

Gazi University

Journal of Science

http://dergipark.gov.tr/gujs

Pisano Periods For The K-Fibonacci And K-Lucas Sequences Mod 2ⁿ

Dursun TAŞCI^{1,*}, Gül ÖZKAN KIZILIRMAK²

¹Gazi University, Faculty of Sciences, Departments Mathematics, 06500, Ankara, Turkey

²Gazi University, Faculty of Sciences, Departments Mathematics, 06500, Ankara, Turkey

Article Info

Abstract

The goal of this paper is to investigate period of k-Lucas sequence with related divisibility properties and periods of k-Fibonacci and k-Lucas sequences mod 2^n .

Received: 10/04/2017 Accepted: 23/12/2017

Keywords

k-Fibonacci k-Lucas Pisano period

1. INTRODUCTION

Some sequences of numbers have been studied over several years. In the literature, in mathematics and physics, there are a lot of integer sequences, which are used in almost every field modern sciences. The Fibonacci sequence is the famous integer sequence, which is defined by the following recurrence relation

 $F_{n+1} = F_n + F_{n-1}$

With the initial conditions $F_0 = 0$ and $F_1 = 1$.

Another well-known sequence is the Lucas sequence, which satisfies the following recurrence relation

 $L_{n+1} = L_n + L_{n-1}$

with $L_0 = 2$ and $L_1 = 1$.

There are many generalizations of the Fibonacci and Lucas sequences [1,2,4]. Two of them was given by Falcon and Plaza in [2,4] as follows:

For any integer number $k \ge 1$, the kth Fibonacci sequences $\{F_{k,n}\}_{n \in \mathbb{N}}$ is defined as for $n \ge 1$

$$F_{k,n+1} = kF_{k,n} + F_{k,n-1} \tag{1}$$

with initial conditions $F_{k,0} = 0$, $F_{k,1} = 1$.

If we take k = 1 in (1), we get the Fibonacci sequence: {0, 1, 1, 2, 3, 5, 8,...}.

By setting k = 2 in (1), we obtain the Pell sequence: {0, 1, 2, 5, 12, 29, 70, ...}.

The *k*-Lucas sequence $\{L_{k,n}\}_{n \in \mathbb{N}}$ is defined by the following recurrence relation for $n, k \ge 1$

$$L_{k,n+1} = kL_{k,n} + L_{k,n-1}$$
(2)

with $L_{k,0} = 2$, $L_{k,1} = k$.

For k = 1 in (2), the classical Lucas sequence is obtained: {2, 1, 3, 4, 7, 11, 18, ... }. For k = 2 in (2), the Pell-Lucas sequence is obtained: {2, 2, 6, 14, 34, 82, 198,...}.

There are some properties for these numbers. Some of them are [2,4]:

- For $n \in \mathbb{N}$, $F_{k,2n+1} = (F_{k,n})^2 + (F_{k,n+1})^2$, (3)
- For $n \in \mathbb{N}$, $F_{k,n-1}$, $F_{k,n+1} (F_{k,n})^2 = (-1)^n$, (4)
- For r > n, $L_{k,n-r}L_{k,n+r} (L_{k,n})^2 = (-1)^{n+r}L_{k,2r} + 2(-1)^{n+1}$, (5)
- For $n \in \mathbb{N}$, $F_{k,2n} = F_{k,n}L_{k,n}$, (6)
- For $n, m \in \mathbb{N}, L_{k,n}L_{k,n+m} = L_{k,2n+m} + (-1)^n L_{k,m},$ (7)
- For $m \ge 1$, $L_{k,n+1}L_{k,m} + L_{k,n}L_{k,m-1} = (k^2 + 4) F_{k,n+m}$. (8)

The period of the Fibonacci sequence mod m was first studied by Wall [12]. The recurrence part in the sequence creates a new sequence and gives the length of the periods of these sequences. Furthermore Kramer and Hoggatt [8] studied the periods of Fibonacci and Lucas sequences mod 2^n . Falcon and Plaza [3] studied the period length of the *k*-Fibonacci sequence mod m. The period of such cyclic sequences is known as Pisano period and the period-length is denoted by $\pi_k(m)$.

Motivated by the above papers, we study the Pisano period for the k-Lucas sequence and we obtain Pisano periods for the k-Fibonacci and k-Lucas sequences mod 2^n .

2. PISANO PERIODS FOR THE K-FIBONACCI AND K-LUCAS SEQUENCES

Theorem 2.1. $\{L_{k,n} \mod m\}_{n \in \mathbb{N}}$ is a simple periodic sequence.

Proof. From the defining relation we write,

$$L_{k,n-1} = L_{k,n+1-}kL_{k,n}$$

If $L_{k,t+1} \equiv L_{k,s+1} \pmod{m}$ and $L_{k,t} \equiv L_{k,s} \pmod{m}$, then

 $L_{k,t-1} \equiv kL_{k,s-1} \pmod{m}.$

By continuing this way, we get $L_{k,t-s+1} \equiv L_{k,1} \pmod{m}$ and $L_{k,t-s} \equiv L_{k,0} \pmod{m}$. So that $\{L_{k,n} \mod m\}_{n \in \mathbb{N}}$ is a simple periodic sequence with t - s period.

Corollary 2.2. For m > 3 every Pisano period begins with 2, 3.

Theorem 2.3. If the prime factorization of *m* is $m = \prod p_i^{e_i}$, then

$$\pi_k(lcm(p_i^{e_i})) = lcm(\pi_k(p_i^{e_i})).$$

Proof. The statement $\pi_k(p_i^{e_i})$ is the length of the period of $L_{k,n} \pmod{p}$ implies that the sequence $L_{k,n} \pmod{p_i^{e_i}}$, repeats only after blocks of length $c\pi_k(p_i^{e_i})$ and the statement $\pi_k(m)$ is the period-

length of the sequence $L_{k,n}$ (mod m), which is, $L_{k,n}$ (mod $p_i^{e_i}$) repeats after $\pi_k(m)$ terms for all values of *i*. Since any such number gives a period of $L_{k,n}$ (mod m), we conclude that $\pi_k(m) = lcm(\pi_k(p_i^{e_i}))$.

Corollary 2.4. If r|m then $\pi_k(r)|\pi_k(m)$.

Proof. If $r \mid m$, then $m = r p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$. From Theorem 2.3, we get $\pi_k(m) = lcm(\pi_k(r), \pi_k(p_1^{e_1}), \dots, \pi_k(p_k^{e_k}))$ and from lcm definition $\pi_k(r) \mid \pi_k(m)$.

Lemma 2.5. If k is an odd integer, then for $n \in \mathbb{N}$ i. $L_{k,3n} \equiv 0 \pmod{2}$ ii. $F_{k,3n} \equiv 0 \pmod{2}$.(9)(10)

Proof. i. We can give the proof by induction. For n = 1,

$$L_{k,3} = k^3 + 3k.$$

Since k is an odd number, $k^3 + k$ is an even integer. Thus,

$$L_{k,3} \equiv 0 \pmod{2}.$$

Suppose $L_{k,3n} \equiv 0 \pmod{2}$. So,

 $L_{k,3(n+1)} = kL_{k,3n+2} + L_{k,3n+1}$ = $k(kL_{k,3n+1} + L_{k,3n}) + L_{k,3n+1}$ = $(k^2 + 1)L_{k,3n+1} + kL_{k,3n}$.

Since $(k^2 + 1)$ is an even integer and from induction hypothesis,

$$(k^{2} + 1)L_{k,3n+1} + kL_{k,3n} \equiv 0 \pmod{2}.$$

Thus we get

 $L_{k,3(n+1)} \equiv 0 \pmod{2}.$

ii. We can give the proof by induction. For n = 1, $F_{k,3} = k^2 + 1$ and thus

$$F_{k,3} \equiv 0 \pmod{2}$$
.

Suppose $F_{k,3n} \equiv 0 \pmod{2}$. So,

$$F_{k,3(n+1)} = kF_{k,3n+2} + F_{k,3n+1}$$

= $k(kF_{k,3n+1} + F_{k,3n}) + F_{k,3n+1}$
= $(k^2 + 1)F_{k,3n+1} + kF_{k,3n}$

and thus we have

 $F_{k,3(n+1)} \equiv 0 \pmod{2}.$

Lemma 2.6. If k is an even integer, then for $n \in \mathbb{N}$ i. $L_{k,2^n} \equiv 0 \pmod{2}$ ii. $F_{k,2^n} \equiv 0 \pmod{2}$.

(11)

(12)

Proof. i. We can give the proof by induction. For n = 1, $L_{k,2} = k^2 + 2$ and thus

 $L_{k,2} \equiv 0 \pmod{2}.$

Suppose $L_{k,2^n} \equiv 0 \pmod{2}$.

For m = 0 and n is replaced by 2^n , we have the Eq. (7)

$$L_{k,2^{n+1}} = (L_{k,2^n})^2 + 2(-1)^{2^n+1}$$

and thus

 $L_{k,2^{n+1}} \equiv 0 \pmod{2}.$

ii. We can give the proof by induction. For n = 1, $F_{k,2} = k$ and thus

$$F_{k,2} \equiv 0 \pmod{2}$$
.

Suppose $F_{k,2^n} \equiv 0 \pmod{2}$.

For *n* is replaced by 2^n , we get the Eq. (6)

$$F_{k,2^{n+1}} = F_{k,2^n} L_{k,2^n}.$$

From the Eq. (11) and induction hypothesis can be formulated as

$$F_{k,2^{n+1}} \equiv 0 \pmod{2}$$

Lemma 2.7. If k is odd integer, i. $F_{k,3.2^{n-1}} \equiv 0 \pmod{2^n}$ ii. $F_{k,3.2^{n-1}+1} \equiv 1 \pmod{2^n}$.

Proof. i. We can give the proof by induction. For n = 1, $F_{k,3} = k^2 + 1$ and

$$F_{k,3} \equiv 0 \pmod{2}.$$

Suppose $F_{k,3,2^{n-1}} \equiv 0 \pmod{2^n}$.

For *n* is replaced by 3.2^{n-1} , we have the Eq. (6)

 $F_{k,3.2^n} = F_{k,3.2^{n-1}} L_{k,3.2^{n-1}}$

From the Eq. (9) and induction hypothesis, $F_{k,3,2^n} \equiv 0 \pmod{2^{n+1}}$ is satisfies.

ii. We can give the proof by induction. For n = 1, $F_{k,4} = k^3 + 2k$ and thus $F_{k,4} \equiv 1 \pmod{2}$.

Suppose $F_{k,3,2^{n-1}+1} \equiv 1 \pmod{2^n}$.

For *n* is replaced by $3 \cdot 2^{n-1}$, we get the Eq. (3)

$$F_{k,3,2^{n}+1} = (F_{k,3,2^{n-1}})^2 + (F_{k,3,2^{n-1}+1})^2$$
(15)

(13)

(14)

From the Eq. (10) and Eq. (13),

$$(F_{k,3.2^{n-1}})^2 \equiv 0 \pmod{2^{n+1}}$$

is satisfies. For *n* is replaced by $3 \cdot 2^{n-1}$, we have the Eq. (4)

$$\left(F_{k,3.2^{n-1}+1} \right) (F_{k,3.2^{n-1}-1} \right) - (F_{k,3.2^{n-1}})^2 = (-1)^{3.2^{n-1}} = 1.$$

Since $F_{k,3,2^{n-1}-1} = F_{k,3,2^{n-1}+1} - k F_{k,3,2^{n-1}}$ and $F_{k,3,2^{n-1}+1} \equiv 1 \pmod{2^n}$, then

 $F_{k,3,2^{n-1}+1}F_{k,3,2^{n-1}} \equiv 0 \pmod{2^{n+1}}$

is satisfies. Since,

$$\left(F_{k,3.2^{n-1}+1} \right) \left(F_{k,3.2^{n-1}+1} - k F_{k,3.2^{n-1}} \right) - \left(F_{k,3.2^{n-1}} \right)^2 = \left(F_{k,3.2^{n-1}+1} \right)^2 - k F_{k,3.2^{n-1}+1} F_{k,3.2^{n-1}} - \left(F_{k,3.2^{n-1}} \right)^2$$

and $(F_{k,3,2^{n-1}})^2 \equiv 0 \pmod{2^{n+1}}$, then we get

$$(F_{k,3,2^{n-1}+1})(F_{k,3,2^{n-1}+1} - k F_{k,3,2^{n-1}}) - (F_{k,3,2^{n-1}})^2 \equiv (F_{k,3,2^{n-1}+1})^2 \pmod{2^{n+1}} \equiv 1 \pmod{2^{n+1}} .$$

From the Eq. (15) we have $F_{k,3,2^{n+1}} \equiv (F_{k,3,2^{n-1}+1})^2 \pmod{2^{n+1}}$ and thus we have

$$F_{k,3.2^{n}+1} \equiv 1 \pmod{2^{n+1}}.$$

 Lemma 2.8. If k is an even integer,
 (16)

 i. $F_{k,2^n} \equiv 0 \pmod{2^n}$ (16)

 ii. $F_{k,2^{n}+1} \equiv 1 \pmod{2^n}$.
 (17)

Proof. i. We can give the proof by induction. For n = 1, $F_{k,2} = k$ and since k is an even integer,

$$F_{k,2} \equiv 0 \pmod{2}.$$

Suppose $F_{k,2^n} \equiv 0 \pmod{2^n}$.

For *n* is replaced by 2^n , we have the Eq. (6)

$$F_{k,2^{n+1}} = F_{k,2^n} L_{k,2^n}.$$

From the Eq. (11) and induction hypothesis we get

$$F_{k,2^{n+1}} \equiv 0 \pmod{2^{n+1}}.$$

ii. We can give the proof by induction. For n = 1, $F_{k,3} = k^2 + 1$ and $F_{k,3} \equiv 1 \pmod{2}$.

Suppose $F_{k,2^n+1} \equiv 1 \pmod{2^n}$.

For *n* is replaced by 2^n , we have the Eq. (3)

$$F_{k,2^{n+1}+1} = (F_{k,2^n})^2 + (F_{k,2^n+1})^2$$
(18)

From the Eq. (12) and the Eq. (16),

$$(F_{k,2^n})^2 \equiv 0 \pmod{2^{n+1}}$$

is satisfies. For *n* is replaced by 2^n , we have the Eq. (4)

$$(F_{k,2^{n}+1})(F_{k,2^{n}-1}) - (F_{k,2^{n}})^{2} = (-1)^{2^{n}} = 1.$$

From the induction hypothesis and the Eq. (16)

$$F_{k,2^{n}+1} F_{k,2^{n}} \equiv 2^{n} \pmod{2^{n+1}}$$

is satisfies. Since k is an even integer, we get

$$k \, F_{k,2^{n}+1} \, F_{k,2^{n}} \equiv 0 \; (\text{mod } 2^{n+1}).$$

Thus we have

$$(F_{k,2^{n}+1})(F_{k,2^{n}+1}-kF_{k,2^{n}}) - (F_{k,2^{n}})^{2} = (F_{k,2^{n}+1})^{2} - kF_{k,2^{n}+1}F_{k,2^{n}} - (F_{k,2^{n}})^{2}$$

and since $(F_{k,2^{n}})^{2} \equiv 0 \pmod{2^{n+1}}$, then we get

$$(F_{k,2^{n}+1})(F_{k,2^{n}+1}-kF_{k,2^{n}}) - (F_{k,2^{n}})^{2} \equiv (F_{k,2^{n}+1})^{2} \pmod{2^{n+1}} \equiv 1 \pmod{2^{n+1}}.$$

From the Eq. (18) we have $F_{k,2^{n+1}+1} \equiv (F_{k,2^{n}+1})^2 \pmod{2^{n+1}}$ and thus we get

$$F_{k,2^{n+1}+1} \equiv 1 \pmod{2^{n+1}}$$
.

Theorem 2.9. The period of the k- Fibonacci sequences mod 2^n is

$$\pi_k(2^n) = \begin{cases} if \ k \ odd, & 3.2^{n-1} \\ if \ k \ even, & 2^n \end{cases}$$

Proof. The proof is obtain from Lemma 2.7 and Lemma 2.8.

Lemma 2.10. If k is odd integer, then $L_{k,3,2^{n-1}} \equiv 2 \pmod{2^n}$.

Proof. We can give the proof by induction. When n = 1, $L_{k,3} = k^3 + 3k$ and

$$L_{k,3} \equiv 0 \equiv 2 \pmod{2}.$$

Suppose $L_{k,3,2^{n-1}} \equiv 2 \pmod{2^n}$.

For m = 0 and n is replaced by $3 \cdot 2^{n-1}$, we have the Eq. (7)

$$L_{k,3,2^n} = (L_{k,3,2^{n-1}})^2 + 2(-1)^{3,2^{n-1}+1}$$

= $(L_{k,3,2^{n-1}})^2 - 2.$

Using the induction hypothesis we get $(L_{k,3,2^{n-1}})^2 \equiv 4 \pmod{2^{n+1}}$. Thus we have

 $L_{k,3,2^n} \equiv 2 \pmod{2^{n+1}}$.

Lemma 2.11. If k is odd integer, then $L_{k,3,2^{n-1}+1} \equiv k \pmod{2^n}$.

Proof. For m = 1 and n is replaced by 3.2^{n-1} , we get the Eq. (8)

$$kL_{k,3,2^{n-1}+1} + 2L_{k,3,2^{n-1}} = (k^2 + 4) F_{k,3,2^{n-1}+1}$$

From Lemma 2.10 and the Eq. (14), we have

 $L_{k,3,2^{n-1}+1} \equiv k \pmod{2^n}.$

Theorem 2.12. If k is odd integer, then the Pisano period of the k- Lucas sequences mod 2^n is $3 \cdot 2^{n-1}$.

Proof. The proof is obtain from Lemma 2.10 and Lemma 2.11.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- [1] Bolat, C., Köse, H., "On the properties of k-fibonacci numbers", International Journal of Contemporary Mathematical Sciences, 5(22): 1097-1105, (2010).
- [2] Falcon, Plaza, A., "On the fibonacci k-numbers", Chaos, Solutions and Fractals, , 32: 1615-1624, (2007).
- [3] Falcon, S., Plaza, A., "K-fibonacci sequences modulo m", Chaos, Solutions and Fractals, 41: 497-504, (2009).
- [4] Falcon, S., "On the k-lucas numbers", International Journal of Contemporary Mathematical Sciences, 21: 1039-1050, (2011).
- [5] Falcon, S., Plaza, A., "The k-fibonacci sequences and the pascal 2-triangle", Chaos, Solutions and Fractals, 33: 38-49, (2007).
- [6] Falcon, S., Plaza, A., "On k-fibonacci sequences and polynomials and their derivatives", Chaos, Solutions and Fractals, 39: 1005-1019, (2007).
- [7] Kocer, E.G., Tunces, S., "Bivariate fibonacci and lucas like polynomials", GU J Sci, 29(1): 109-113, (2016).
- [8] Kramer, J., Hoggat, V. E., "Special cases of fibonacci periodicity", The Fibonacci Quarterly, 10(5): 519-522, (1972).
- [9] Niven, I., Zuckerman, H.S., Montegomery, H.L., "An introduction to the theory of numbers", 5 nd ed., John Wiley Sons, Inc., (1991).
- [10] Rogers, N., Campbell, C. W., "The period of the fibonacci sequence modulo j", Phd, The University of Arizona, Tucson, USA, (2007).

- [11] Vajda, S., "Fibonacci and lucas numbers, and the golden section, theory and applications", Ellis Horwood Limited, (1989).
- [12] Wall, D. D., "Fibonacci series modulo m", The American Mathematical Monthly, 67: 525-532, (1960).