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Abstract 

In this study, a new polynomial rank transmutation is proposed with the help of the 

bivariate Farlie-Gumbel Morgenstern distribution family. The distribution family 

obtained by this transmutation is considered to be an alternative to the distribution 

families obtained by quadratic rank transmutation (QRT). Various properties of the 

introduced family are studied. Two real data sets are taken into account to show that this 

family is an alternative to the QRT distribution family.  
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1. INTRODUCTION 

 

Numerous studies have been conducted by many authors using the quadratic rank transformation 

proposed by [14]. However, many other distributions have been derived with the help of families such as 

Marshall-Olkin generated family (MO-G) by [10], beta generated family by [7], transformed-transformer 

family by [2] and Weibull-G by [5]. The overall aim is to show the modelling performance of the 

generated distributions on real-data. 

 

We present a transformation, similar to the polynomial rank transformation proposed by [14], using both 

the convex combinations of the distributions of order statistics and the conditional bivariate Farlie-

Gumbel-Morgenstern distribution. We discuss details in the motivation section. 

 

2. MOTIVATION 

 

Quadratic rank transmutation introduced by [14] in subsection 4.2, leads to the occurrence of numerous 

studies. We can express the idea behind this definition as follows: Let us consider two-component 

systems (series and parallel) where component lifetimes are identically distributed as F . Then failure 

distributions of the lifetimes of series and parallel systems are 22F F   and 2F , respectively. Note that 

failure distribution of component lifetime, F  lies between these two distribution functions. Namely, the 

ordering amongst three distribution functions is 2 22F F F F   . Accordingly, F can be represented by a 

convex combination of 22F F  and 2F  as    2 22 1F F F    , where   is a convex combination 

parameter belonging to interval  0,1 . In particular, F  is obtained if the delta is taken as 
1

2
. In addition, it 

is possible to obtain numerous distribution functions. Let us call the distribution function H  obtained by 

this convex transformation. Then H  can be represented by the following form:  

  22 2 1 .H F F      
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By re-parameterizing 2 1    where  1,1  , H  becomes   21 F F   . Thus, we achieve the 

quadratic rank transmutation given in equation (48) by [14]. Now, let us focus on the polynomial 

structure given in equation (66) by [14]. This definition may overlap with the method of [9]. The idea of 

our study is based on the method which was suggested by [9] for obtaining positively quadrant dependent 

bivariate distribution family. Accordingly, let  F x
 
be a distribution function, and  x  be a continuous 

function defined on the same support. Then we define a function ( )H x  as 

     H x F x x    (1) 

The function  x  must satisfy the following conditions in order to say that  ( )H x  is a distribution 

function:  

(i)  lim 0
x

x


  and  lim 0
x

x


  

(ii)     0
d d

F x x
dx dx

    

For example,  x  is     1F x F x   where   takes the values in the interval  1,1 . In addition, [16]  

have proposed two new distribution families by considering specific terms for  x .  In this case, ( )H x  

indicates the transmuted distribution proposed by [14]. In this study, we are transformed the bivariate 

Farlie-Gumbel Morgenstern distribution into a univariate distribution by using conditional distribution. In 

the light of the information from [14] and [9], we call this new transmuted distribution family as 

Polynomial Transmuted Distribution family (PT-D). 

 
3. CONSTRUCTION OF THE NEW FAMILY OF DISTRIBUTION 

 
Let us consider bivariate Farlie Gumbel Morgenstern Family of distribution 

( , ) ( ) ( ) 1 ( ) ( )H x y F x G y F x G y  
   

where, F   and G   are the marginal distribution functions and 1F F   and  1G G   are the marginal 

survival functions of X   and Y , respectively and    is an association parameter lies interval  1,1 , [8]. 

Suppose that second component is still working at time t , i.e. Y t  is given, hence conditional 

probability of  X  that failures before the time t   can be given by 

 
( ) ( ) ( ) 1 ( ) ( )

Pr ( ) 1 ( ) ( ) .
( )

F t F t G t F t G t
X t Y t F t F t G t

G t




  
       

    (2) 

Now, suppose also that lifetimes of two components are identical, namely F G  . In this case, the 

distribution given by eq. (2) can be transformed to the univariate case. Let this conditional distribution is 

represented by  H t . Then ( )H t   can be rewritten in following form  

     

      

2

2 3

( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( )

1 ( ) ( )

H t F t F t F t F t F t F t F t F t F t F t F t

F t F t F t F t

    

 

                   

    
  (3) 

where ( )F t  is the cdf of the base random variable. Observe that for 0  , we have baseline distribution. 

For 1     we have the failure distribution of the lifetime of the system which defined by 

  1 2 3min ,max ,T X X X . Here, component lifetimes namely 
1 2,X X  and 

3X   are independent and 

distributed as F .  For 1   the cdf indicates that the failure probability of the system switching from 

three-component series system to three-component parallel system with respective switching probabilities 

1

3
  and 

2

3
. According to definition of the other rank transmutations described by [14] in Subsection 4.6, 
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the transmutation given by eq. (3) can only be viewed as the one of the other rank transmutations.  Based 

on this definition, ( )H t  is called as polynomial transmuted distribution (PT-D). Recalling the thought 

given in the motivation section, we try to explain  H t  in a different way. Then we have the following 

ordering such as  

 2 3 3 2 31 2
3 ( ) 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ).

3 3
F t F t F t F t F t F t F t F t

 
       

 
  

Hence, a convex combination representation of cdf  H t  is given by 

       

     

2 3 2 3 2 3

2 3 2 3

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 2 ( ) 2 1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

H t F t F t F t F t F t F t F t F t F t F t

F t F t F t F t F t F t F t

   

  

           

       
  (4) 

where  0,1   and  2 1 1,1     .  Note that, the latter representation in eq. (4) coincides with eq. (1) 

by considering  2 3( ) ( ) ( )t F t F t   . 

In this way, a number of more polynomial transmuted distributions can be suggested which may be useful 

in practice. 

 

4. REPRESENTATIONS OF CDF, PDF AND SURVIVAL FUNCTION OF PT-D  
 

Let 
1, , nX X  be a sequence of independent and identically distributed random variables with distribution 

F . Let 
:j nX  denotes the jth  order statistics from a sample of size n and 

:j nF  denotes the distribution of 

:j nX .  Note that :

1

n

j n

j

F nF


 . Then ( )H t   can be represented by 

        

  

2 3

1:3 3:3

2:3 3:3

( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) 2
3

( ) ( ) .
3

H t F t F t F t F t F t F t F t

F t F t F t


  



        

  

  (5) 

Hence, the corresponding pdf is given by 

      

  2:3 3:3

1:3 3:3
3

( ) ( ) .
3

( ) ( ) 1 ( ) 2 3 ( ) 1 ( ) ( ) 2

f t f t f t

h t f t F t F t f t f t f t




  

 

  

      

  (6) 

According to eq. (4), survival function of PT-random variable T  is given by 

    

  

2

1:3 3:3

2:3 3:3

( ) ( ) 1 ( ) 1 ( ) ( ) 2
3

( ) ( ) .
3

H t F t F t F t F t F t

F t F t F t


 



       

  

  (7) 

 

5. MOMENT GENERATING FUNCTION AND RAW MOMENTS OF A PT RANDOM 

VARIABLE 

 

In this section, the moment generating function and kth raw moments of PT-random variable are 

presented. The moment generating function of PT-random variable is given as 
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               
1:3 3:3 2:3 3:3

1 2 ,
3 3

T X X X X X XM v M v M v M v M v M v M v
 

                (8) 

and kth raw moments of PT-random variable is given as 

  1:3 3:3 2:3 3:31 2 .
3 3

k k k k k k kE T E X E X E X E X E X E X
 

                                       
  (9) 

 

6. HAZARD RATE FUNCTION OF PT RANDOM VARIABLE 

 

Besides the monotonically increasing or decreasing hazard rates, the bathtub, the reverse-bathtub, W-

shaped, N-shaped, etc. hazard rates are also important for modeling lifetime data sets.  

Additional parameters of the newly defined family of distributions can give different shape to their hazard 

rate functions. In this section, the hazard rate function for the PT-D family is defined and then compared 

with the hazard rate function of the transmuted distribution family. The monotonicity property of the 

hazard rate function is then examined according to the parameter  . 

From the eq. (7) hazard rate function denoted by  r t   can be defined by 

 
2 2

log ( ) 2 ( ) ( ) ( ) ( )
( ) ( ) ( ) 1 2

1 ( ) 1 ( )
F F

d H t F t f t F t F t
r t r t r t

dt F t F t




 

  
     

  
  (10) 

The subsequent theorems are given in order to be able to examine the monotonicity of the hazard rate 

function according to the hazard rate function of the base distribution: 

Theorem1: Let  
2

1
,

1

u
u

u


 



 



 be a continuous function defined on a set       , : 0,1 , 1,1u u    . 

Then it satisfies the following properties: 

i.  ,u   increases in  , 

ii.   , 1u      at 0  , 

iii.  ,u   increases in u  at  1  , 

iv.    
1

1 1 , 1
2

u  


      if 0  , and    
1

1 , 1 1
2

u  


      if 0  . 

Proof.  (i) Since 
   

 
2

2

, 1
0

1

u u u

u

 

 

 
 

 
 (i) is satisfied for all  . (ii) and (iii) are obvious. (iv) Firstly the 

critical points of  ,u  are determined as below: 

 

 

 

 

22 2

2 2
2 2

, 1 (1 )2
0.

1 1

u uu u

u u u

     

 

    
  

  
 

Hence, * 1 1
u





 
   is an appropriate point lies in an interval  0,1 . Furthermore,    0, 1, 1      . 

Consider the inequality 1 1   for 0  . Hence, the inequality   
1

1 1 1
2




     holds for 0  . This 

latter inequality means that    * , 0,u    . In this case,  ,u   is concave upward at the point *u   

since the endpoints of the function  ,u  are the same. Therefore the first part is proved. 
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Now, let rewrite  ,u   in the following form  

 
1

,
1

1

u
u

u
u

 











 . 

The quantity 
1

1

u
u

u





 is positive, and concave function of u on  0,1  for 0  , so does  ,u  . By 

noting that    0, 1, 1      , *u  is a maximum point of  ,u   and maximum value at this point is 

   * 1
, 1 1

2
u  


   .   

Theorem2: Hazard rate function ( )r t  has the following monotonicity properties.  

i. ( )r t   increases in  , 

ii.  If the base distribution F  has an IHR (Increasing Hazard Rate) property or has a CFR (Constant 

Hazard Rate)  property,  PT-D has an IHR for 1  ,  

iii.  2 1 ( ) ( ) ( )F Fr t r t r t     if 0  , and  ( ) ( ) 2 1 ( )F Fr t r t r t     if 0  .  

Proof. According to definition of  ,u  , hazard rate function can be rewritten as 

 ( ) ( ) 3 2 ( ),Fr t r t F t     . Hence proofs of (i)-(iii) are immediately followed from Theorem1.  

If the results of [6] are noted, the shape of the hazard rate function of the transmuted random variable 

depends on the sign of .  In other words, hazard rate function of transmuted random variable increases 

for 0  , and decreases for 0  . However, hazard rate function of PT random variable exhibits this 

situation only for 1  . Thus, it can be said that the hazard rate function is in somewhat more flexible 

structure. Because of this, PT-D can be used to model for non-monotonic lifetime data in terms of its 

hazard rate. As a consequence, PT-D can be useful for modeling life datasets with bathtub, and upside 

down bathtub shaped hazard rates. 

 

7. GENERATING RANDOM NUMBER FROM PT-D 

The number generation process is set-up with convex combination notation given in eq. (4). Hence, it is 

possible to describe the PT-D as a 3-component mixture distribution, so the number generation is easier. 

Step 1: Generate three random numbers from the baseline distribution, namely 
1 2 3, , ~X X X F ,  

Step 2: Generate a random number U  from uniform distribution on  0,1 ,  

Step 3: If 0  ,  a random number T  from F   is 1( )F U ,  

Step 4: If 
1

2
U

 
  
 

, a random number T  from PT-D is   1 2 3min ,max ,X X X ,  

Step 5: If 
1 1 1

2 2 3
U

      
     
    

,  1 2 3min , ,T X X X  otherwise,  1 2 3max , ,T X X X .  

In the next section, the specific distributions chosen for this family are considered. 

 

8. SPECIAL CASES: PT-WEIBULL and PT-EXPONENTIAL DISTRIBUTIONS 

 

The Weibull distribution is widely used in reliability and lifetime data analysis due to its flexibility. The 

values of the shape and the scale parameters effect on distributional characteristics such as the shape of 
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the pdf curve, the reliability and the hazard rate functions. For this reason, the first specific base 

distribution is taken as Weibull. The second specific base distribution is considered as exponential 

distribution since exponential distribution makes the hazard rate function of the PT-D as bathtub or 

reversed bathtub shaped. 

 

8.1 The Cdf’s and Pdf’s of PT-Weibull and PT-Exponential Distributions 

 

According to eq. (5), the cumulative distribution function of PT-Weibull (PT-W) can be respectively 

given by  

1 1

2

( , )
( /2 , ) ( /3 , )

( ) 1 1 (1 ) ( ) 2 ( ) ( ).

t t t

PT W Weib
Weib Weib

H t e e e F t F t F t

  

 

  
 

   

   
     

       
     



 
        
 
 

        (11) 

Note that 
PT WH 

 can be represented by the weighted sum of Weibull distributions with common shape 

parameter    and respective scale parameters   , 
1

2  



 and 
1

3 



. Similarly, the cdf of PT-E can be 

represented by the weighted sum of exponential distribution with scale parameters  , 
2


  and 

3


 as 

follows: 

2

( ) ( /2) ( /3)( ) 1 1 (1 ) ( ) 2 ( ) ( ).

tt t

PT E Exp Exp ExpH t e e e F t F t F t


 
     

 



 
        

 
                              (12) 

The associated probability density functions of PT-W and PT-E are given by 

1

1

1 1 12 3

( , )
( /2 , ) ( /

2

3

(1 ) 4 3

(1 ) ( ) 2 ( )

( ) 1 1 4
t

PT W

t t t

Weib
Weib Weib

t t
t

e

t t t
e e e

f t f t f

h t e e



  



 






  
  

  

 
  

 



    
  

  

 
          

     


              
     

 
  
  
  
   

 
    
 
 

   

  

 1

3 , )

( ), 0, 0, 1,1 ,t
 

     

  (13) 

 and 

 

2 3

( ) ( /2) ( /3)

2
1

3

1 1 1
(1 ) 4 3

(1 ) ( ) 2 ( ) ( ), 0, 1,1 .

( ) 1 1 4
t

PT E

t t t

Exp Exp Exp

t t
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  (14) 

Let us now discuss the possible shapes of  PT Wh    and PT Eh   as follows: 

0 0

0, 1

1
lim ( ) lim ( ) , 1

, 1

PT W W
t t

h t f t









 





  

 

 , lim ( ) (1 ) lim ( ) 0PT W W
t t

h t f t
 

   , 

and 
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0 0

1
lim ( ) lim ( )PT E E
t t

h t f t



 

   , lim ( ) (1 ) lim ( ) 0PT E E
t t

h t f t
 

   . 

In order to visualize the variety of shapes, some plots of the 
PT Wh 

  and 
PT Eh 

 are given by Figure 1. 

  
Figure 1. The pdfs’ of various PT-W and PT-E distributions. 

 

As can be seen, the PT-W distribution is successful in modeling bimodal data sets. We support this on the 

illustrative sample dataset in the application section. 

 
8.2 The Survival and Hazard Rate Functions of PT-W and PT-E Distributions 

From the eq. (7) and eq. (11)- (12) the survival functions of PT-W and PT-E distributions are respectively 

given by 

1 1

2

( , )
( /2 , ) ( /3 , )

( ) 1 1 (1 ) ( ) 2 ( ) ( )

t t

PT W Weib
Weib Weib

H t e e F t F t F t
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  (15) 

and  

2
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        
   

  (16) 

Hence, hazard rate functions of PT-W and PT-E distributions are obtained from the eq. (10) and the eq. 

(15)-(16) as follows: 
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 . (18) 
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Let us now discuss the possible shapes of  
PT Wr 

  and 
PT Er 

 as follows: 
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and asymptotic behaviour of 
PT Er 

 is obvious for the case 1  , that is 

0
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t

r t





  , 

1
, 1

lim ( )
2

, 1

PT E
t

r t













 
 

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Some plots of the 
PT Wr 

  and 
PT Er 

 are given by Figure 2. 

  
Figure 2. Plots of the PT Wr   and PT Er   for some values of the parameters 

 
 
8.3 Raw Moments of PT-W and PT-E Random Variables 

 

By adressing to [11], the kth raw moments of the PT-W random variable can be derived from the eq. (13) 

as follows: 

1
1 (1 ) 2 3

k k
k k

PT W

k
E T     



 



                
.  

Hence kth raw moments of the PT-E random variable can be obtained by taking 1    in the latter 

equality as follows: 

1
! (1 )

2 3

k k

PT E k k
E T k

 
  

 
        

 
. 

 

8.4 Maximum Likelihood Estimates of the Parameters of PT-W and PT-E Distributions 

 

Let 
1 2, , , nx x x   be observations from the PT-W distribution with parameters  ,    and  . Suppose that 

 , , '     is the parameter vector. The log-likelihood function for Θ is given by 
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   
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j jt t
n n n

j

j

j j j

t
n n t e e

 


 
    



   
       
   

  

  
                   

   

    . 

To maximize    with respect to  ,    and  , we have the following system of non linear equations: 
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This system of non-linear equations can be solved numerically.  By using nonlinear optimization 

algorithms to numerically maximize the log likelihood function,  ML estimates can be obtained. 

Similarly, to obtain ML estimates of the parameters of PT-E distribution, it is taken  1     in eq. (19) 

and (21). 

 

9. APPLICATION 

Throughout the application section, we use the Akaike Information Criterion(AIC) as a model selection 

criterion. Furthermore, Kolmogorov-Smirnov, Anderson-Darling and Cramér–von Mises statistics are 

taken into account as measures of Goodness-of-fit. 

Akaike information criterion:  

 2log ; 2AIC L x k    ,  

where k  is the size of the parameter vector  . 

Goodness-of-fit statistics  

Kolmogorov- Smirnov  

sup ( ) ( )n
x

K S H x H x   ,  

where ( )nH x  is the empirical distribution function. 

Anderson-Darling 
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j j
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n j H t n j H t
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(see, [15], [3] and [13]). 

Cramér-von Mises 

 
2

2
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1

1 2 1ˆ;
12 2

n

j

j

j
H t

n n

 
    

 
W  

where 
( )jt  is the j th ordered sample, 

1 ( 1) ( ) ( )j j nt t t t      (see, [13]). 

The first data set illustrates the modelling performance of PT-W distribution, and the second data set is 

given to illustrate modelling success of PT-E distribution. 

Data set 1: This data set represents the failure times of Kevlar 49/epoxy strands when the pressure is at 

70% stress level. This data set is taken from [4] and given in Table 1.  

The Weibull (W), transmuted Weibull (T-W) and polynomial transmuted Weibull (PT-W) distributions 

are fitted to the data and the MLEs of the parameters are computed. The values of Kolmogorov-Smirnov 

statistic (K-S), Akaike information criterion (AIC), Anderson-Darling statistic (A
2
) and Cramér–von 

Mises statistic (W
2
) are also given with these MLEs of the parameters in Table 2. A graphical comparison 

of the fitted models is displayed in Figure 3. 

Table 1. Kevlar 49/epoxy strands failure times data (pressure at 70%). 

1051 1337 1387 1921 1942 2322 3629 4006 4012 4063 

4921 5445 5620 5817 5905 5956 6068 6121 6473 7501 

7886 8108 8546 8666 8831 9106 9711 9806 10205 10396 

10861 11026 11214 11362 11604 11608 11745 11762 11895 12044 

13520 13670 14110 14496 15395 16179 17092 17568 17568  

 

This data set was previously used by [1]. According to their analyzes, they reported that this data is 

multimodal, platykurtic, and approximately symmetric (skewness = 0.1, kurtosis = –0.79). They show 

that Gumbel-Weibull distribution (GWD) provides an adequate fit to bimodal data (K-S= 0.0749).  

Table 2. MLEs of the model parameters and values of goodness of fit statistics for models (Kevlar 

49/epoxy data). 

Model Parameter Estimates K-S AIC 2
A  2

W  

W ˆ 9906    ˆ 2    0.0877 965.6987 0.5503 0.0778 

T- W ˆ 9219.4   ˆ 1.9   ˆ 0.3     0.0839 967.3870 0.5028 0.0696 

PT-W 854 9 ˆ 0.  ˆ 2   ˆ -1   0.0604 964.8448 0.2638 0.0338 

 

According to AIC values and measures of Goodness-of-fit, PT-W model is the best among the suggested 

models for fitting Kevlar 49/epoxy data. According to reported result of [1], PT-W distribution is as 

capable as GWD distribution for modelling bimodal data.  
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Figure 3. The histogram and the pdfs’ of the fitted models for Kevlar 49/epoxy data. 

 

Data set 2 The following data represent (naturally occurring) concentrations of uranium in ground water 

for a random sample of 100 Northwest Texas wells. This data set is originally reported by [12] and 

technical report is in Chapter 17 of [4]. Tabulated data set is given in Table 3 as below: 

Table 3. Concentrations of uranium in ground water (sample size n=100). 

8.0 13.7 4.9 3.1 78.0 9.7 6.9 21.7 26.8 56.2 25.3 4.4 29.8 

22.3 9.5 13.5 47.8 29.8 13.4 21.0 26.7 52.5 6.5 15.8 21.2 13.2 

12.3 5.7 11.1 16.1 11.4 18.0 15.5 35.3 9.5 2.1 10.4 5.3 11.2 

0.9 7.8 6.7 21.9 20.3 16.7 2.9 124.2 58.3 83.4 8.9 18.1 11.9 

6.7 9.8 15.1 70.4 21.3 58.2 25.0 5.5 14.0 6.0 11.9 15.3 7.0 

13.6 16.4 35.9 19.4 19.8 6.3 2.3 1.9 6.0 1.5 4.1 34.0 17.6 

18.6 8.0 7.9 56.9 53.7 8.3 33.5 38.2 2.8 4.2 18.7 12.7 3.8 

8.8 2.3 7.2 9.8 7.7 27.4 7.9 11.1 24.7     

 

The subject data is fitted with both the exponential (E ) and Transmuted-Exponential (T-E) distributions 

besides Polynomial Transmuted-Exponential (PT-E) distribution. The MLEs of the parameters, the values 

of Kolmogorov-Smirnov statistic (K-S), Akaike information criterion (AIC), Anderson-Darling statistic 

(A
2
) and Cramér–von Mises statistic (W

2
) are given in the Table 4. A graphical comparison of the fitted 

models is displayed in Figure 4. 

Table 4. MLEs of the model parameters and values of goodness of fit statistics (uranium data). 

Model Parameter Estimates K-S AIC 2
A  2

W  

E ˆ 19.4680    0.0983 795.7544 1.6193 0.2313 

T- E 14. 4 ˆ 491  ˆ 0.6526     0.0846 795.6083 1.2651 0.2114 

PT-E 24. 66ˆ 15  . 48ˆ 0 64   0.0771 794.0873 1.0416 0.1327 

 

The values in Table 4 indicate that the PT-E distribution leads to a better fit than E and T-E distributions. 

The relative histogram and the fitted pdf of the models are plotted in Figure 4.  
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Figure 4. The histogram and the pdfs’ of the fitted models for uranium data. 

 

10. CONCLUSION 

 

In this paper we propose and study a new class of distributions called the Polynomial Transmuted Family 

(PT-D). We investigate several structural properties such as the cumulative distribution function the 

probability density function, the moment generating function, the raw moments, the survival and the 

hazard rate functions. We compare the hazard rate functions of PT and QRT distributions in the sense of 

monotonicity. For the special cases of PT-D family, Weibull and exponential distributions are considered 

as the base distribution. Some mathematical and statistical properties are given for PT-W and PT-E 

models. Two examples of real data sets prove empirically the importance and potentiality of the proposed 

family. In particular, it can be said that PT-W is successful in modeling the bimodal data sets. 
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