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1. INTRODUCTION

In the real world, we frequently deal with vague, imprecise or insufficient information. Fuzzy sets (FSs)
were introduced to deal with this reality. In the fuzzy sets theory, membership and non- membership
degrees are complementary, i.e., the sum of both degrees of an element belonging in a fuzzy set is 1.
However, there are situations where the two degrees are not complementary, mainly because of
hesitation. In an intuitionistic fuzzy set (IFS), each element is assigned membership and non-membership
degrees, where the sum of the two degrees does not exceed 1. Accordingly, an IFS is more applicable
than a FS for representing vague information since it considers a degree of hesitation. IFSs and their
generalizations can be useful in problems such as decision making problems, sales analysis, new product
marketing, and financial services. The modal operators have been known to be important tools for IFSs
and allow for a more detailed estimation of information.

IFSs were introduced by Atanassov [1]. Since then different types of operators have been defined over
IFSs. They can be classified into several groups: modal operators, topological operators, level operators,
negation operators and other types. Atanassov [2] defined several operators for the theory of IFSs. He
discussed the relations between the classical negation operator and the two standard modal operators
“necessity” and “possibility”. Atanassov [1,3-4] defined topological operators over IFSs, and derived
their basic properties. Atanassov [5] considered modal operators defined over IFSs. Cornelis et al. [6]
considered extended modal operators as tools for constructing inclusion indicators over IFSs. Atanassov
and Dimitrov [7] introduced different forms of negation operators. Hinde and Atanassov [8] studied some
relations between intuitionistic fuzzy negations and intuitionistic fuzzy modal operators. Parvathi and
Geetha [9] defined some level operators, max-min implication operators and Py g, Qqp Operators on
temporal IFSs. Atanassov [10] introduced two new operators that partially extend the intuitionistic fuzzy
operators from modal type. Srinivasan and Palaniappan [11] defined some operators and established their
properties over IFSs of root type. Sharma [12] studied the impact of the modal operator F g (A) on
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intuitionistic fuzzy groups and proved that many properties of intuitionistic fuzzy subgroups like
normality, commutativity and cyclic groups remain invariant under the modal operator. Yilmaz and
Cuvalcioglu [13] introduced Ng(A) and Ng-(A) operators on temporal IFSs and examined their
properties. Baloui Jamkhaneh and Nadarajah [14] introduced a new generalized IFS (GIFSg) and some
operators over GIFSg. Baloui Jamkhnaeh [15] and Baloui Jamkhaneh and Nadi Ghara [16] defined level
operators over the GIFSgs. In 2017 Baloui Jamkhaneh and Garg [17] considered some new operations
over the generalized intuitionistic fuzzy sets and their application to decision making process. All
operations defined over IFSs were transformed to the GIFSg case.

The aim of this note is to define different modal type operators over GIFSg and to derive their properties.
This study shows the exibility of GIFSgs in terms of different operators. The study is expected to
encourage applicability of GIFSg to the many areas of application of IFSs like sustainable energy
planning, image fusion, agricultural production planning, medical diagnosis, pattern recognition, reservoir
flood control operation, reliability optimization of complex systems, fault diagnosis and prediction of the
best quality of two-wheelers, see Baloui Jamkhaneh and Nadarajah [14] for references and other areas of
application of IFSs. The contents of this note are organized as follows: Section 2 states some definitions
including the definition of GIFSg given in Baloui Jamkhaneh and Nadarajah [14]; Section 3 summarizes
some results on GIFSg given in Baloui Jamkhaneh and Nadarajah [14]; Section 4 defines operators acting
on GIFSg and derives their properties; some conclusions and future work are noted in Section 5.

2. BASIC CONCEPTS

Definition 2.1. [1] Let X be a non-empty set. An IFS A in X is defined as an object of the form A =
{(x, 1o (%), va(x)) : x € X} where the functions u,:X — [0,1] andv,: X — [0,1] denote the degree of
membership and non-membership functions of A respectively and 0 < u,(x) +v4(x) <1 for eachx €
X.

Definition 2.2. [14] Let X be a non empty set. Generalized intuitionistic fuzzy sets A in X, is defined as an
object of the form A = {(x, ua(x),va(x)) : x € X} where the functions p, : X — [0,1] and v: X — [0,1],
denote the degree of membership and degree of non-membership functions of A respectively, and
0 < (x)®+ v,(x)% <1 for each x € X, and given fixed 8. The collection of all generalized IFSs is
denoted by GIFSg (6, X).

Definition 2.3. [14] Let X be a non-empty set. Let A and B be two GIFSgs such that

A= {<X' HA(X)'VA(X)) X E X}' B = {(X' HB (X)!VB (X)> 'XE X}

Define the following operations on A and B:
i. AcB ifandonlyif p,(x) < pp(x)and vy (x) = vp(x),Vx € X,

ii. A=B ifandonlyif p,(x) = ug(x) and v4(x) = vg(x), Vx € X,

iii.  AUB ={(x, max(u,(x), up(x)), min(v, (x), vy (x))): xe X},

iv. ANB= {(x, min(/,zA(x),yB (x)), max(v,(x), vg(x))): xe X},

V. A+B={(, 1a()% + pp(0)® — pa()up ()%, va(2)°vp (x)%): xeX},

vi. A.B = {(X' IlA(x)5 .UB(X)5 ,VA(X)5 + VB(X)(S - VA(x)(SVB(x)(S): XEX};
vii.  A={{x,v,(x),ua(x)):x € X}.

Definition 2.4. The degree of non-determinacy (uncertainty) of an element x € X to the GIFSg A'is

defined by m4(x) = (1 — p ()% — v, (x)8 )%-
It can be easily shown that 4 (x) + s (x)® + v4(x)% = 1.
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3. REMARKS ON THE GENERALIZED INTUITIONISTIC FUZZY SETS

Let X is a non-empty finite set, o, B € [0,1] and A € GIFSg,as A = {(x, u4(x),v4(x)) : x € X}. Baloui
Jamkhaneh and Nadarajah [14] introduced the following operators over GIFSg and investigated some
their properties:

i. OA= {( X, pta(x), (1 — yA(x)‘S)%) : X€E X}, (modal logic: the necessity measure),

i, 04 ={(x,(1- v;0)%)5,v4(x)) : xe X}, (modal logic: the possibility measure)
ii. €A ={xKL):x€ X} K= 1) L= ;"Ei}}vA(y), (topological: closure),
iv. I(A)={xkl:xe X}, k= %QMA(y), L = Téxva(y), (topological: intersection),

Vo DL(A) = {(r (ua0O® +amy(@) )5, (s + (1 - @)ma(0)%)s) 1 x € X},
Vi Fag @ = {1 (0P + amy(@® ), (G + pru ) )ix € X} ok B <1,

Vi, Gap(A) = { (v, aiua(x), B3 va(x)): x € X},

Theorem 3.1. For every GIFSgy A, we have

i. OoA = 04,
ii. 00A=0A4,
iii. O0A=0A4,

iv. 0 OA =04,
V.  Du(DA) = Fyp (DOA) = OA,
Vi.  Dga(0A) =Fap(0A) =04,

vii.  D,(A) = D;_,(4),

Viii.  Ggp(ANB) = Ggp(A) N Gy p(B),
iX. Ga,B(A UB) = Ga,ﬂ(A) U Ga,B(B)'
X, Tpya(x) =0,

Xi. Fap (Dg(A)) = Dy (A).

Proof. Proof is obvious.
4. MAIN RESULTS

Here, we will introduce new operators over the GIFSg, which extend some operators in the research
literature related to IFSs.

Definition 4.1. Letting o, B € [0,1] and A € GIFSg, we define the operators of as follows

L do () = {(r aG0% + amy ()% ) , (a(0)° + (1 - Imy (1)°)):x € X),

i £ (A) = {<x, (va (P + ama()° )7, (s (X)° + Brea(x)®)? ) x € x}, wherea + 8 < 1,
il gap(A) = { (% a0va (0, BiaC0)ix € X},

Vo Jap )= {0 (0a0O° + am (9 )8, (Bua()?) ) x € X}

Vo e = {5 (a0 + a0 ) (Bua )P ) x € X}

Vi Hag )= [t (a0 ), (i@ + fra(P) ) € X,

{

vii.  hgg(A) = Jx, (avA(x)5 )3, (,LtA(x)‘S + ﬁnA(x)‘S)E Yix € X}.
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Theorem 4.1. For every A € GIFSg and for every o, f € [0,1], we have

i. dy(A) €GIFSg,
il a<p = d,(4) c dg(A),
. dy(4) =04,
iv. di(4) =04,
V. d, (OA) = DA,
vi. d,(0A)=0A.

Proof. Proofs (i) and (ii) are obvious.
(iii) Note that
1 1
do(4) = {(X: Va(x)® + 0m, (2)°)8 , (ua(x)? + (1 — 0y (2)%)8) :x € X},

= {01400, (uaG)® + 4 ()% )i x € X).
Since my(x)% =1 — ps(x)% —v,(x)% we have

do(4) = {(X, va(x), (1 — vA(x)‘S)%,):x € X} =0 A.
The proof is complete.

(iv) Follows by noting that
dy) = {06 040 + 1P (1@ + (1 = Dy )P € X},
= {01, 0a00® + 1A () )5, 1a(x) ) x € X},

= {(X' 1- #A(x)a)%,ﬂ,q(x) Yix € X} =0OA.

(v) Note that

e (@) = {(5, 04 (0 + ey ()5 , (a0 + (1 = @i (0))3) :x € X}
Since g4 (x) = 0, we have

dg (OA) = {(x,voa(x) , pa): x € X} = D A.

The proof is complete. The proof of (vi) is similar to that of (v).

Theorem 4.2. For every A € GIFSg and for every a, 8 € [0,1] , where ¢ + § <1, we have

i fup(A) € GIFS,
. 0<y<a=fg(A) cfyg(A),
iii. OS]/S,B::’ foc,B(A)Cfoc,y(A)i
iv.  dg(A) =fy1-q (D),
V. fo1(4) =°—i
Vi.  fio(A) =04,
Vi, fog(A) = Fop(A),
Vi, fo5(A) = fz4(A),
iX.  foo(4) =4,
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X, fop (oA) = 04,
Xi. fog (0A) = 0 A.

Proof. (i) Follows by noting that

1 1
Kfap (A)(x)(S Vg (A)(x)(S = [(VA(X)6 + amy(x)° )3]6 + [(#A(x)6 + .BﬂA(x)s)g]a,
= v4(0)° + pa()° + ()% (@ + B),
< ua()® + v (0% + 1y () = 1.
Proofs of (ii) and (iii) are obvious.

(iv) Follows by noting that
fo1-a (A) = {(x, (va(0)°® + amy (0)° )%, (HaCGO® + (1 - a)ﬂA(x)‘S)% ):ix € X} = dq(A).

(v) By (iv) we have f, ; (A) = dy(A) and f; 5 (A) = d; (A). It follows by Theorem4.1-(iii) that f, ; (A) =
0 A.

(vi) It follows by Theorem4.1-(iv) that f; , (A) = O A.

(viii) Since

a0 = {00, (0?4 Bma00° a0+ amg)°)0 ) x € x
and

fup () = {<x, (1aC + ama()® )5, (va()® + Brea ()Y ) ex € x},
we have

- 1 1
fap(A) = {(x, (va(®)® + amy (2)°)8, (ua(x)® + Bra(x)° )8 ):x € X},

and f,3(A) = fgq(A).
Since T4 (x) = 0 and my,4(x) = 0, the proof (vii), (x) and (xi) are obvious.
Theorem 4.3. For every A € GIFSg, and real numbers o, 3,y € [0,1]

i, gqp(A) € GIFSg,
i a<y=g.p(A) cgypA)
iii.  B<y=gup(A) Dguy(A),
v, 7€ 00112 gagp (g, (A) = 8, (Bup (D),
V. 8ap(CA)) = 1(gqep(A),
Vi, gap(1(A)) = C(8ap(A)),
Vi, gop() = gp(A),
viii.  g1,(A) =4,
IX.  gqp(ANB) =gyp(A)Ngyp(B),
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X. ga,B(A UB) = ga,B(A) U ga,B(B)-
Proof. (i) Since

1 1
Bap () = { (% oA GO, BBAGO) ) ix € X},

1 1 8
P () ()° + Vg, g (1) = (@B, (0))° + (,6’6MA(x) ) ,

= avy(x)° + Bua(x)°,
< v, ()04 (x)% < 1.
We have gq g(A) € GIFSg.
(ii) Note that
() = { 65 @G0, s (9 ) :x € X},

and

1 1
Bs(A) = { (6 YoV G0, B GO ) 1x € X,

1 1

— - 1 1
Since o < ywe have a® < y®, asva(x) < ysva(x) and s0 gq(A) € gy g (A).
The proof of (iii) is similar to that of (ii).
(iv) Since
1 1
gy,‘[(A) = { (xl VSVA(x)' TS I"lA(x)> 'x € X}'

1

1 11
8up (8y2(4) = {<X' a®7® 1y (%), By v, () 1 x € X},

= { (0 @Dia (0, BV va ()i x € X),

= gBy_aT (A)'

and

n 1 1
Bup() = { (x cB1p (0, BBuAG) ) 1x € X,
. 11 11
8y (8ap(A) = {(X»W BBVA(X), TP aBpp (X)) : x € X},

= (% OBVAG), @iua(9) i x € X),
= gyﬁ_qT(A)J

we have g (gy,T(A)) = 8,,:(8es ().

(v) Follows by noting that
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c(4) = {(x, maxyexpa(y), min,exva(y)) : x € X},

and
i 1
8ap (C(A)) = {(x, aOminycxva (), BFmaryexa @)} x € X |,

1 1
= (e minyexasuy () maxyexBous ) s x € X ),

= 1(8a,p(A)).

(vi) Follows by noting that
1(A) = {(x, JRua (), J&va()) : x € X },

and
1 1
Bap (I00)) = { (6 058w (), B3RA ) : x €X |,

= {00 TSaova ), TERBSUAY) s x €X
= C(ga,B(A)) 1 (X,ﬂ € [0'1] .
(vii) Let A = {(x, ua(x),va(x)):x € X} be a GIFSg. Then

A = {(x, VA(x)' ‘U.A(X)): X € X}'

1 1
8pa(A) = { (%, BFVA(0, c@ua () i x € X},

_ 1 1
gop(d) = { (%, @B (x), BBva(x) ) 1 x € X},

and
N 1 1
8ap(4) = {<x,/>’5vA(x).a5uA(x) yix € X},

S0 8o,3(A) = gp,(A) . Proof of (viii), (x) and (i) are obvious.
Theorem 4.4. For every A € GIFSg, and o, 3,y € [0,1]

i.  Jup (A) € GIFSg,

i  asy=]Jup(A) c],p(d),
iii.  B<y=Jup(A) DJuy(A),
iv. 0A= Ji1(4),

V. A =]0'1 (A)

Proof. (i) Since

1 1
g ) = {0 (a0 + amy 0, (Bua ) v € .

and
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) s
B g )° + V15 ()° = (a(0)° + amy (x)° )5)° + <ﬁ’% VA(x)> ,

= (.UA(X)(S + amy(x)° ) + Bva(x)°,
S ua()® + ()% +va(0)? =1,
we have ], g(A) € GIFSg.

(ii) Note that

1 1
Jep (A) = {<x, (1 (O + ama ()5 )P, (Bua()®)P ) x € x}.

and

1 1
Jyp (A) = {(X' (1a()® +yms ()% )3, (Bva(x)®)8):x € X}.

1 1
Since o < y we have (s (%)% + ams (x)° )3 < (na(2)® +yma(x)® )5 and so Jo5(A) € Jy g(A).
The proof of (iii) is similar to that (ii). Proofs of (iv) and (v) are obvious.
Theorem 4.5. For every A € GIFSg, and o, B,y € [0,1]
i.  jop (A) € GIFSg,

il. a< Y= ]a‘B(A) C erB(A)’

. B<y=jup(A) 2juy(A),

V. Jop (A) =Jap (A),

V. ‘3__A = j11(4),
VI. A =j0‘1 (A)

Proof. (i) Since
1 1
s (0 = {05, (0?4 ama 00 (B0 ysx € xJ.

and

1 1 s
B p() 0% + Vi ) (0% = (va(0)® + amy (x)° )3)% + </>’3 MA(x)> ,

= (VA(X)‘S + amy(x)® ) + Bua(x)°,
< pua ()8 + (08 + v, ()8 = 1.
Finally, it can be concluded that j, g (A) € GIFSg.

(i) Note that

1 1
i 80 = {05, (0° + ama 0 (a0 yix € xJ,

and
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1 1
Jyp (A) = {(x, (va(@)? +yma(x)° )0, (Bra(x)?)8):x € X}.
Since a < y we have (VA ()% + am,(x)8 )E < (VA(x)5 + yma (x)8 )3 and so jqg(A) C jy,g(A). The
proof of (iii) is similar to that (ii). Proofs of (iv), (v) and (vi) are obvious.
Theorem 4.6. For every A € GIFSg, and o, B,y € [0,1]

i, Heg (A) € GIFS,
ii. a <y=Hqp(A) c H,g(A),

iii. B <y=Hg(A) D Hy,y(A),
iv. H1,0(A) =A,
V. H1,1(A) = A.

Proof. (i) Since

Hep (A) = {(x, (05.11,4(35)(S )%' (VA(X)(S + ﬁT[A(x)a)% ):ix € X}.

and

1 ~N
Mt () () + Vi g (0)° = ((ana(0)® )7)° + <(VA(x)5 + BnA(x)‘S)g) ,

= apy ()% + v, (x)° + Bra(x)®,
< pa()® +ma(0)° + v, (0)° =1,
we have Hy g(A) € GIFSg.

(ii) Note that

Hap ) = {6, (auaG® )7, (va ()P + Bra()®))ix € X,

and

1 1
Hp ) = {00 (a00° 7, (400" + a9y € 1},

Since o <y we have (au, ()% )8 < (yua(x)? )® and so Heg(A) < Hyg(A). The proof of (iii) is
similar to that (ii). Proofs of (iv) and (v) are obvious.

Theorem 4.7. For every A € GIFSg, and o, B,y € [0,1]

i.  hgg(A) € GIFSg,

ii. a <y =hgg(A) c h,g(A),
iii. B <y=>hgg(A) Dhyy(A),
V. heg(®) = Hop (8),

V. hio(A) =4,
vi.  hy1(A) =04

Proof. (i) Since
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1 N
Hnaga 0 + Vg 0° = (ava@)°®)*)° + <(MA(x)‘S + ﬁnA(x)5)3> ,

= av (%)% + uy (0)° + By (x)°,
< V()% + pa ()8 + ()0 =1,
we have h, g(A) € GIFSg.

(ii) Note that

hgg (A) = {(x, (ava(x)? )%.(MA(x)‘S + BT[A(X)(S)% ):x € X}-

and

1 1
h, g (A) = {<x, (1vaG? )3, (1a@)® + By (1)°)0 ):x € X}.

Since a < y we have (av,(x)° )% < (ya(x)? )% and so hyg(A) € h, g(A).
The proof of (iii) is similar to that (ii). The proofs of (iv), (v) and (vi) are obvious.
Definition 4.2. Letting o, B € [0,1] and A € GIFSg, we define the some operators of as follows
L g ) = [t (1a00° + al — (P — Bra()) ), (BraC?) ) € X}
i i )= f (10 +a(l— a0 v @) ), (Bua()?)):x €
i Hig )= {00 (@raCO? P, (40P + B = a9 s ex € x),
V. g ) = f (@va00P P, (ua ) + B~ iy ()P — ava GO ) x € )
Theorem 4.8. For every A € GIFSg, and o, 3,y € [0,1]
i, Jop (A) € GIFSg,
i.  a<y>]Jua(A) cJypA),
i, B<y=Jup A 2]ay(A),

iv. J1,(4) =0 4,
v. Joi(4) = A

Proof. (i) Since
1 1
Jap (A) = {(x, (#A(X)6 + a(l — pa(x)® = Bra(x)?) )g,(ﬁvA(x)‘s)g Yix € X}.
and
1 1 8
e @O Vg ()% = (a0 + a1 — s () = Bra(0)°) )3)° + <ﬁ3 vA<x>> ,

= (#A(X)S +a(l — pa(x)® — Bra(x)°® )+ Ba(x)°,

= (1 —ua)° + (L — ) (Va(0)? ) + a,
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<((1- ) ()% + (1 — a)(vu(x)® )+a<1,
we have Jg ¢ (A) € GIFSg.
(ii) Note that
Jap () = {0 (1aGOP + a1 = ua () = Bra@?) P, (Bua()?)?):x € X,
and

1 1
Jyg (A) = {(x, (.UA(X)6 +y(1 — pa(x)® — Bra(x)®) )3,([31/,4(96)6)3 Yix € X}.

Since a < y we have

Sl

1
(£a(0)® + @(1 = a(0)® = pra()®) ¥ < (a(@)® +y(1 = a()? = va()%))

and so Jg s (A) < ], g(A).

-

The proof of (iii) is similar to that (ii). The proofs of (iv) and (v) are obvious.
Theorem 4.9. For every A € GIFSg, and o, 3,y € [0,1]
i jup (A) € GIFSg,
i asy=ijp ) ciyed),
. B<y=jgp (A) 2 jay(A),
V. jop (B) =Jgps (W),

V. m = j?[,l (A)'

Proof. (i) Since

]':(,[3 (A) = {(x, (VA(X)(s + a1l — Bua(x)® — vu(x)%) )5»(ﬁ1«l,4(x)6)§ ):ix € X},

and

1 B
it g @ ®)° + Vit W% = (va()?® + a(l — Bua(x)® —v4(x)%) )5)% + (ﬂ% .UA(X)> )

= ((1 = a)va()® + (1 = )pua(0)?) + «,
SA-av )+ (1 -ua()° +a <1,

we have j, 5 (A) € GIFSg. The rest of the proof is similar to that of Theorem4.8.

Theorem 4.10. For every A € GIFSg, and o, 3,y € [0,1]
i. Hgpg(A) € GIFSg,
ii. a<y=Hyg(A) cHjg(A),
iii. B <vy=Hgg(A) o Hg, (A),
iv. Hig(A)=A
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H;, (A) = DA.

The proof of Theorem 4.10 is similar to that of Theorem 4.8.

Theorem 4.11. For every A € GIFSg, and for every three real numbers a, 3,y € [0,1]

i
ii.
iii.
iv.
V.
Vi.

- (A) € GIFSg,
a <y =hyg(A) chjg(A),
B <y =hgg (A) D hgy (A),

op (A) = Hy g (A),
hI,O (A) = Aﬂ
hi; (A) =0 A.

The proof of Theorem 4.11 is similar to that of Theorem 4.8.

5. CONCLUTIONS

We

have introduced modal types of operators over GIFSg and proved their relationships. An open

problem is: definition of level operator, negation operator and other operators over GIFSg and the study
of their properties.

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

ACKNOWLEDGMENTS

The authors wish to thank the referee, for the careful reading of the paper and for the helpful suggestions
and comments.

REFERENCES

[1]
[2]
3]
[4]

5]

(6]

[7]

Atanassov, K.T., “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 20(1): 87-96, (1986).
Atanassov, K.T., “Intuitionistic fuzzy sets”, Springer Physica-Verlag, Heidelberg, (1999).
Atanassov, K.T., “More on intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 33: 37-45, (1989).

Atanassov, K.T., “On four intuitionistic fuzzy topological operators”, Math Ware Soft Comput., 8:
65-70, (2001).

Atanassov, K.T., “On the modal operators deferent over the intuitionistic fuzzy set”, Notes on
Intuitionistic Fuzzy Sets, 10(1): 7-12, (2004).

Cornelis, C., Atanassov, K.T., Kerre, E., “Application of extended modal operators as a tool for
constructing inclusion indicators over intuitionistic fuzzy sets”, Soft Computing-Foundations and
Theoretical Aspects., 133-142, (2004).

Atanassov, K.T., Dimitrov, D., “On the negations over intuitionistic fuzzy sets”, Annual of
"Informatics™ Section Union of Scientists in Bulgaria, 1: 49-58, (2008).


https://biblio.ugent.be/person/801001465969
https://biblio.ugent.be/person/801001465969
https://biblio.ugent.be/publication?q=parent+exact+%22Soft+Computing-Foundations+and+Theoretical+Aspects%22
https://biblio.ugent.be/publication?q=parent+exact+%22Soft+Computing-Foundations+and+Theoretical+Aspects%22

234 Ezzatallah BALOUI JAMKHANEH, Saralees NADARAJAH / GU J Sci, 31(1): 222-234 (2018)

[8] Hinde, C.J., Atanassov, K.T., “On intuitionistic fuzzy negations and intuitionistic fuzzy modal
operators with contradictory evidence”, 5th WSEAS / IASME International Conference on
Engineering Education (EE'08), Heraklion, Greece, July 22-24, (2008).

[9] Parvathi, R., Geetha, S.P., “A note on properties of temporal intuitionistic fuzzy sets”, Notes on
Intuitionistic Fuzzy Sets, 15(1): 42-48, (2009).

[10] Atanassov, K.T., “On the operators partially extending the extended intuitionistic fuzzy operators
from modal type”, Notes on Intuitionistic Fuzzy Sets, 18(3): 16-22, (2012).

[11] Srinivasan, R., Palaniappan, N., “Some operators on intuitionistic fuzzy sets of root type”, Annals of
Fuzzy Mathematics and Informatics, 4(2): 377-383, (2012).

[12] Sharma, P.K., “Modal operator F g (A)in intuitionistic fuzzy groups”, Annals of Pure and Applied
Mathematics, 7(1): 19-28, (2014).

[13] Yilmaz, S., Cuvalcioglu, G., “On level operators for temporal intuitionistic fuzzy sets”, 18th Int.
Conf. on IFSs, Sofia, 10-11 May 2014, Notes on Intuitionistic Fuzzy Sets, 20(2): 6-15, (2014).

[14] Baloui Jamkhaneh, E., Nadarajah, S., “A new generalized intuitionistic fuzzy sets”, Hacettepe
Journal of Mathematics and Statistics, 44 (6): 1537-1551, (2015).

[15] Baloui Jamkhaneh, E., “The operators over the generalized intuitionistic fuzzy sets”, International
Journal of Nonlinear Analysis and Applications, 8(1): 11-21, (2017).

[16] Baloui Jamkhaneh, E., Nadi Ghara A., “Four new operators over generalized intuitionistic fuzzy
sets”, Journal of New Theory, 18: 12-21, (2017).

[17] Baloui Jamkhaneh, E., Garg, H., “Some new operations over the generalized intuitionistic fuzzy sets
and their application to decision making process”, Granular Computing, DOI 10.1007/s41066-017-
0059-0, (2017).



