.7 and Lemma 2.8.

Lemma 2.10. If k is odd integer, then L 5 ;n-1 = 2 (mod 2™).

Proof. We can give the proof by induction. Whenn = 1, L, 3 = k3 + 3k and
L3z =0 =2 (mod 2).

Suppose Ly 3 ,n-1 = 2 (mod 2™).

For m = 0 and n is replaced by 3.2™"1, we have the Eq. (7)

n—-1
Lgzon = (Lk,3.2"-1)2 + 2(—1)3'2 1
= (Lk,3.2n‘1)2 - 2.

Using the induction hypothesis we get (Ly 5 ,n-1)* = 4 (mod 2™*1) . Thus we have

(18)
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Ly 3n = 2 (mod 2™1).

Lemma 2.11. If k is odd integer, then Ly, 5 yn-1,1 = k (mod 2™).

Proof. For m = 1 and n is replaced by 3.2™"1, we get the Eq. (8)

KLy on-14q + 2Lgzom-1 = (k? +4) Fi3m-144

From Lemma 2.10 and the Eq. (14), we have

Ly 3n-141 = k (mod 2™).

Theorem 2.12. If k is odd integer, then the Pisano period of the k- Lucas sequences mod 2™ is 3.2"71,
Proof. The proof is obtain from Lemma 2.10 and Lemma 2.11.
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