

RESEARCH ARTICLE

On finite groups in which every maximal subgroup of order divisible by *p* is *p*-decomposable

Qianqian Wang¹, Shijie Tao^{*2}

College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China

Abstract

We obtain a complete classification of a finite group G in which every maximal subgroup of order divisible by p is p-decomposable for a given prime divisor p of |G| and our results generalize a recent result of Shi and Tian.

Mathematics Subject Classification (2020). 20D15, 20D06

Keywords. maximal subgroup, p-decomposable group, inner p-decomposable, Sylow subgroup

1. Introduction

In this paper, all groups are assumed to be finite. It is known that if a group G can be written as the direct product of a Sylow p-subgroup of G and a Hall p'-subgroup of G, then G is called a *p*-decomposable group. A group G is not *p*-decomposable but all of its proper subgroups are p-decomposable, then group G is called inner p-decomposable. A group G is called inner-nilpotent group, if G is non-nilpotent but all of its proper subgroups are nilpotent. A group G is called p-closed, if its Sylow p-subgroup is normal in G. Specially, if $p \nmid |G|$, G is p-closed. Inner-nilpotent group G is a group whose order is $p^{\alpha}q^{\beta}$, where p, q are distinct prime number. There is a normal Sylow subgroup and a non-normal Sylow subgroup in G, the non-normal Sylow subgroup is a cyclic group. If the Sylow q-subgroup of G is normal, we call inner-nilpotent group G as a q-fundamental group [2]. In this paper, the symbol P: Q represents the semidirect product of P and Q, where P is normal in G. Shi and Tian [5, Theorem 1.1], characterized the structure of a group in which every maximal subgroup of order divisible by p is nilpotent (or abelian). In this paper, considering any fixed prime divisor p of the order of a group G, we obtain the following result in Theorem 1.1 whose proof is given in Section 3. The symbols appearing in this paper can be found in [3]. In this paper, P_i stands for the Sylow-*i* subgroup of G.

Theorem 1.1 Suppose that G is a group and p is a given prime divisor of |G|. Then every maximal subgroup of G of order divisible by p is p-decomposable if and only if one of the following statements holds:

- (1) G is a *p*-decomposable group.
- (2) G is not a p-decomposable group, and the following statements are true.

^{*}Corresponding Author.

Email addresses: 18456713872@163.com (Q.Q. Wang), tsj7_7@163.com (S.J. Tao)

Received: 02.11.2024; Accepted: 27.12.2024

(2.1) G = P : Q is an inner *p*-decomposable group, where *P* is a Sylow *p*-subgroup of *G* and *Q* is a cyclic Sylow *q*-subgroup, $p \neq q$, and *Q* has only one maximal subgroup;

(2.2) G = Q : P is an inner nilpotent group, where P is a Sylow p-subgroup of G and where Q is a Sylow q-subgroup of G.

By Theorem 1.1, the following corollary emerges.

Corollary 1.2 ([5, Theorem 1.1]) Suppose that G is a group and p is any fixed prime divisor of |G|, then every maximal subgroup of G of order divisible by p is nilpotent if and only if one of the following statements holds:

(a) G is a nilpotent group;

(b) G = P : Q is an inner-nilpotent group, where $P \in Syl_p(G)$ and $Q \in Syl_q(G)$, P is normal in $G, p \neq q$;

(c) G = Q : P is an inner-nilpotent group, where $Q \in Syl_q(G)$ and $P \in Syl_p(G)$, Q is normal in $G, q \neq p$;

(d) $G = Z_p : K$, where K is an inner-nilpotent group and (p, |K|) = 1.

2. A lemma

Lemma 2.1 ([2, Theorem 1]) Inner-*p*-closed group has the following two forms (1) $G/\Phi(G)$ is a simple group of complex order; (2) G is a *q*-fundamental group whose order is $p^{\alpha}q^{\beta}$.

3. Proof of Theorem 1.1

Proof. The sufficiency part is evident, we only need to prove the necessity part. For a finite group G, it is either p-decomposable or non-p-decomposable. If G is p-decomposable, the conclusion (1) is obviously correct. In the following discussion we suppose G is not p-decomposable.

Now we choose any maximal subgroup H of G. If $p \mid |H|$, then H is p-decomposable; if $p \nmid |H|$, then H is also evidently p-decomposable. Hence, every maximal subgroup of G is p-decomposable. So, G is inner p-decomposable.

In the following we divide our arguments into two cases.

Case 1. *G* is a *p*-closed group.

Let P be a Sylow p-subgroup of G, we have $P \leq G$. By Schur-Zassenhaus theorem, G has a p-complement Q. Then G = P : Q. Choose any maximal subgroup K_1 of Q, we can get PK_1 is a maximal subgroup of G, then PK_1 is p-decomposable. Thus $PK_1 = P \times K_1$. If Q has at least two different maximal subgroups K_1 and K_2 . Then $PK_i = P \times K_i$, where i=1, 2. Since $Q = \langle K_1, K_2 \rangle$, we have $PQ = P \times Q$, a contradiction. Hence, Q has the unique maximal subgroup K_1 , then Q is a cyclic Sylow q-subgroup, where q is a prime number and $p \neq q$. Thus, (2.1) is proved.

Case 2. G is not a p-closed group.

Since G is inner p-decomposable, G is inner p-closed. By Lemma 2.1, we can get (a) $G/\Phi(G)$ is a non-abelian simple group; (b) G is a q-fundamental group.

Assume that the case(a) occurs. Let $\overline{G} = G/\Phi(G)$. By \overline{G} is a non-abelian simple group, we get G is a non-abelian simple group if $\Phi(G) = 1$. By classification of finite simple groups, there are three types of non-abelian simple groups. They are alternating groups, sporadic simple groups and simple groups of Lie type, respectively. In the following we divide our arguments into three cases.

Case 2.1. *G* is an alternating group, $G \cong A_n$. Suppose $p \nmid n$ and $n \ge 6$. A_{n-1} is the maximal subgroup of A_n , evidently, $p \mid |A_{n-1}|$. However, A_{n-1} is a simple group and it's not *p*-decomposable, a contradiction. So $p \mid n$ and p > n - 1, thus p = n, now we have $A_n = A_p$, and we can select the maximal subgroup $N_G(P)$ of *G*, where *P* is a Sylow *p*-subgroup of *G*. We can get $N_G(P) = P : C_{\frac{p-1}{2}}$, it's clearly that it is not *p*-decomposable. Hence it's a contradiction. If n = 5, A_5 has three prime factors, they are 2, 3, 5 respectively. We consider the maximal subgroup S_3 if p = 3, since $3 \mid |S_3|$, $N_G(P) = P : C_2$ is non-decomposable, a contradiction. We consider the maximal subgroup D_{10} if p=2 or 5, $p \mid |D_{10}|$, $D_{10} = C_5 : C_2$ is non-decomposable, a contradiction.

Case 2.2. *G* is a sporadic simple group.

Suppose $G \cong M_{11}$, then $\pi(G) = \{2, 3, 5, 11\}$. By [3], We get the maximal subgroup $L_2(11)$ of G whose prime factors are also p = 2, 3, 5 or 11. Since $p \mid |L_2(11)|, L_2(11) = P_2 \times H$, it contradicts that $L_2(11)$ is a simple group.

Suppose $G \cong Suz$, then $\pi(G) = \{2, 3, 5, 7, 11, 13\}$. By [3], if p = 2, 3, 5, 11, we consider the maximal subgroup $M_{12} : 2$ of G. $p \mid |M_{12} : 2|$, but $M_{12} : 2$ is not p-decomposable, a contradiction. If p = 7, we consider the maximal subgroup A_7 of G. $7 \mid |A_7|$, then $A_7 = P_7 \times H$, it contradicts that A_7 is a simple group. If p = 13, we consider the maximal subgroup $L_3(3) : 2$ of G. $13 \mid |L_3(3) : 2|$, but $L_3(3) : 2$ is not p-decomposable, a contradiction.

Suppose $G \cong Fi_{23}$, then $\pi(G) = \{2, 3, 5, 7, 11, 13, 17, 23\}$. By [3], if p = 2, 3, 5, 7, 17, we consider the maximal subgroup $S_8(2)$ of G. Since $p \mid |S_8(2)|$, $S_8(2) = P_i \times H$, where i = 2, 3, 5, 7, 17, a contradiction. If p = 13, we consider the maximal subgroup $O_8^+(3) : S_3$ of G. Since $13 \mid |O_8^+(3) : S_3|$, $O_8^+(3) : S_3$ is not p-decomposable, a contradiction. If p = 11, 23, we consider the maximal subgroup $2^{11} \cdot M_{23}$ of G. Since $p \mid |2^{11} \cdot M_{23}|$, $2^{11} \cdot M_{23} = P_i \times H$, where i = 11, 13. Then M_{23} is p-decomposable, it contradicts that M_{23} is a non-abelian simple group.

Suppose $G \cong J_4$, then $\pi(G) = \{2, 3, 5, 7, 11, 23, 29, 31, 37, 43\}$. By [3], if p = 2, 3, 5, 11, 37, we consider the maximal subgroup $U_3(11) : 2$ of G. Since $p \mid |U_3(11) : 2|$, $U_3(11) : 2$ is not p-decomposable, a contradiction. If p = 23, we consider the maximal subgroup $L_2(23) : 5$ of G. Since $23 \mid |L_2(23) : 5|$, $L_2(23) : 5$ is not p-decomposable, a contradiction. If p = 7, we consider the maximal subgroup $2_+^{1+12} \cdot M_{22} : 2$ of G. Since $7 \mid |2_+^{1+12} \cdot M_{22} : 2|$, $2_+^{1+12} \cdot M_{22} : 2$ is not p-decomposable, a contradiction. If p = 29, we consider the maximal subgroup 29 : 28 of G. Since $29 \mid |29 : 28|$, 29 : 28 is not p-decomposable, a contradiction. If p = 43, we consider the maximal subgroup 43 : 14. Since $43 \mid |43 : 14|$, 43 : 14 is not p-decomposable, a contradiction.

We can also get a contradiction when G is an other sporadic group according to the Atlas form [3].

Case 2.3. *G* is a simple group of Lie type.

Let G be a classical group.

Suppose $G \cong L_n(q), q = r^t$, where r is a prime. If p = r or $p \nmid (q^n - 1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $PGL_{n-1}(q), p \mid |PGL_{n-1}(q)|$, so $PGL_{n-1}(q)$ is p-decomposable, a contradiction. If $p \mid (q^n - 1)$ but $p \nmid (q^i - 1)$, where i < n, G has a subgroup $N_G(P) = \frac{q^n - 1}{q - 1} : C_n$ [4]. It is not p-decomposable, so it is a contradiction.

Suppose $G \cong PSU_{2n}(q)$. If $p \mid q \prod_{i=1}^{2n-1} (q^i - (-1)^i)$ but $p \nmid (q^{2n} - 1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $PGU_{2n-1}(q)$, $p \mid |PGU_{2n-1}(q)|$, so $PGU_{2n-1}(q)$ is *p*-decomposable, a contradiction. If $p \mid (q^{2n} - 1)$, then by [1, Tables] and [6, Proposition

4.1.17], G has a subgroup $PSL_n(q^2).(q-1).2$. So $p \mid |PSL_n(q^2).(q-1).2|$, and thus $SL_n(q^2).(q-1).2$ is p-decomposable, a contradiction.

Suppose $G \cong PSU_{2n+1}(q)$. If $p \mid q \prod_{i=1}^{2n} (q^i - (-1)^i)$ but $p \nmid (q^{2n+1} + 1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $PGU_{2n}(q)$, $p \mid |PGU_{2n}(q)|$, so $PGU_{2n}(q)$ is *p*-decomposable, a contradiction. If $p \mid (q^{2n+1} + 1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $\frac{q^{2n+1}+1}{q+1} : (2n+1)$, $p \mid |(\frac{q^{2n+1}+1}{q+1} : (2n+1))|$, so $\frac{q^{2n+1}+1}{q+1} : (2n+1)$ is *p*-decomposable, a contradiction.

Suppose $G \cong PSp_{2n}(q)$. If $p \mid q \prod_{i=1}^{n-1} (q^{2i} - 1)$ but $p \nmid (q^{2n} - 1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $E_q^{1+(2n-2)} : ((q-1) \times PSP_{2n-2}(q)), p \mid |E_q^{1+(2n-2)} : ((q-1) \times PSP_{2n-2}(q))|$, so $E_q^{1+(2n-2)} : ((q-1) \times PSP_{2n-2}(q))$ is p-decomposable, a contradiction. If $p \mid (q^{2n} - 1)$ but $p \nmid \prod_{i=1}^{n-1} (q^{2i} - 1)$, then by [1, Tables] and [6, Proposition 4.1.17]. 4.1.17], G has a subgroup $PSO_{2n}(q)$, $p \mid |PSO_{2n}(q)|$, so $PSO_{2n}(q)$ is p-decomposable, a contradiction.

Suppose $G \cong P\Omega_{2n+1}(q)$. If $p \mid q(q^n-1) \prod_{i=1}^{n-1} (q^{2i}-1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $P\Omega_{2n}^+(q).2$, $p \mid |P\Omega_{2n}^+(q).2|$, so $P\Omega_{2n}^+(q).2$ is p-decomposable, a contradiction. If $p \mid (q^n+1) \prod_{i=1}^{n-1} (q^{2i}-1)$, by [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $P\Omega_{2n}^{-}(q).2$, $p \mid |P\Omega_{2n}^{-}(q).2|$, so $P\Omega_{2n}^{-}(q).2$ is *p*-decomposable, a contradiction.

Suppose $G \cong P\Omega_{2n}^+(q)$. If $p \mid q \prod_{i=1}^{n-1} (q^{2i} - 1)$, but $p \nmid (q^n - 1)$, by [1, Tables] and [6, Proposition 4.1.17]], G has a subgroup $PSp_{2n-2}(q)$, $p \mid |PSp_{2n-2}(q)|$, so $PSp_{2n-2}(q)$ is p-decomposable, a contradiction. If $p \mid q^n - 1$, let the prime factor q of $|\Omega_{2n}^+(q)|$ be of power t, then by [1, Tables] and [6, Proposition 4.1.17], we can find a subgroup $E_q^{t-\frac{n(n-1)}{2}}: GL_n(q)$, $p \mid |E_q^{t-\frac{n(n-1)}{2}} : GL_n(q)|, \text{ so } E_q^{t-\frac{n(n-1)}{2}} : GL_n(q) \text{ is } p\text{-decomposable, a contradiction.}$ Suppose $G \cong P\Omega_{2n}^-(q)$. If $p \mid q \prod_{i=1}^{n-1}(q^{2i}-1), \text{ but } p \nmid (q^n+1), \text{ by } [1, \text{ Tables] and}$

[6, Proposition 4.1.17], G has a subgroup $PSp_{2n-2}(q)$. Since $p \mid |PSp_{2n-2}(q)|, PSp_{2n-2}(q)|$ is p-decomposable, a contradiction. Suppose $p \mid (q^n + 1)$ and n is an odd number. By [1, Tables] and [6, Proposition 4.1.17], G has a subgroup $GU_n(q)$. Since $p \mid |GU_n(q)|$, $GU_n(q)$ is p-decomposable, a contradiction. Suppose $p \mid (q^n + 1)$ and n is an even number. G has a subgroup $P\Omega_n^-(q^2).2$. Since $p \mid |P\Omega_n^-(q^2).2|$, $P\Omega_n^-(q^2).2$ is p-decomposable, a contradiction.

Let G be an exceptional group.

Suppose $G \cong G_2(q), |G_2(q)| = q^6(q^6-1)(q^2-1)$. If $p \mid q^6(q^3-1)(q^2-1)$, but $p \nmid (q^3+1)$, by [7, Table 4.1], G has a maximal subgroup $SL_3(q): 2$. Since $p \mid |SL_3(q): 2|$, $SL_3(q): 2$ is p-decomposable, a contradiction. If $p \mid q^3 + 1$, G has a maximal subgroup $SU_3(q) : 2$. Since $p \mid |SU_3(q) : 2|$, $SU_3(q) : 2$ is p-decomposable, a contradiction.

Suppose $G \cong^{3} D_{4}(q), |{}^{3}D_{4}(q)| = q^{12}(q^{8}+q^{4}+1)(q^{6}-1)(q^{2}-1).$ If $p \mid q^{12}(q^{6}-1)(q^{2}-1), q^{6}-1)(q^{2}-1)$ by [7, Theorem 4.3.], G has a maximal subgroup $G_2(q)$. Since $p \mid |G_2(q)|$, then $G_2(q)$ is *p*-decomposable, a contradiction. If $p \mid (q^2 + q + 1)$, by [7, Theorem 4.3.], *G* has a maximal subgroup $(C_{q^2+q+1} \times C_{q^2+q+1}) : SL_2(3)$. Since $p \mid |(C_{q^2+q+1} \times C_{q^2+q+1}) : SL_2(3)|$, $(C_{q^2+q+1} \times C_{q^2+q+1}) : SL_2(3)$ is p-decomposable, a contradiction. If $p \mid (q^2-q+1)$, by [7, Theorem 4.3.], *G* has a maximal subgroup $(C_{q^2-q+1} \times C_{q^2-q+1}) : SL_2(3)$. Since $p \mid |(C_{q^2-q+1} \times C_{q^2-q+1}) : SL_2(3)|, (C_{q^2-q+1} \times C_{q^2-q+1}) : SL_2(3)$ is *p*-decomposable, a contradiction. If $p \mid (q^4 - q^2 + 1)$, by [7, Theorem 4.3.], *G* has a maximal subgroup $C_{q^4-q^2+1}: 4$. Since $p \mid |C_{q^4-q^2+1}: 4|$, $C_{q^4-q^2+1}: 4$ is *p*-decomposable, a contradiction. We can also get a contradiction when G is an other exceptional group.

From (b) of [2], we have G = Q : P, where G is an inner nilpotent group, P is a Sylow *p*-subgroup of G and where Q is a Sylow *q*-subgroup of G. (2.2) is proved.

4. Proof of Corollary 1.2

Proof. It is obviously that (b) and (c) are true from (2.1) and (2.2) of Theorem 1.1. From 1 of Theorem 1.1, if G is p-decomposable, then $G = P \times K$, where P is the Sylow p-subgroup of G, and K is the Hall p'-subgroup of G. Suppose K is nilpotent, then G is nilpotent, (a) is proved. Suppose K is not nilpotent. Let N < K. Then $P \times N < G$, so $p \mid |P \times N|$. So, N is nilpotent, and we can get K is inner-nilpotent. If P is not a group of order p. Let H < P and |H| = p. Then $p \mid |H \times K|$. So $H \times K$ is nilpotent, and we get K is nilpotent, a contradiction. Hence, P is a group of order p, (d) is proved.

Acknowledgements

The authors are supported by the National Natural Science Foundation of China (Nos. 12471017, 12071181) and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. NY222090, NY222091).

References

- J. Bray, D. Holt, C. M. Roney-Dougal, *The Maximal Subgroups of the Low-Dimensional Finite Classical Groups*, London Math. Soc. Lecture Note Ser., 407, Cambridge University Press, Cambridge, 2013.
- [2] Z. M. Chen, *Inner-p-closed group*, Mathematical progress, 04, 385-388, 1986.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton et al., Atlas of Finite Groups, London-New York, Oxford Univ Press, 1985.
- [4] B. Huppert, Endliche Gruppen I, Berlin, Springer-Verlag, 1967.
- [5] J. T. Shi, Y. F. Tian, On finite groups in which every maximal subgroup of order divisible by p is nilpotent (or abelian), Rend. Sem. Mat. Univ. Padova, published online first, 2024.
- [6] P. Kleidman, M. Liebeck, The Subgroup Structure of the Finite Classical Groups, vol. 129. London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge, 1990.
- [7] R. A. Wilson, The Finite Simple Groups, London, Springer-Verlag, 2009.