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 This study leverages a comprehensive dataset provided by Energy Exchange Istanbul 

(EXIST), a prominent authority in energy data, encompassing hourly energy 

consumption and production data across Turkey. To enhance the accuracy of energy 

consumption and production forecasting, a variety of machine learning and deep learning 

models were employed, including linear regression (LR), random forest (RF), support 

vector regression (SVR), convolutional neural networks (CNN), long short-term 

memory networks (LSTM), and the proposed hybrid CNN-LSTM model. The study 

reformulates the time series data into a regression problem by applying the sliding 

window technique. The experimental findings reveal that the hybrid CNN-LSTM model 

outperforms other models in forecasting total energy consumption as well as the 

production of natural gas, hydro dam, lignite, hydro river, wind, and fuel oil. The hybrid 

model achieved superior performance metrics, including the lowest root mean square 

error (RMSE) and mean absolute error (MAE) values, alongside the highest coefficient 

of determination (R²) scores. The enhanced predictive capability of the proposed 

approach is attributed to the synergistic combination of CNN's strength in capturing local 

patterns and LSTM's proficiency in modeling long-term temporal dependencies. This 

study underscores the effectiveness of the hybrid CNN-LSTM model in accurately 

forecasting energy consumption and production, thereby contributing significantly to the 

efficient utilization of energy resources and supporting informed decision-making in 

energy management. Experiments showed that CNN-LSTM outperforms the compared 

models with above 0.999 R2. 
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1. Introduction 

Over the last few decades, there has been an 

unprecedented increase in electricity demand 

worldwide. The main reasons for this increase 

include rapid population growth, significant 

technological advances, and the proliferation of 

electronic devices that have become integral to 
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modern life. As the world's population grows, energy 

consumption rises parallel, necessitating a reliable 

and abundant electricity supply. Technological 

advances lead to the emergence of new energy-

intensive industries and processes, further increasing 

demand. In light of these complexities, effective 

power system planning and management has become 
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more critical than ever to ensure that electricity 

systems remain reliable and manageable. Accurate 

energy demand forecasting is not just essential but 

urgent to avoid system overloads and blackouts, 

which can have serious economic and social 

consequences. 

Achieving a balanced and efficient energy system 

requires developing and applying precise and 

accurate forecasting models for energy production 

and consumption [1, 2]. These models are vital tools 

that help energy providers predict future needs and 

adjust their operations accordingly. By accurately 

forecasting demand, energy companies can optimize 

production schedules, manage resources more 

effectively, and reduce operational costs. 

Accurate forecasting of energy consumption also 

facilitates better allocation of energy resources, 

allowing providers to distribute energy where and 

when it is most needed. Furthermore, accurate 

forecasts provide a systematic roadmap for energy 

savings and energy infrastructure improvements [3]. 

The importance of forecasting energy demand and 

generation consumption is growing every day, 

mainly as the world tackles the challenges of climate 

change and sustainable development.  

Accurate forecasts provide decision-makers in 

industry and governments with invaluable guidance 

and reference points on future directions and plans 

[4]. Based on these forecasts, policymakers design 

regulations and incentives that promote efficient 

energy use, support renewable energy adoption, and 

ensure energy security. Accurate forecasts inform 

industry investment decisions, operational strategies, 

and risk management practices. 

Data-driven models have played an important role 

in accurately forecasting energy production and 

consumption. Traditional regression algorithms and 

time series analysis techniques were used for 

electricity forecasting. While these methods provide 

a basic understanding, they often lack the ability to 

capture the detailed patterns and complexities in 

energy data. Factors such as weather variations, 

consumer behavior, economic fluctuations, and 

technological changes introduce non-linearities and 

interactions that traditional models may not 

adequately address. 

As a result, as global electricity demand continues 

to grow, the role of accurate energy forecasting 

models is becoming increasingly critical. Using 

advanced data-driven approaches enables us to 

improve the reliability and efficiency of power 

systems while supporting sustainable energy 

initiatives. Accurate forecasts provide valuable 

insights for strategic decision-making in the public 

and private sectors, facilitating the development of 

policies and practices that balance economic growth 

with environmental responsibility. 

Today, machine learning and deep learning 

techniques have become essential tools for 

addressing the increasing volume and complexity of 

data [5]. In various sectors such as energy, 

healthcare, finance, transportation, and agriculture, 

these methods enable the extraction of meaningful 

insights from large datasets, leading to more accurate 

predictions and effective decision-making 

mechanisms. While machine learning excels in 

identifying patterns and performing classifications 

through data-driven algorithms, deep learning offers 

advanced solutions by capturing complex structures 

and modeling long-term dependencies. The 

widespread application of these techniques not only 

enhances operational efficiency but also facilitates 

the sustainable and efficient management of 

resources. Therefore, machine learning and deep 

learning stand out as cornerstone technologies in the 

ongoing digital transformation of our era. 

 

2. Related Works 

This section reviews some important studies on 

energy consumption and production. First of all, in 

[1], the authors emphasize that existing studies 

generally ignore user behavior in energy 

consumption forecasting and propose to develop a 

cooling energy consumption forecasting model that 

considers user behavior to overcome this deficiency. 

For this purpose, a new model was tested using four 

machine learning algorithms: artificial neural 

network (ANN), deep neural network (DNN), 

classification and regression tree (CART), and 

bagging tree. A simulation dataset consisting of 3 

months of hourly data, including 5760 energy usage 

cases, was used, and coefficient of variation, mean 

square error (MSE) and R2 metric were applied for 

performance evaluations. The results show that all 

algorithms achieve accurate prediction results when 

sufficient data is used. 

Similarly, Dong et al. [6] presented an energy 

consumption forecasting model to solve this 

problem, noting that existing research does not 

consider building operating conditions over different 

periods. In the experiments, hourly collected 

meteorological data and energy consumption data of 

an office building are used. Using an ensemble 

learning method, the proposed model extracted 

energy consumption patterns and built an energy 

consumption model for each pattern. This model was 

compared with an ANN and support vector 

regression (SVR), and the results showed that it 
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outperformed the other models in terms of MSE and 

coefficient of variation of mean square error 

(CVMSE). 

Furthermore, Hora et al. [7] emphasized that 

energy consumption forecasting is a challenging 

problem, and its importance is increasing day by day. 

They pointed out the need for a reliable and accurate 

forecasting model. Accordingly, they introduced a 

new meta-heuristic-based LSTM network model for 

energy consumption prediction. Using two publicly 

available datasets, they compared their method with 

LR, CNN, SVR, LSTM, and bidirectional long-short-

term memory (BiLSTM) algorithms. They used the 

metrics of mean absolute percentage error (MAPE), 

MAE, MSE for performance evaluation. The results 

showed that the proposed model provided lower error 

rates. 

Conversely, Wang et al. [3] proposed a novel 

methodology for consumption forecasting based on a 

LSTM algorithm. The performance of the proposed 

model is compared with that of the autoregressive 

moving average model (ARMA), the autoregressive 

fractionally integrated moving average model 

(ARFIMA), and the back propagation NN 

algorithms. The metrics of mean squared error 

(MSE), MAE, and MAPE are used for the 

comparison. Experiments with a dataset collected 

from a real industrial system demonstrated that the 

proposed model outperformed the other models. 

In addition, Nie et al. [8] proposed a new hybrid 

method for home energy consumption based on a 

gradient-boosting regression tree (GBRT) and an 

autoregressive fractionally integrated moving 

average model. The proposed model is compared 

with iterative NN, SVR, ARFIMA model with a 

GBRT, and an ARFIMA model with an iterative 

neural network. A simulation dataset generated using 

the Simulink program is used. The experimental 

results show that the proposed hybrid method offers 

lower error rates regarding mean absolute, 

percentage, and squared errors. 

In [9], highlighting the importance of solar power 

generation forecasting, the authors introduce a hybrid 

model combining a CNN, LSTM and a transformer. 

In the experiments, a publicly available dataset called 

Fingrid is used. The metrics of MAE, MAPE and 

MSE were used for performance evaluation. The 

experiments show that the proposed model offers 

lower error rates than six other methods: AB-net, 

GRU-CNN, ARIMA, DeepAR, and Prophet. 

In [10], it is stated that fossil fuel power plants are 

harmful to human life, and more environmentally 

friendly solutions should be used for energy 

production. In this context, the authors focused on 

wind power generation forecasting. They used 

Extreme Gradient Boosting (XGBoost), Bayesian 

optimized multilayer perceptron, GBRT, ensemble 

method (gradient boosting and XGBoost), CNN, and 

LSTM hybrid model. In the experiments, the metrics 

of MAE, MAPE, MSE, and MSE were applied, and 

the results showed that the Bayesian optimized 

multilayer perceptron offers minimum error rates 

with acceptable runtime. 

Alaraj et al. [11] emphasized that electrical energy 

consumption is increasing daily and that using 

renewable energy sources has become mandatory to 

meet the required consumption. This has made it 

even more important to predict the energy production 

of solar photovoltaic power plants. Therefore, the 

authors proposed a model based on the community 

tree approach and performed experimental studies on 

a collected dataset. The metrics of MSE, MAE, 

MAPE are used as performance indicators, and the 

results show that the proposed model offers lower 

error rates. 

Similarly, in reference [12], the authors 

concentrated on a comparative analysis of the 

performance of machine learning algorithms for solar 

power generation forecasting. A variety of 

algorithms were employed, including SVM, k-

nearest neighbor, random forest, artificial neural 

networks, naive Bayes, logistic regression, decision 

tree, gradient boosting, adaptive boosting and 

stochastic gradient descent. The experiments were 

conducted using a collected dataset, with the area 

under the curve and MAPE applied as performance 

metrics. The results demonstrated that SVM yielded 

the most optimal outcomes. 

Finally, Ledmaoui et al. [13] presented a 

comparative study for solar power generation 

forecasting. In this study, Extreme Gradient Boosting 

(XGBoost), Gradient Boosting Machine (GBM), 

recurrent neural network (RNN), and ANN are 

compared. A collected dataset was used for the 

experiments, and MSE, MAE, and R2 metric were 

applied for performance evaluation. As a result, it is 

observed that ANN gives the best prediction results 

compared to other methods. 

Overall, these studies demonstrate the 

effectiveness of different approaches and models in 

energy consumption and production forecasting. 

Machine learning and artificial intelligence-based 

methods seem to provide higher accuracy and 

efficiency in energy forecasting. Therefore, 

developing these methods further and applying them 

to different energy sources in future research will be 

important. 
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3. Material and Methods 

3.1 Dataset 

This study used a dataset consisting of energy 

consumption and production values provided by 

Energy Exchange Istanbul (EXIST). The dataset used 

publicly available via [14]. The dataset includes 

hourly energy consumption and production values in 

Megawatts between 01/01/2018 and 31/12/2023 

throughout Turkey. The dataset used consists of the 

attributes time, total production and consumption, 

natural gas, hydro dam, lignite, hydro river, coal 

imported, wind, solar, fuel oil, geothermal, asphalted 

coal, hard coal, biomass, naphtha, LNG, 

international, waste heat, TRY/MWh, USD/MWh 

and EUR/MWh. This study selected the attributes of 

total consumption amount and natural gas, hydro 

dam, lignite, hydro river, wind, and fuel oil 

production amounts. Figure 1 shows the change 

graphs of the values of the selected attributes over 

time.  

 

 

Figure 1. The change graphs of the values of the selected attributes over time 

 

In Figure 1, sharp increases and decreases in 

consumption or production are observed according to 

seasons and periods, economic changes, and energy 

demand. The change in total production and total 

consumption over time is shown in Figure 2. 

Figure 2 shows the change in total energy 

production and total consumption over time. 

Consumption and production values are generally 

close to each other, but in some periods, production 

is greater than consumption. The change in total 

consumption by month is shown in Figure 3. 

 

 

 

Figure 2. The change in total production and total consumption over time 
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Figure 3 shows the change in energy consumption by 

month. While the lowest energy consumption is 

observed in April, the highest energy consumption is 

observed in August. There are differences between 

the other months according to seasonal changes. 

 

 
Figure 3. The change in total consumption by months 

 

3.2 Prediction Models 

In this study, a dataset provided by Energy 

Exchange Istanbul (EXIST) was utilized, containing 

hourly energy consumption and production values 

across Turkey between January 1, 2018, and 

December 31, 2023. To predict energy consumption 

and production more accurately and reliably across 

different energy sources, various machine learning 

and deep learning methods were employed, including 

LR, RF, SVR, CNN, and LSTM. Linear regression 

was chosen for its simplicity and interpretability, 

while methods like random forest and SVR excel in 

capturing complex data relationships. Deep learning 

models such as CNN and LSTM are particularly 

effective in learning hidden patterns and temporal 

dependencies in time-series data. The selected 

features from the dataset include time, total 

consumption amount, and production amounts of 

natural gas, hydro dam, lignite, hydro river, wind, 

and fuel oil. This comprehensive approach aims to 

achieve more precise predictions of energy 

consumption and production, thereby promoting 

more efficient use of energy resources. 

The technique of linear regression [15] represents 

a fundamental statistical methodology which models 

the linear relationship between a dependent variable 

and one or more independent variables. This is 

achieved by fitting a linear equation to observed data. 

The simplicity and interpretability of linear 

regression make it an advantageous technique for 

regression tasks, allowing for quick implementation 

and computational efficiency. As a robust baseline 

model for predictive analysis, linear regression 

provides clear insights into how each predictor 

affects the outcome, thus helping to identify critical 

factors influencing energy consumption and  

production. Furthermore, its transparent nature 

makes it valuable for understanding the direct impact 

of individual energy sources on overall energy 

metrics [16]. 

Random Forest [17] is an ensemble learning 

method that constructs multiple decision trees with 

randomness in the tree-building process—selecting 

random subsets of features and samples—to reduce 

overfitting and improve model generalization by 

averaging their predictions. This approach enhances 

robustness to noise and outliers, captures complex 

nonlinear relationships without extensive parameter 

tuning, and effectively handles large, high-

dimensional datasets by modeling interactions 

between variables. In the context of energy 

forecasting, Random Forest discerns intricate 

patterns in consumption and production data across 

different energy sources, leading to more accurate 

and reliable predictions [18, 19]. 

Support Vector Machines [20] are supervised 

learning models that are employed for the purposes 

of classification and regression.; in regression tasks, 

known as SVR [21], they aim to find a function that 

deviates from the observed values by no more than a 

specified margin, employing kernel functions to 

transform input data into a higher-dimensional space 

where a linear relationship can be established. SVRs 

offer a number of advantages in modelling non-linear 
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relationships using a variety of kernel functions. 

They are particularly effective in high-dimensional 

spaces and demonstrate resilience to overfitting, 

especially when the number of dimensions exceeds 

the number of samples. In energy consumption and 

production prediction, SVRs can capture subtle and 

complex dependencies between different energy 

sources and consumption patterns [22]. 

CNNs are deep learning models that process grid-

like data by learning spatial hierarchies of features 

through convolutional layers and backpropagation, 

utilizing components like convolution, pooling, and 

fully connected layers [23]. Adapted for regression 

tasks with time-series data, CNNs capture local 

patterns and trends by treating temporal data 

similarly to spatial data, requiring fewer parameters 

than fully connected networks and reducing the risk 

of overfitting [24]. In energy forecasting, CNNs 

effectively learn temporal and spatial correlations in 

consumption and production data across different 

energy sources, enhancing the accuracy of 

predictions [25]. 

Long Short-Term Memory (LSTM) networks 

represent a specific type of recurrent neural network, 

designed for the purpose of modelling sequential 

data. This is achieved through the utilisation of 

memory cells, which maintain information over 

extended periods, effectively addressing the 

vanishing gradient problem that is inherent to 

traditional RNNs. Particularly beneficial for time-

series forecasting in regression tasks, LSTMs excel 

at learning temporal patterns and trends from 

historical data [26-28]. In the context of energy 

consumption and production prediction, they can 

model the dynamic behavior of energy systems by 

capturing seasonal variations and temporal 

dependencies, handling sequences of varying 

lengths, and focusing on relevant time steps, making 

them highly effective for accurate and reliable energy 

forecasting [29]. 

 

3.3 Created Hybrid Prediction Model 

In this study, a time series dataset of hourly energy 

consumption and production amounts was used. To 

process time series data with machine learning or 

deep learning, datasets must be transformed into 

regression problems. The sliding window method is 

used to transform time series data into a regression 

problem structure. The sliding window method 

allows the data to be structured as input/output 

according to the specified window size, as seen in 

Figure 4. As seen in Figure 1, in a scenario where the 

window size is 3, 1t , 2t  and, 3t will be configured as 

input, and 4t  will be configured as output. The 

sliding window progresses by shifting one 

observation data to the right at each step.  

A series of experimental studies were conducted 

with the objective of determining the optimal sliding 

window size. The models had the lowest error rate 

when the sliding window size was 3. The data was 

input/output structured using sliding windows and 

scaled using MinMaxScaler. 

 

 
Figure 4. Sliding window method 

80% of the data set was used for model training and 

10% of the training data was used as validation data 

for model hyper-parameter determination. The 

models were tested on 20% of the dataset. Grid 

search was used to determine the hyper-parameters 

of the models. Grid Search is a common method used 

to perform hyper-parameter optimization in machine 

learning and deep learning models. In this process, all 

possible combinations for a given set of hyper-

parameters are tested and the performance of the 

model is evaluated.  

The hyper-parameter combination that provides 

the best performance is selected. The structure of the 

created CNN-LSTM model is presented in Figure 5.  

 

Figure 5. The structure of the created CNN-LSTM model  
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As seen in Figure 5, the created CNN-LSTM model 

consists of CNN and LSTM components. CNN was 

used for feature extraction and determining patterns 

between data. LSTM was used to learn long and 

short term dependencies between data. The created 

CNN-LSTM model takes hourly energy production 

and consumption values as input. The data is 

presented as input to CNN after being pre-processed 

using sliding window and MinMax scaler. CNN 

component uses convolution and pooling layers to 

extract features and determine patterns between 

data. LSTM component processes the feature maps 

provided by CNN component and enables modeling 

the relationships between data and learning long-

short term dependencies. For the CNN component 

determined using grid search, the number of 

convolution and pooling layers is 2; the activation 

function is ReLU, the pool size is 2 and the number 

of filters is 32. LSTM component has 32 neurons 

and Adam optimizer is used. Dropout rate is 0.2, 

epoch is 80 and batch size is 8. 

Hyper-parameters for LR are fit_intercept: True 

and normalize: False. Hyper-parameters for RF are 

100, n_estimators: 100, max_depth: 20, 

min_samples_split: 2, min_samples_leaf: 1, and 

max_features: 'auto'. Hyper-parameters for SVR are 

C:10, kernel: linear, gamma=1e-07, and epsilon=0.1. 

Hyper-parameters for CNN: number of filters: 64, 

kernel_size: (3, 3), pool_size: (2, 2), activation 

function: relu, optimizer: adam, batch_size: 64, and 

epochs: 100. Hyper-parameters for LSTM: number 

of neurons: 100, dropout: 0.2, recurrent_dropout: 0.2, 

batch_size: 64, learning_rate: 0.001, optimizer: 

adam, and epochs: 100. 
 

4. Experimental Results 

In this study, a hybrid CNN-LSTM model was 

created for the prediction of total consumed energy 

and production of natural gas, hydro dam, lignite, 

hydro river, wind, and fuel oil. The created model 

was comprehensively compared with LR, RF, SVR, 

CNN and LSTM. Table 1 shows the experimental 

results for predicting total energy consumption.  

 
Table 1. The experimental results for predicting total 

energy consumption 

Model RMSE MAE R2 

LR 1086.87 761.63 0.964 

RF 1073.88 755.95 0.965 

SVR 1034.90 747.93 0.968 

CNN 927.85 639.22 0.974 

LSTM 834.40 597.13 0.981 

CNN-LSTM 741.27 541.07 0.990 

 

In Table 1, it is observed that all models are generally 

successful in predicting total energy consumption. 

The compared models had R2 values above 0.9. 

CNN-LSTM was more successful than the compared 

models with the lowest MAE and RMSE and the 

highest R2. Table 2 presents the experimental results 

for predicting natural gas production.  

 
Table 2. The experimental results for predicting natural 

gas production 

Model RMSE MAE R2 

LR 740.01 513.13 0.965 

RF 732.59 501.57 0.965 

SVR 731.35 498.86 0.966 

CNN 729.71 498.23 0.966 

LSTM 686.92 431.74 0.972 

CNN-LSTM 524.48 357.27 0.984 

 

Table 2 shows that LSTM and CNN-LSTM are more 

successful than other models. LR, RF, SVR and CNN 

had close results. CNN-LSTM was more successful 

than the models compared with an R2 of 0.984.  

Table 3 presents the experimental results for 

predicting fuel oil production.  

 
Table 3. The experimental results for predicting fuel oil 

production 

Model RMSE MAE R2 

LR 3.07 1.66 0.969 

RF 3.00 1.58 0.971 

SVR 2.99 1.52 0.971 

CNN 2.86 1.36 0.973 

LSTM 2.75 1.09 0.980 

CNN-LSTM 1.13 0.63 9.992 

 

Table 3 shows that LR, RF, SVR and CNN have 

close results. CNN-LSTM outperformed the 

compared models with 1.13 RMSE, 0.63 MAE, and 

0.992 R2. Table 4 presents the experimental results 

for predicting hydro river production.  

 
Table 4. The experimental results for predicting hydro 

river production 

Model RMSE MAE R2 

LR 111.86 86.32 0.989 

RF 109.73 83.85 0.993 

SVR 105.30 79.76 0.993 

CNN 105.13 79.60 0.993 

LSTM 101.84 74.47 0.995 

CNN-LSTM 92.04 61.79 0.998 

 

As seen in Table 4, all models except LR had R2 

above 0.9. CNN-LSTM outperformed the compared 

models with 92.04 RMSE, 61.79 MAE, and 0.998 R2. 

Table 5 presents the experimental results for 

predicting hydro dam production. 
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Table 5. The experimental results for predicting hydro 

dam production 

Model RMSE MAE R2 

LR 698.38 535.45 0.908 

RF 647.10 497.02 0.921 

SVR 632.55 484.06 0.925 

CNN 622.91 483.62 0.927 

LSTM 573.80 419.22 0.943 

CNN-LSTM 489.93 333.07 0.961 

 

As seen in Table 5, LR is relatively less successful 

than other models. SVR and CNN gave similar 

results and were more successful than RF. LSTM was 

successful after CNN-LSTM with 0.943 R2. CNN-

LSTM was the most successful model with 0.961 R2. 

Table 6 presents the experimental results for 

predicting hydro dam production. 

 
Table 6. The experimental results for predicting lignite 

production 

Model RMSE MAE R2 

LR 178.74 88.14 0.899 

RF 172.61 86.20 0.905 

SVR 172.47 85.21 0.906 

CNN 164.54 80.11 0.915 

LSTM 143.25 69.84 0.934 

CNN-LSTM 117.21 48.44 0.957 

 

As seen in Table 6, all models except LR had R2 

above 0.9. RF and SVR gave close results. CNN-

LSTM was the most successful model with R2 of 

0.957. Table 7 presents the experimental results for 

predicting wind power production. 

 
Table 7. The experimental results for predicting wind 

power production 

Model RMSE MAE R2 

LR 181.12 135.77 0.990 

RF 175.54 131.45 0.992 

SVR 171.36 127.63 0.993 

CNN 169.22 125.78 0.993 

LSTM 157.56 115.87 0.995 

CNN-LSTM 127.23 96.42 0.999 

 

As seen in Table 7, all models had R2 above 0.9. 

RF, SVR and CNN had similar results. LSTM had R2 

of 0.995 and CNN-LSTM had 0.999 R2.  

Figure 6 shows the comparative experimental 

results with respect to RMSE and MAE for energy 

production and consumption. 

Figure 7 shows the comparative experimental 

results for energy production and consumption with 

respect to R2. 

 

 

 

 
Figure 6. The comparative experimental results with respect to RMSE and MAE for energy production and 

consumption 
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Figure 7. The comparative experimental results for energy production and consumption with respect to R2 

 

Experiments showed that CNN-LSTM 

outperformed the compared models for total energy 

consumption and production of natural gas, hydro 

dam, lignite, hydro river, wind and fuel oil, as seen in 

Figure 6 and Figure 7. CNN-LSTM was more 

successful than the compared models because CNN-

LSTM enables the determination of spatial and 

temporal relationships thanks to its hybrid structure. 

CNN extracted local patterns in energy production 

and consumption data, while LSTM enabled the 

learning of short-term trends and long-term 

dependencies.  

The success of LSTM can be explained by its 

capacity to capture long-term dependencies in time 

series data. Since the dataset used is dependent on 

external factors such as seasonal changes and energy 

demand, LSTM was able to successfully model the 

dependencies in the dataset. CNN is an effective 

model in capturing short-term patterns, but CNN's 

ability to capture long-term dependencies is limited. 

CNN was inefficient compared to CNN-LSTM and 

LSTM because it could not capture long-term 

relationships. SVR, RF and LR are not efficient 

enough in datasets such as complex and nonlinear 

time series. Especially in time series data, since the 

observation data are dependent on each other, 

traditional machine learning methods cannot capture 

long-term and short-term dependencies. 

 

5. Conclusion 

The objective of this study was to evaluate the 

efficacy of diverse machine learning and deep 

learning methodologies for energy forecasting, 

utilising hourly energy consumption and production 

data from across Turkey. Comprehensive 

experiments were conducted on LR, RF, SVR, CNN, 

LSTM, and the proposed hybrid CNN-LSTM model. 

Time series data were transformed into a regression 

problem using the sliding window method, allowing 

the models to learn temporal dependencies. 

The findings of the experimental study indicated 

that the hybrid CNN with LSTM model exhibited 

superior performance in predicting total energy 

consumption and the production quantities of diverse 

energy sources in comparison to other models. 

In particular, the CNN-LSTM model achieved the 

lowest error rates according to RMSE, MAE and the 

highest coefficient of determination according to R². 

This success is attributed to the combination of 

CNN's ability to identify local patterns and LSTM's 

capability to capture long-term dependencies in the 

data. 

The findings highlight the effectiveness of deep 

learning-based hybrid models in energy forecasting. 

They significantly contribute to more accurate 

predictions of energy production and consumption, 
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enabling more efficient use of energy resources and 

the development of improved energy management 

strategies. 

Future studies can explore the model's 

generalizability to different energy markets and 

regions. Incorporating additional factors such as 

seasonal changes, economic indicators, and weather 

conditions into the model could enhance prediction 

accuracy. Moreover, applications like real-time 

forecasting and integration with smart energy 

management systems can be considered for practical 

implementations 
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