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ABSTRACT
Microalgae are promising resources for valuable products, and cultivating them requires a suitable 
culture medium to optimize growth and desired biochemical content. Aquaponic sludge, a 
byproduct of aquaponics systems, offers a sustainable and cost-effective alternative to conventional 
media by recycling waste and reducing environmental impact. This study aimed to compare the 
performance of standard BG-11 (Blue-Green 11) medium with remineralized sludge-water (RSW) 
and RSW supplemented with micronutrient solution (RSW+Mn) for cultivating Chlorella minutissima, 
Botryococcus braunii, and Haematococcus pluvialis. The highest specific growth rate (μ) of 
0.097±0.011 was observed for C. minutissima in BG-11 medium, nearly 28% higher than in RSW 
medium. However, the highest dry biomass productivity (Pb) of 0.012±0.011 was achieved by H. 
pluvialis in RSW+Mn medium, significantly 94% higher than in RSW medium. Additionally, the 
volumetric productivity of biomass (Qx) for H. pluvialis in RSW medium was 0.045±0.017, nearly 50% 
higher than in BG-11 medium. The best doubling time (td) of 8.83±0.93 days was observed for H. 
pluvialis in RSW medium. Notably, C. minutissima cultured in RSW medium yielded the highest 
crude protein (55.77±1.81%) and total lipid (4.69±0.88%) contents. These results demonstrate that 
RSW medium can be tailored to achieve desired outcomes, such as optimizing growth rate or lipid 
content. This study highlights the potential of remineralized aquaponic sludge as a sustainable 
culture medium for microalgae, contributing to waste recycling and resource efficiency in 
aquaponics systems. Future studies should focus on optimizing RSW medium for large-scale 
cultivation of target microalgae species with specific biochemical profiles.

Keywords: Microalgae, aquaculture, wastewater, recirculating aquaculture system, sustainability, 
waste recycling

INTRODUCTION

The integration of aquaponics and microalgae 
production using wastewater represents a sig-
nificant advancement in sustainable aquacul-
ture. Medium-scale integrations offer valuable 
data for aquapreneurs, enabling them to devel-
op new initiatives.

In aquaponics, fish and plants are grown to-
gether in a closed recirculating system (God-
dek and Keesman, 2020). The system is man-
aged by mimicking a natural aquatic environ-

ment with fish, plants, and nitrification bacteria 
consortia in a limited area (Tunçelli and Memiş, 
2024). The recirculation characteristics of aqua-
ponics make it a valuable system that contrib-
utes to reducing natural freshwater consump-
tion by up to 90% (Danish et al., 2021). As com-
pared to conventional irrigation systems, recir-
culating aquaculture systems like aquaponic 
systems use less irrigation water for agricultural 
activities and prevent soil salinization (Colt et 
al., 2022). However, recirculating aquaculture 
systems produce sludge that contains a variety 
of nutrients, including nitrogenous compounds, 
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phosphorus, and other dissolved organic carbons that could 
negatively affect the environment when their concentration is 
higher than usual (Jasmin et al., 2020). Furthermore, the water in 
aquaponics is typically warm, which is ideal for microalgae 
growth. Due to these kinds of opportunities, aquaponics byprod-
uct, sludge-water, has the potential to be a sustainable alterna-
tive as it can be collected easily and remineralized for microalgae 
cultivation (Boedijn et al., 2021; Addy et al., 2017).

Three primary methods are commonly used for integrated vege-
table and fish production in aquaponics systems. Nutrient film 
technique (NFT), media bed, and deep water culture methods 
are frequently used methods for establishing aquaponics (Li et 
al., 2019). NFT aquaponics utilizes thin water surfaces and air si-
multaneously to provide optimal conditions for plant growth (Su 
et al., 2020). With its wide air surface area, NFT aquaponics is 
considered one of the most advantageous aquaponic systems 
for converting nitrogenous ions to nitrates through aerobic oxi-
dation bacteria (Thakur et al., 2023). Moreover, aquaponic sys-
tems can be integrated with microalgae cultivation to enhance 
ecosystem-friendly aquaculture (Ansari et al., 2021). However, this 
sludge-water can be treated through remineralization and repur-
posed as a nutrient-rich medium for microalgae cultivation.

Studies have shown that microalgae grown in different wastewa-
ters have similar growth rates and biomass yields as microalgae 
grown in traditional culture mediums. Studies have shown that mi-
croalgae can effectively utilize various wastewaters for growth, in-
cluding urban wastewater (Robles et al., 2020), textile wastewater 
(Wu et al., 2020), pig farm wastewater (Nagarajan et al., 2019), 
brewery effluent (Ferreira et al., 2019), shrimp wastewater (Krasae-
sueb et al., 2019), and even palm oil wastewater (Ahmad et al., 
2019). Because microalgae culture medium is one of the most ex-
pensive entries of the microalgae production after labor, illumina-
tion conditions, agitation, and photosynthetic efficiency of the sys-
tem (Mtaki et al., 2023). As a result, using cheaper raw materials like 
aquaponics sludge-water, optimizing nutrient composition in cul-
ture medium, recycling wastewaters, cost-effective production 
techniques, and exploring alternative microalgae culture mediums 
can be done to reduce the cost of the culture medium. Microalgae 
have the ability to produce highly valuable bioactive compounds 
such as vitamins, minerals, essential amino acids, fatty acids, carot-
enoids, and enzymes (Zhou et al., 2022). Therefore microalgae that 
are cultured in aquaponics sludge-water are very good candidates 
to get biomass for bioactive compounds. Nitrification bioreactors 
can recover nitrogen from sludge-water via remineralization (Won-
gkiew et al., 2021), and the resulting culture medium can be used 
for microalgae cultivation.

Ammonium-oxidizing bacteria like Nitrosomonas sp., Nitroso-
coccus sp., and Nitrosospira sp. are the leading microorganisms 
of the nitrification process (Al-Ajeel et al., 2022). These bacteria 
are commonly used in wastewater treatment facilities. Aero-
bic-activated sludge application is one of the widely used pro-
cesses for municipal and industrial wastewaters to get rid of their 
hazardous compounds such as ammonium, nitrite, and nitrate 
ions (Singh and Dey, 2024). Because these pollutants can cause 
eutrophication with precipitation in narrow bays, closed-water 
basins or lakes (Zhang et al., 2020). Eutrophication is usually char-

acterized by algal blooms, low water quality, and mass fish mor-
tality (Kapsalis and Kalavrouziotis, 2021). Compounds like ammo-
nium and nitrite in sludge-water that pose a danger to aquatic 
and terrestrial animals make it possible for microalgae to grow ef-
fectively (Chamoli et al., 2024).

First studies of using sludge extracts to produce microalgae date 
back to the 1970s. Using sludge extracts, Wong et al. (1977) at-
tempted to increase the production of Chlorella pyrenoidosa in 
the Kuhl Medium. In a different study, sludge extracts were discov-
ered to be more beneficial than other common microalgae cultiva-
tion mediums (Wong, 1977). Aquaponics sludge-water is a waste 
product that would otherwise need to be disposed of, so using it 
as a culture medium can help to reduce the amount of waste pro-
duced by the aquaponics system and potentially reduce the cost 
of microalgae cultivation. Additionally, using aquaponics sludge 
water can help to improve the efficiency of the aquaponics system 
by recycling the nutrients that are present in the water.

However, depending on the species of fish and plants in the 
aquaponics system, the sludge-water might be contaminated 
with some pathogens, heavy metals, or other pollutants, which 
might impact negatively on microalgae growth. There are some 
important physicochemical parameters such as temperature 
(Elisabeth et al., 2021), pH (Fernandes et al., 2022), culture medi-
um (de Medeiros et al., 2020), carbon dioxide (Li et al., 2023), and 
conductivity (Barahoei et al., 2021) that have effects on the con-
centration and quality of lipids and proteins in microalgae. There-
fore, it’s important to evaluate the quality of the sludge water be-
fore using it as a culture medium and to consider other factors 
such as pH, temperature, and light conditions to optimize the 
growth of the microalgae. Plants and protists require nitrogenous 
nutrient salts such as ammonia, nitrite, and nitrate as well as al-
gae to take advantage of these compounds, as well (Ribeiro et 
al., 2020; Kyriacou et al., 2019).

Chlorella sp. is one of the most common microorganisms used in 
the production of biomass from industrial, municipal, and even 
aquaponics wastewater (Fimbres-Acedo et al., 2020; Chen et al., 
2019; Wang et al., 2019; Addy et al. 2017; Fang et al., 2017). On 
the other hand, B. braunii and H. pluvialis are other microalgae 
species that have a growing trend of experimental and commer-
cial cultivation. B. braunii is known for its rich lipid content and 
hydrocarbon production ability (Nazloo et al., 2024), H. pluvialis is 
known for its natural astaxanthin production capability (Mularczyk 
et al., 2020). Bioethanol wastewater streams (Nishshanka et al., 
2022), primary treated wastewater (Pan et al., 2021), synthetic 
brewery wastewater (Yap et al., 2022), and domestic secondary 
effluent (Sirotiya et al., 2023) were used as culture mediums for 
the production of H. pluvialis biomass. B. braunii were used as a 
wastewater treatment organism for piggery wastewater (Mkpu-
ma et al., 2023), sewage wastewater rich in ammonium nitrogen 
(Miura et al., 2022), aerated swine lagoon wastewater (Li et al., 
2022). According to these studies, a sustainable ecosystem ap-
proach to biomass production was made by using the help of dif-
ferent microalgae.

This study’s hypothesis focuses on a novel and potentially sus-
tainable approach to microalgae culture medium using aqua-
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ponic byproducts. Traditionally, microalgae are cultivated using 
well-defined but expensive medium like BG-11. This study inves-
tigates a potentially lower-cost option by exploring remineralized 
sludgewater from aquaponics as a culture medium. There’s a 
growing interest in using wastewater as a culture medium, and 
this study specifically focuses on remineralized sludgewater due 
to its potentially enhanced nutrient profile, making it even more 
suitable for microalgae growth.

The purpose of the study was to determine the performance of mi-
croalgae biomass production by utilizing sludge-water obtained 
from aquaponics. A comparison was made among the performance 
of microalgae grown in RSW medium, RSW medium including mi-
cronutrient solution (RSW+Mn), and commonly used BG-11 medi-
um. For the cultivation of microalgae species, the BG-11 medium is 
one of the most commonly used nutrient mediums, and it can be 
compared with other microalgae culture mediums easily. Microal-
gae cell numbers, doubling times, biomass productivities, specific 
growth rates, and biochemical contents were determined and eval-
uated in the RSW and RSW+Mn culture mediums.

MATERIALS AND METHODS

Aquaponic system setup
This study was conducted at the Mediterranean Fisheries Re-
search Production and Training Institute’s (MEDFRI) Nutrient Film 
Technique (NFT) aquaponics research facility in Antalya Province 
for 42 days, from September to October. The recirculating aqua-
culture system (RAS) consisted of a 2.5 m³ fiber aquaculture tank, 
two 80-liter radial flow separators, two 150-liter biofilter tanks 
(each containing 20 liters of media), 12 PVC rafts, and a 150-liter 
sump/pump tank. A 0.25 kW submersible water pump (Pedrollo, 
Tamworth UK) was installed in the sump/pump tank to circulate 
water. Daily, 10 liters of sludge-water were collected from the 
aquaculture tank discharge pipe and radial flow separators. This 
untreated discharge poses a risk of eutrophication in nearby in-
land waters. The collected sludge-water underwent a one-day 
remineralization process in 10-liter tanks. This process employed 
an air pump (2.5 L/min) to convert hazardous nutrients into bio-

available forms. A 0.45-micron cellulose ester membrane filter re-
moved solid waste. To prevent bacterial interference, the remin-
eralized sludge-water (RSW) was autoclaved daily at 121 °C and 1 
atm for 25 minutes. The combined RSW was used as a microal-
gae culture medium and compared to the BG-11 medium. Dead 
fish were promptly removed from the aquaculture tank to mini-
mize bacterial contamination. Figure 1 illustrates the catfish-let-
tuce aquaponics system utilized in this study.

Fish

A total of 348 African catfish (Clarias gariepinus) were used with an 
average weight of 28.83±11.68 g were used in the study. The total 
biomass of the fish was 10 kg (4 kg/m3 initial density). The fish were 
fed twice daily (09:00 and 16:00) at a rate of 2% of their total bio-
mass per feeding (4% total daily ration) for six weeks using com-
mercial carp feed. The diet contained 50% raw protein, 8% total 
fat, 3.7% cellulose, 9.7% ash, 1.5% calcium, 0.94% phosphorus, 
0.42% sodium, 8000 IUkg-1 vitamin A, 3000 IUkg-1 vitamin D3, 350 
mgkg-1 vitamin E, 30 mgkg-1 manganese oxide, 60 mgkg--1 zinc ox-
ide, 20 mgkg-1 iron chelate of glycine hydrate, 2 mgkg-1 calcium io-
dide, 6 mgkg-1 copper sulfate pentahydrate, 0.2 mgkg-1 sodium 
selenite. The following fish performance parameters were as-
sessed during the study: feed conversion ratio (FCR), specific 
growth rate (SGR) (μmax), survival rate (SR), relative growth rate 
(RGR), and weight gain (WG). Calculation methods for each pa-
rameter are described as follows:

FCR=Dry feed weight (g) / Weight gain (g)

SGR= ((ln Last Weight – ln Initial Weight) / Duration of experi-
ment) × 100

SR= (Last number of fish in fish tank / Initial number of fish in fish 
tank) × 100

RGR= ((Last weight of fish – Initial weight of fish) / Initial weight of 
fish) × 100

WG= (Last weight – Initial weight)

Figure 1.  Nutrient film technique aquaponics 1: Fish tank, 2: Separation tanks, 3: Bio-filter, 4: Hydroponic unit, 5: Sump/Pump, 6: 
Sludge-water discharge pipe
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Plant
Three-week-old lettuce (Lactuca sativa) seedlings, with an aver-
age initial weight of 1.69±0.42 g, were planted in a hydroponics 
unit at a density of 12 × 12 cm, using fiber as a substrate. The to-
tal of 120 lettuce plants were used in the experiment to ensure 
statistical reliability. The total wet weights of all plants were me-
ticulously measured after separating them from the fiber sub-
strates. The lettuce shoots were separated from the roots by cut-
ting them just above the root collar (the point where the stem 
meets the roots). The following parameters were calculated:

Total harvested plant weight (g): Measured for each plant.

Leaf number: Counted for each plant.

Yield (gm⁻²): Calculated as Biomass/Area, where the area of the 
hydroponics unit was 2.88 m².

Survival rate (SR): Determined as (Final number of plants/Initial 
number of plants) × 100.

Shoot/root ratio (s/r): Calculated as plant shoot length divided by 
plant root length.

Microalgae strains and culture system setup
Chlorella minutissima, Haematococcus pluvialis, and Botryococcus 
braunii were selected for cultivation using standard BG-11, RSW, 
and RSW+Mn mediums. Firstly, all stock microalgae species used 
in the present study were pre-cultured in standard BG-11 medium 
(NaNO3 (1500 mgL-1), K2HPO4 3H2O (40 mgL-1), MgSO4 7H2O (75 
mgL-1), CaCl2 2H2O (36 mgL-1), C6H8O7 (6 mgL-1), C6H8O7.xFe.xH3N 
(6 mgL-1), Na-EDTA (1 mgL-1), Na2CO3 (20 mgL-1) and micronutrient 
solution: H3BO3 (2.86 μgL-1), Co(NO3)2 6H2O (0.494 μgL-1), MnCl2 

4H2O (1.81 μgL-1), ZnSO4 7H2O (2.22 μgL-1), Na2MoO4 2H2O (3.9 
μgL-1), CuSO4 5H2O (0.79 μgL-1)) in 1 L erlenmeyer flasks. The mi-
croalgae were then cultivated in three different media: standard 
BG-11, RSW, and RSW+Mn in the study. All microalgae species 
were cultivated in 10 L low-density polyethylene (PE) plastic bags. 
Each species was cultured in triplicate 10-liter low-density polyeth-
ylene (PE) plastic bags within a microalgae culture platform (Figure 
2). A 16:8 light/dark photoperiod was used as one of the most im-

portant parameters for biomass production (Ratomski et al., 2021). 
The cultures were illuminated with 36-watt cool-white fluorescent 
lights. It was attempted to maintain the temperature at 25 °C by 
using the central heating system of the Aquarium Unit at MEDFRI. 
The light adjustment at the surface of the microalgae culture plas-
tic bags was realized by using a light meter, TES 1332A (TES Elec-
trical Electronic Corp., Taipei, China). Microalgae cultures were 
continuously aerated using filtered air at a constant flow rate of 2.5 
Lmin-1 for each plastic bag. Microalgae were grown in the live feed 
laboratory of the Mediterranean Fisheries Research Production 
and Training Institute for 27 days. Microalgae cell numbers were 
monitored every day using a light microscope (Leica Microsys-
tems, Wetzlar, Germany) and a haemocytometer (depth 0.1mm; 
five replicates were averaged). At the end of the cultivation pro-
cess, batch cultures were harvested and then freeze-dried by a 
high-vacuum freeze dryer (Telstar Cryodos-50, Terrassa, Spain) for 
2 days at 0.023 mBar and -55±2 °C. All biochemical analyses were 
conducted on freeze-dried samples obtained from batchwise cul-
tures, and they were stored at -18 °C.

Physicochemical parameters and ion concentration of microalgae 
culture mediums
Evaluating the physicochemical parameters and nutrient salts of 
the microalgae culture medium is an important step in optimiz-
ing microalgae growth. This influences the biochemical composi-
tion of the obtained microalgae, such as crude protein, total car-
bohydrates, and total lipids. By doing this, microalgae research-
ers can minimize culture medium costs while maintaining optimal 
growth conditions using alternative techniques and resources.

BG-11 medium is commonly used for green microalgae and cya-
nobacteria species (Rippka et al., 1979; Ozturk et al., 2019). The 
RSW culture medium, obtained daily from the aquaponics sys-
tem, underwent a 42 day oxidation and sterilization process be-
fore being pooled (or “combined”/”formulated”) in PE plastic 
bags. After remineralization, the ion concentration of RSW was 
analyzed using a Dionex ICS 3000 ion chromatography system 
consisting of a dual gradient pump unit (Dionex, Sunnyvale, CA, 
USA). Ion concentrations of BG-11, RSW, and RSW+Mn culture 
mediums are shown in Table 4.

Figure 2.  Microalgae batch culture platform 1: Polyethylene plastic bags with microalgae, 2: 36 Watt fluorescent lamps, 3: 2.5 L/
min aeration
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A handheld multiparameter unit, the Yellow Spring Instrument Pro-
DSS (YSI, Xylem Inc., Yellow Springs, OH, USA), was used to mea-
sure physicochemical parameters of microalgae culture medium, 
including temperature (°C), conductivity (μScm-1), salinity (ppt), and 
pH every day. At the end of the remineralization process, the daily 
collected and remineralized sludge-waters were combined and 
analyzed by ion chromatography. Daily collected RSW culture me-
dium samples (3 mL) were filtered using 0.22 µm pore size polytet-
rafluoroethylene (PTFE) filters before analysis with two Dionex ICS 
3000 ion chromatographs (Thermo Scientific, Waltham, Massachu-
setts, USA) equipped with IonPac AS9-HC and IonPac AS11-HC 
columns according to the manufacturer instructions.

Microalgae cell number and biomass
Maintaining optimal nutrient levels and growth conditions for mi-
croalgae leads to a higher biomass yield. By understanding how 
culture medium and conditions affect cell production, they can 
manipulate the conditions to favor the desired product. By doing 
this, it can be formulated cost-effective and optimized culture 
medium for large-scale production.

Three different mediums (BG-11, RSW, and RSW+Mn) were com-
pared to determine microalgae growth (cell numbers). Microal-
gae cultures were counted daily using a binocular microscope 
(Leica DM2000, Leica Microsystems Canada, Richmond Hill, On-
tario). The microalgae cells were counted daily after homogeni-
zation using a Neubauer haemocytometer and results were ex-
pressed as cellsmL-1. For determining dry biomass, 10 mL algal 
suspension was filtered daily using glass microfiber filters (What-
man GF/F, 47 mm, nominal pore size 1.6 μm) and all microalgae 
dried at 105 °C for 4 hours. Pre-weighed glass microfiber filters 
were used for algae culture filtration. After filtration, the filters 
containing the algae were dried at 105 °C for 4 hours. The filters 
were then cooled down in a vacuum desiccator and weighed 
again. The difference in weight represents the dry biomass of the 
algae culture (mgL-1) (Simonazzi et al., 2021; APHA, 1997). Vacu-
um pressure during filtration was maintained at 45 mm Hg. All mi-
croalgae groups were filtered in triplicate.

According to Vonshak (1986), the below formulation was used to 
calculate specific growth rate (μ).

μ= ln(X2 - X1) / t

X1= Initial biomass concentration

X2= Final biomass concentration

t= Time

Productivity (Qx) was calculated using the formula below (Liu ve 
ark., 2013).

Qx ( gLday-1)= (X2-X1)/t

X1= Initial biomass concentration

X2= Final biomass concentration

t= Time

Doubling time (td) was determined using the following formula 
(Yoshimura ve ark., 2013).

td (day)= ln2/μ= 0.693/μ

td: Doubling time or regeneration time

Dry biomass productivity calculated was applied using the fol-
lowing formula (Liu et al., 2013).

Biomass productivity (Pb) (gm-2 day-1)= (DWLn×DWL0)/n

DWLn= Dry weight of day n

DWL0= Dry weight of day 0

n= cultivation days

Determination of biochemical content of microalgae
Determining the biochemical content of obtained microalgae 
biomass is a key aspect for evaluating target products like crude 
protein, total carbohydrates, and total lipids. Crude protein in 
the biomass is suitable primarily for human consumption and an-
imal feed. Total carbohydrates from the algae can be used for 
bioethanol and other biofuel applications. Total lipids are valu-
able for mainly supplements and biodiesel production.

Triplicate analyses were conducted on lyophilized microalgae to 
determine their total lipids, crude protein, raw ash, carbohy-
drates, and moisture content. The total lipid concentrations were 
determined gravimetrically after extraction using the modified 
Bligh and Dyer (1959) method by Kates (1972). Using the Dumas 
combustion method, the crude protein content of microalgae 
was determined (Chiacchierini et al., 2003). In order to determine 
the moisture content in freeze-dried microalgae biomass, ap-
proximately 1 g of the sample was oven dried at 105°C for 1 hour 
(Lee et al., 2013). Microalgae raw ash content was determined us-
ing the protocol of the AOAC method 942.05 (Helrich, K., 1990). 
Total carbohydrates (including crude fiber) were calculated as 
100% minus the sum of the moisture, protein, fat, and ash con-
tents obtained using proximate analysis as previously explained 
(Eyeson & Ankrah, 1975).

Statistical analysis 
The statistical analyses were performed using JMP 13 software 
(SAS Institute Inc., Cary, N. C.). Following a Shapiro-Wilk homo-
geneity test, analysis of variance (One-way and two-way ANOVA) 
was conducted to compare results for culture mediums (BG-11, 
RSW, and RSW+Mn) within each algal species. Tukey’s HSD tests 
were used to determine significant differences (P <0.05) among 
all culture mediums and algal species. The effects of tempera-
ture, pH, conductivity, and salinity were assessed using a repeat-
ed measures ANOVA. Data are presented as means±standard 
deviations in the tables.

RESULTS AND DISCUSSION

Growth performance of fish
The growth performance of African catfish was evaluated using 
the following criteria: fish feed conversion ratio (FCR), specific 
growth rate (SGR), relative growth rate (RGR), and survival ratio 
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(SR). At the conclusion of the 42 day of the aquaponics study, 
45.14 kg of fish were harvested. However, accumulation of organic 
matter in the fish and separation tank, leading to declining dis-
solved oxygen (DO) levels throughout the study period and the 
cannibalistic nature of African catfish resulted in the mortality of 
47 out of 348 fish. The final average weight of the fish was 
149.97±70.38 g. FCR, SGR, RGR, and SR were calculated to be 
0.98, 3.59% day-1, 351.1%, and 86.49%, respectively. The overall 
health of the African catfish was assessed as good. The absence 
of supplemental aeration in the fish tank is a potential factor in the 
13.5% fish mortality observed by the end of the study. FCR of Af-
rican catfish were found as 1.18-1.33 in spinach and mustard green 
integrated aquaponics (Endut et al., 2016), 1.02-1.09 in floating 
raft hydroponics integrated with cucumber (Baßmann et al., 2017), 
and 1.03-1.14 in co-cultivated basil integrated aquaponics 
(Baßmann et al., 2018). African catfish fed with fish diets contain-
ing different proportions of potassium diformate and potassium 
chloride exhibited specific growth rates (SGR) ranging from 
1.25±0.09% day-1 to 1.52±0.12% day-1 (Siqwepu et al., 2020) which 
is lower than this study’s results. In another study, African catfish 
grown in an aquaponic system with basil (Ocimum basilicum) at 
moderate and high densities had lower SGR values (0.71% day-1 

and 0.80% day-1, respectively) compared to this study (Baßmann 
et al., 2018). Hagar et al. (2019) reported an RGR value of 
97.28±0.03 for African catfish grown in recirculating aquaculture 
systems (RAS). In comparison, studies have shown higher survival 
rates for African catfish integrated with aquaponics (e.g., 
94.25±2.12% with pumpkin cultivation) compared to recirculating 
systems (80.60±1.20%) and static systems (59.24±1.91%) (Oladi-
meji et al., 2020). African catfish are found to be an appropriate 
candidate for aquaponics systems. Studies have shown promising 
results, with survival rates reaching 100% when integrated with let-
tuce cultivation using microwave pyrolysis biochar (Su et al., 2020). 
Additionally, research by Suhl et al. (2018) reported total weight 
gain ranging from 10.0 kg tank-1 to 267.5 kg tank-1 in a tomato-Af-
rican catfish aquaponics system with an innovative suction filter 
that reduces nitrogen loss. However, cannibalism can be a major 
cause of mortality in African catfish.

Growth performance of plant
Lettuce was harvested from the hydroponics unit after 42 days of 
the experiment. Average plant weight, average leaf number, av-
erage leaf area, average stem diameter, fresh weight (yield), sur-
vival rate, and average shoot/root ratio were calculated as 
91.85±35.36 g, 36.79±7.33, 48.26±32.20 cm2, 2.16±0.39 cm, 
164.06±54.09 gm-2, 100%, and 4.83±1.21, respectively. Tunçelli 
and Memiş (2024) Palm et al. (2014), Calone et al. (2019), and Byrd 
et al. (2022) reported similar results for hydroponic lettuce pro-
duction in aquaponics. However, the fresh weight was lower com-
pared to the findings of Maucieri et al. (2019). Badrey et al. (2024) 
found that lettuce ( Lactuca sativa L.) grown in a polyculture aqua-
ponic system using polyculture effluent (ASTAF-Pro) achieved a 
significantly higher average weight (450±70 g) compared to 
those grown in monoculture (360±45 g). Matysiak et al. (2023) re-
ported a romaine lettuce yield of 86 g per plant within 21 days in 
a vertical aquaponic farm. This translates to a yield of 3.4 kg m⁻² 
at a planting density of 40 plants m⁻². In a study of lettuce (Lactu-
ca sativa) production in northern latitudes using aquaponics, Ab-

bey and Anderson (2019) observed significant differences in fresh 
weight based on fish species. Lettuce grown in a deep water cul-
ture (DWC) system with perch had the lowest mean fresh weight 
(65.6 g), while those grown with tilapia achieved the highest 
(172.3 g).

Leafy vegetables like lettuce are the most preferred plant species 
in aquaponics due to their easy integration.  However, in this 
study, the lettuce showed a relatively lower growth performance 
compared to other studies. This might be attributed to the spe-
cific ion concentration in the effluent (circulating water) of the 
aquaponic system, which may not have been optimal for lettuce 
growth.

Ion concentrations of the microalgae culture mediums
As expected, the BG-11 medium had the highest NO3-N concen-
tration at 247.06 mgL-1. In contrast, RSW and RSW+Mn media 
had higher concentrations of NH4-N, NO2-N, SO4, K, Mg, Ca, and 
Cl compared to standard BG-11 (Table 1). Statistically significant 
differences (p<0.05) were found in nutrient concentrations be-
tween RSW and RSW+Mn media compared to BG-11, suggest-
ing they might be more suitable for Chlorella sp. growth. Based 
on the combined daily aquaponic sludge-water, ammonia levels 
were relatively low (1.06±1.18 mgL-1) compared to nitrite 
(3.97±6.63 mgL-1) and nitrate (4.32±7.9 mgL-1) levels. Phosphate 
levels were also moderate (1.52±1.65 mgL-1). Green microalgae 
like Chlorella sp. require adequate nitrogen (particularly NO3-N) 
and phosphorus (PO4-P) for maximum biomass production 
(Chakraborty et al., 2016).  These values are all considered rela-
tively low compared to other studies (e.g., Gao et al., 2016; Tan-
ikawa et al., 2018). In another study, for an axenic cultivation, ni-
trate and phosphate concentrations of aquaculture wastewater 
were found as 17.6 mgL-1 and 16.9 mgL-1, respectively. Indigenous 
microalgae consortia consisting of Chlorella sp. (95.2%), Chlam-
ydomonas sp. (3.1%), Stichococcus sp. (1.1%), Chlorella sp., and 
Scenedesmus quadricauda were used to produce microalgal bio-
mass with aquaculture wastewater, successfully (Halfhide et al., 
2014).

Physicochemical parameters of Chlorella minutissimaculture 
medium
The trends in physicochemical parameters (e.g., temperature, 
pH, salinity, EC) for H. pluvialis cultured in BG-11, RSW, and 
RSW+Mn media are shown in Figure 3. Average values of these 
parameters for C. minutissima culture are presented in Table 2. 
The maximum temperature (26.8±0.10 °C) was observed in the 
BG-11 medium on day 7, while the minimum temperature 
(22.53±0.05 °C) was measured in the RSW+Mn medium on day 
21. Average temperatures were calculated as 24.59±1.23 °C in 
BG-11, 24.32±1.26 °C in RSW, and 24.42±1.26 °C in RSW+Mn 
media. While temperature showed no significant differences 
among groups (F(2,81) = 0.3420, P >0.05), pH (F(2,81) = 9.711), sa-
linity (F(2,81) = 109.3), and EC (F(2,81) = 140.5) exhibited statisti-
cally significant differences (P < 0.05). The highest EC was mea-
sured in the BG-11 medium on the 27th day (1599.33±57.41 
μScm-1), while the lowest conductivity was found in the same me-
dium on day 1 (700.33±1.70 μScm-1). The average EC was calcu-
lated as 1499±227.69 μScm-1 in BG-11, 992.35±31.86 μScm-1 in 
RSW, and 976.45±15.99 μScm-1 in RSW+Mn mediums. BG-11 ex-
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hibited a statistically significant difference (P <0.05) in conductiv-
ity compared to the other culture media. No significant differenc-
es were found in salinity among all mediums (P >0.05). Figure 3 
illustrates the observed trends in pH, with a maximum value of 
8.78±0.02 on day 16 and a minimum of 7.42±0.01 at the begin-
ning of the experiment. Despite the difference in nutrient salt 
concentration between BG-11 and RSW, the RSW medium yield-
ed better results in terms of biomass production compared to 
BG-11. The average physicochemical parameters of Chlorella 
minutissima culture are presented in Table 2 below. Temperature 
of the culture mediums of C. minutissima showed no significant 
changes. However, RSW and RSW+Mn mediums differed from 
BG-11 in terms of pH, salinity and conductivity, potentially indi-
cating a difference in nutrient composition. 

Temperature of the culture mediums of C. minutissima showed 
no significant changes. However, RSW and RSW+Mn mediums 
differed from BG-11 in terms of pH, salinity and conductivity, po-
tentially indicating a difference in nutrient composition.

For comparison, a study by Ribeiro et al. (2020) found an optimal 
temperature of 28°C for Chlorella sorokiniana production using a 
combination nitrogen medium (urea, ammonia, and nitrate).  Mi-
croalgae growth also depends on pH response and reaction 
(Berge et al., 2012). Chiu (2015) reported that agricultural and 
livestock breeding wastewater offered a good potential for Chlo-
rella sp. cultivation due to higher nutrient concentrations. These 

Table 1. The ion concentrations of BG-11, RSW, and 
RSW+Mn mediums

Descriptions BG-11 RSW RSW+Mn

NO2-N (mg/L) - 3.97±6.83 3.97±6.83
NO3-N (mg/L) 247.06 4.32±7.9 4.32±7.9
PO4-P (mg/L) 9.25 1.52±1.65 1.52±1.65
SO4 (mg/L) 29.33 109.42±43.41 109.42±43.41
NH4-N (mg/L) 0.32 1.06±1.18 1.06±1.18
K (mg/L) 5.67 8.68±5.15 8.68±5.15
Mg (mg/L) 7.40 33.36±7.88 33.36±7.88
Ca (mg/L) 9.81 155.5±29.36 155.5±29.36
Na (mg/L) 410.29 55.65±58.14 55.65±58.14
Cl (mg/L) 9.00 89.87±132.74 89.87±132.74
Co (mg/L) 0.0091 - 0.0091
Mo (mg/L) 0.1546 - 0.1546
Mn (mg/L) 0.5025 - 0.5025
Zn (mg/L) 0.0500 - 0.0500
Cu (mg/L) 0.0204 - 0.0204

BG-11: Blue-green microalgae culture medium, RSW: Remineralized 

sludge-water, RSW+Tr: Remineralized sludge-water + BG-11 microalgae 

culture medium trace element solution

Figure 3.  Time-dependent change of physicochemical parameters of BG-11, RSW, and RSW+Mn for Chlorella minutissima
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wastewaters contained total nitrogen ranging from 185-3213 
mgL-1 and total phosphorus around 30-987 mgL-1. In contrast, do-
mestic secondary effluent had a relatively low concentration of 
both total nitrogen (15-90 mgL-1) and total phosphorus (5-20 mgL-

1). Chlorella sp. demonstrates adaptability to various wastewater 
sources. For instance, Wang et al. (2010) cultivated Chlorella sp. 
in municipal wastewater, reporting effluent from an aeration tank 
to contain nitrite (0.074±0.003 mgL-1) and nitrate (16.95±0.07 
mgL-1). In contrast, Yu et al. (2019) used anaerobic digestion efflu-
ent containing high ammonium (40 mgL-1) for Chlorella vulgaris 
and Chlorella protothecoides.  A pH of 5.7 to 6.5 was sufficient for 
optimal growth of Chlorella pyrenoidosa grown in anaerobically 
digested activated sludge. However, when pH levels increased 
above 9.1 to 9.6 it was unable to grow in the wastewater (Tan et 
al., 2016). Chlorella vulgaris was used for removal of toxic chemi-
cals from tannery wastewater, as well (Das et al., 2017). Tempera-
ture, pH, electrical conductivity, ammonium-nitrogen, and phos-
phate of the diluted tannery wastewater were found to be 15-20 
°C, 7.78±0.20, 2.19±0.16 mScm-1, 8.12±0.60 mgL-1 and 10.68±1.63 
mgL-1, respectively (Subashini and Rajiv, 2018).

Growth trend of Chlorella minutissima
As shown in Figures 4 and 5, C. minutissima exhibited higher 
growth rates or cell densities in RSW and RSW+Mn media com-
pared to BG-11. A distinct separation in algal dry biomass con-
centrations between cultures was observed from day 3 to day 22, 
when comparing all media used for C. minutissima cultivation. 
Figure 5 illustrates a time-dependent increase in cell number of 
C. minutissima, with all culture media exhibiting either exponen-
tial or linear growth patterns. The maximum cell concentration of 
C. minutissima was observed as (2.70±1.17)×10⁷ cellsmL-1 in the 
RSW+Mn culture medium on the 27th day of the study. No statis-
tically significant differences (P >0.05) were found in C. minutissi-
ma cell concentrations among all culture media. The average 
biomass of all culture mediums was measured 51.62±38.40 mgL-1 
in BG-11, 42.06±27.53 mgL-1 in RSW, and 65.61±29.49 mgL-1 in 
RSW+Mn. 

Dry weight of biomass is one of the most important parameters 
for assessing biomass yield in microalgae culture (Chioccioli et 
al., 2014). Interestingly, Mutanda et al. (2011) reported no statisti-
cally significant difference in growth parameters between Chlo-
rella spp. cultured in BG-11 and post-chlorinated wastewater, de-
spite observing a higher biomass yield (116.3 mgL-1) in the 

post-chlorinated medium compared to BG-11 (69.9 mgL-1). Chlo-
rella sp. was used as a phytoremediation species and it can pro-
duce biomass in highly concentrated municipal wastewater. 
Chlorella sp. exhibited a high biomass concentration of 86 mgL-1 
(Li et al., 2011). In another study, Cabanales et al. (2013) investi-
gated the use of five distinct stages of domestic wastewater dep-
uration for eliminating nutrient salts while producing Chlorella 
vulgaris biomass. They reported biomass yields ranging from 39 
to 195 mgL-1 dry weight per day (mgL-1 dW day-1), similar to the 
values observed in our study. A study reported biomass yields of 
0.1 gL-1 dW day-1 for C. vulgaris, 0.4 gL-1 dW day-1 for Scened-
esmus obliquus, and 0.9 gL-1 dW day-1 for a consortium of Chlo-
rella, Chaetophora, Scenedesmus, and Navicula when cultivated 
using urban wastewater in a photobioreactor (Gouveia et al., 
2016). C. minutissima has gained attention for its ability to serve 

Table 2. C. minutissima culture mediums average 
physicochemical parameters

Parameter/
Culture 
medium

BG-11 RSW RSW+Mn

Temperature 
(°C)

24.59±1.23A 24.32±1.26A 24.42±1.26A

pH 8.06±0.25A 8.42±0.41B 8.41±0.36B

Salinity (ppt) 0.76±0.13A 0.50±0.00B 0.50±0.00B

Conductivity 
(μScm-1)

1499.01±227.69A 992.35±31.86B 976.45±15.99B

Letters A-B indicates significant differences between samples (P <0.05)

Table 3. Growth parameters of C. minutissima

A
b

b
re

vi
at

io
ns

B
G

-1
1

R
SW

R
SW

+
M

n

μ 0.097±0.011A 0.070±0.010A 0.068±0.016A

Qx 0.0046±0.0006A 0.0034±0.0001A 0.0041±0.0005A

td 7.05±0.98A 10.18±1.67A 10.96±3.04A

Pb
0.000054±0.000024A 0.000064±0.000021A 0.000117±0.000047A

μ= specific growth rate, Qx= productivity, td= doubling time, Pb= biomass 

productivity

Figure 5.  Time-dependent change of C. minutissima cell 
number

Figure 4.  Time-dependent change of C. minutissima dry 
biomass
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two purposes: remediating wastewater by removing nutrient 
salts and producing microalgae biomass, even when cultivated in 
saline aquaculture water. A study reported that the cell density of 
microalgae increased almost fivefold during wastewater treat-
ment, reaching a peak five times higher than the initial concen-
tration after 10 days (Hawrot-Paw et al., 2020). In another study, 
Scenedesmus sp., C. variabilis, and C. sorokiniana were applied 
to tannery wastewater to produce biomass, which could then be 
used for biofuel production. Scenedesmus sp., C. variabilis, and 
C. sorokiniana cultivated in different tannery wastewater concen-
trations exhibited substantial growth, as evidenced by increased 
cell density, chlorophyll content, and sugar content, compared to 
the control group. C. sorokiniana displayed impressive growth in 
a short period, achieving a threefold increase in biomass com-
pared to the BG-11 control group within just 16 days (Nagi et al., 
2020). There were no statistically significant differences among 
the groups when it comes to microalgal growth parameters as 
seen in Table 3 [F(2,9) = 0.1272], (P=0.8821). Researchers found 
that the specific growth rate ranged from 0.289 to 0.408 day-1 af-
ter adhering to photoheterotrophic fermentation and adding 
glycerin to the culture medium (Yang et al., 2011). BG-11 medium 
supported faster growth, higher productivity, and potentially 
greater overall biomass production compared to RSW and 
RSW+Mn mediums. Doubling time is inversely related to growth 
rate, the higher μ value in BG-11 suggests a potentially shorter 
doubling time compared to RSW and RSW+Mn mediums.

Physicochemical parameters of Botryococcus braunii culture 
medium
The average physicochemical parameters of the B. braunii cul-
tures in BG-11, RSW, and RSW+Mn media are presented in Table 
2, while Figure 6 illustrates the trends observed in these parame-
ters throughout the experiment. Temperature remained consis-
tent across all culture media (BG-11, RSW, and RSW+Mn) 
throughout the experiment, with no statistically significant differ-
ences observed [F=(2, 81)= 0,2701] (P >0.05). For conductivity 
and salinity, BG-11 was found statistically important compared to 
other culture mediums [F(2, 81)= 96.79], (P <0.05). When it comes 
to pH, among all groups were found statistically significant differ-
ences (P <0.05). The maximum pH level was determined as 
8.87±0.07 at RSW medium on the last day of experiment while 
minimum pH level was measured as 7.66±0.04 on the 5th day of 
experiment. A statistically significant difference was found be-
tween BG-11 and other mediums in terms of pH [F(2.81)= 2795] (P 
<0.05). Figure 6 shows physicochemical parameters of B. braunii 
in different culture mediums over time. The average physico-
chemical parameters of B. braunii culture can be seen in Table 4 
below.

Repeated measures ANOVA revealed a statistically significant ef-
fect of treatment on temperature [F(1.049, 28.33)= 23.25], (P 
<0.0001), pH [F(2.142, 57.83)= 59.31], (P <0.0001), conductivity 
[F(1.148, 31.00)= 831.4], (P <0.0001), and salinity [1.086, 29.32)= 
32.47], (P <0.0001) over time.

All three mediums had similar average temperatures with some 
small variations. BG-11 medium had a slightly lower pH com-
pared to RSW and RSW+Mn. While B. braunii tolerates a wide pH 
range, it generally prefers slightly acidic conditions (pH 6-6.5) to 

produce hydrocarbons (Nugroho et al., 2020). BG-11 had slightly 
higher salinity (0.66 ppt) compared to RSW (0.59 ppt) and 
RSW+Mn (0.58 ppt), but the differences are minor. BG-11 had the 
highest conductivity (around 1325 μScm-1), followed by RSW 
(around 1180 μScm-1) and RSW+Mn (around 1153 μScm-1). This 
difference in nutrient composition might influence B. braunii 
growth and other parameters. A culture medium temperature of 
23 °C was determined to be the optimum temperature for grow-
ing B. braunii (Qin and Li, 2006). Yoshimura et al. (2013) found the 
growing temperature of B. braunii strain SHOWA between 5 to 
35 °C and optimum growth temperature was determined as 30 
°C. Tarhan et al. (2021) tried to grow C. minutissima and B. brau-
nii using different dilutions (50x, 100x 200x, and 400x) of orange 
and olive pomace aqueous phases. At low dilution rates they 
found shorter generation times and higher growth rates for mi-
croalgae. In another study, B. braunii strain CHN 357 was cultured 
at different temperatures among 20 to 30 °C and the optimum 
temperature was found as 23 °C (Qin and Li, 2006). The highest 
EC was measured as 1385.33±46.58 μScm-1 at the end of the 
study in BG-11 medium. Similarly, Órpez et al. (2009) found the 
EC as 978 μScm-1 in secondarily treated sewage wastewater in the 
study of production performance of B. braunii. The growth per-
formance of B. braunii strain BOT-22 was also evaluated in soy-
bean curd wastewater (SCW). SCW is diluted as 1%, 2%, 5%, and 
10% and compared to control AF-6 medium’s microalgae bio-
mass performance. SCW medium ion concentration was report-
ed as 3 mgL-1 ammonium, 100 mgL-1 phosphate, 92 mgL-1 sulfate, 
35 mgL-1 magnesium, 1280 mgL-1 potassium, 366 mgL-1 calcium, 
and 41 mgL-1 sodium. Compared to AF6 microalgae culture me-
dium like the one used in that study, SCW yielded better biomass 
results with its nutrient variables (Yonezawa et al., 2012). In anoth-
er study, secondarily treated sewage (STS) was used as B. braunii 
culture medium in the batch culture system. STS derivatives were 
found to have better concentrations of nitrite, ammonium, con-
ductivity, and total phosphorus compared to CHU 13 microalgae 
culture medium (Sawayama et al., 1992). Aerated swine lagoon 
wastewater without sterilization and pH adjustment was also test-
ed as an alternative B. braunii culture medium for open microal-
gae production systems. When aerated swine lagoon wastewater 
(ASLW) is compared with swine lagoon wastewater (SLW), it was 
observed that there are significant differences in terms of pH, 
conductivity, dissolved oxygen, nitrate-nitrogen, ammonium-ni-
trogen, total nitrogen, and total phosphorus. Similarly to the 
present study, B. braunii cultivation was made at 25 °C tempera-
ture and light intensity of 120 µmol photons m-2s-1 (Liu et al., 

Table 4. B. braunii culture mediums average 
physicochemical parameters

Parameter/ 
Culture medium

BG-11 RSW RSW+Mn

Temperature (°C) 26.75±1.68A 26.52±1.56A 26.81±1.55A

pH 8.03±0.34A 8.64±0.19B 8.51±0.15B

Salinity (ppt) 0.66±0.05A 0.59±0.05B 0.58±0.04B

Conductivity  
(μScm-1)

1325.16±44.00A 1180.00±60.91B 1153.75±43.43B

Letters A-B indicates significant differences between samples (P <0.05)
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2013). A pretreated or untreated wastewater resource can be an 
effective microalgae medium, since it can be used for microalgae 
cultivation at a low cost.

Growth trend of Botryococcus braunii
Dry biomass and cell concentration changes of B. braunii grown 
in different culture mediums are given in Figure 7 and Figure 8, 
respectively. Mean dry biomass of B. braunii obtained from BG-
11, RSW, and RSW+Mn were calculated as 379.40±200.12 mgL-1, 
385.19±305.01 mgL-1, 130.20±138.63 mgL-1, respectively. As can 
be seen in Figure 7, B. braunii grew better in the RSW medium 
compared to others. The 21st day of the experiment revealed the 
highest cell concentration of B. braunii in RSW+Mn medium at 
3.6×105±5.3×104 cellsmL-1. 21 days of B. braunii production in 
the RSW culture medium can be considered sufficient.

After the 18th day of the experiment, the biomass yield of the B. 
braunii cultured in RSW medium, skyrocketed. There were no sta-
tistically significant differences among the groups when it comes 
to microalgal growth parameters as seen in Table 5 [F(2,9) = 
0.5292], (P =0.6063). 

RSW medium had the highest specific growth rate compared to 
BG-11 and RSW+Mn. This suggests B. braunii grew faster in RSW. 
Similar to specific growth rate, RSW medium had the highest pro-
ductivity compared to BG-11 and RSW+Mn mediums. RSW me-
dium (8.04±0.47) has the shortest doubling time, followed by BG-

11 (11.78±2.59) and RSW+Mn (13.31±0.80). This aligns with the 
trend observed in specific growth rate. Biomass productivity of 
the BG-11 medium was found as the highest when compared to 
RSW and RSW+Mn.

In a study investigating the biomass production performance of 
secondarily treated piggery wastewater, the removal of nitro-
gen-phosphorus and produce B. braunii biomass was found ad-
vantageous and sustainable. In that study, biomass production was 
found as between 1 gL-1 and 7.5 gL-1 in different nitrogen concen-
trations (102 mgNL-1, 204 mgNL-1, 510 mgNL-1, +1020 mgNL-1) in 
batch culture (An et al. 2003). Nitrogen concentrations of second-
arily treated wastewaters were found much higher compared to 
this study and low values of biomass may be caused by the lack of 
nitrogenous compounds in the culture mediums. Órpez et al. 
(2009) grew B. braunii in secondarily treated sewage wastewater at 

Figure 6.  Time-dependent change of physicochemical parameters of BG-11, RSW, and RSW+Mn for Botryococcus braunii

Table 5. Growth parameters of B. braunii

Abbreviations BG-11 RSW RSW+Mn

μ 0.061±0.012A 0.086±0.0052A 0.052±0.0031A

Qx 0.033±0.023A 0.044±0.0062A 0.013±0.0015A

td 11.78±2.59A 8.04±0.47A 13.31±0.80A

Pb 0.0086±0.009A 0.0062±0.0008A 0.0021±0.00019A

μ= specific growth rate, Qx= productivity, td= doubling time, Pb= biomass 

productivity
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pH 8 and maximum specific growth rate was found as 0.21 gL-1 day-

1. Secondarily treated sewage wastewater showed similar findings 
to this study with its nutrient concentrations like ammonium (15 
mgL-1), nitrates (0.9 mgL-1), nitrites (0.14 mgL-1), phosphates (11.5 
mgL-1). In a research that aims carotenoid production from B. brau-
nii at different light intensities (100 and 500 μmol photons m-2s-1), 
and in various culture mediums (modified CHU 13 medium, modi-
fied CHU 13 medium without nitrogen, and modified CHU 13 with-
out N+2Fe), the highest biomass yield was determined as 0.6 gL-1 
on day 16 at the highest light intensity (Indrayani et al., 2022). 
When compared to this study, similar results were found with the 
biomass of B. braunii cultured in BG-11 medium. Qin and Li (2006) 
reported specific growth rates between 0.061±0.003 - 0.095±0.003 
which was very similar to this study.

Physicochemical parameters of H. pluvialis culture medium
The trend differences among physicochemical parameters of 
BG-11, RSW, and RSW+Mn culture mediums for culturing H. plu-
vialis were shown in Figure 9. The average physicochemical pa-
rameters of the study were shown in Table 3. While the maximum 
temperature was determined as 26.83±0.05 °C at RSW+Mn cul-
ture medium on the 3rd day, the minimum temperature was ob-
served as 22.13±0.05 °C at BG-11 medium on the 17th day of the 
experiment. In this study, temperature was held at appropriate 
levels. The maximum pH level was determined as 8.57±0.07 at 
RSW medium on the 8th day, and the minimum pH level was mea-
sured as 7.41±0.03 at RSW+Mn in the beginning of the experi-
ment. In RSW+Mn medium, the highest conductivity was mea-
sured as 2316.33±30.07 μScm-1 at the end of the study, while the 
lowest conductivity was measured as 1070.33±3.40 μScm-1 on the 

first day of the experiment. The average physicochemical param-
eters of H. pluvialis culture can be seen in Table 6 below.

BG-11, RSW, and RSW+Mn had very similar average tempera-
tures with some variations. Temperature wasn’t a differentiating 
factor for H. pluvialis growth in the experiment. BG-11 medium 
had a slightly lower pH compared to RSW and RSW+Mn. H. plu-
vialis can tolerate a wide range of pH (6-8.5) (Do et al., 2021). 
The statistically significant differences suggest that the pH lev-
els in the BG-11 medium are different from both RSW and 
RSW+Mn. RSW+Mn had a significantly higher salinity (1.24 ppt) 
compared to both BG-11 and RSW mediums. The statistically 
significant differences suggest variations in the amount and 
type of dissolved nutrients between the mediums. BG-11 and 
RSW+Mn likely have higher concentrations of dissolved salts 
compared to RSW medium.

Optimum growth temperature of H. pluvialis was found between 
25-28 °C in a study that aims to find optimal temperature and ir-
radiance for H. pluvialis (Fan et al., 1994). 35 °C had detrimental 
effects on H. pluvialis cells according to Borowitzka et al. (1991). 
The beginning pH level of the culture medium for H. pluvialis was 
determined as 7.5, according to Choi et al. (2017).

Growth trend of H. pluvialis
The maximum H. pluvialis cell concentration was elicited as 
8.9×104±3.2×104 in RSW+Mn medium on the 20th day of the study. 
The dry weight of biomass obtained from BG-11, RSW, and RSW+Mn 
mediums were calculated as 70.62±20.29 mgL-1, 169.42±84.21 mgL-

1, 631.52±336.90 mgL-1, respectively (Figure 10 and Figure 11). As 
can be seen in Figure 10, the highest dry biomass increase was 
found at the RSW+Mn medium at the 20th day of the experiment 
for H. pluvialis. Some green cells transitioned to aplanospore stage 
but more than 90% of the cells never transitioned into the red (astax-
anthin production) stage. There were no statistically significant dif-
ferences among the groups when it comes to microalgal growth pa-
rameters as seen in Table 7 [F(2,9) = 0.6714], (P =0.5348).

There was no statistically significant difference between RSW 
(0.079±0.0081) and RSW+Mn (0.080±0.015) medium, which 
have the higher specific growth rates. This suggests H. pluvia-
lis grew slower in BG-11 medium. Similar to growth rate, 
RSW+Mn medium (0.045±0.017) has the highest productivity, 
followed by RSW (0.010±0.0057) and BG-11 (0.0030±0.0001). 
This indicates that RSW+Mn supported the highest rate of 
biomass production. A lower doubling time signifies faster 

Figure 7.  Time-dependent change of B. braunii dry biomass

Figure 8.  Time-dependent change of B. braunii cell number

Table 6. Haematococcus pluvialis culture mediums 
physicochemical parameters

Parameter/ 
Culture medium

BG-11 RSW RSW+Mn

Temperature (°C) 24.26±1.27A 24.35±1.25A 24.54±1.26A

pH 7.83±0.15A 8.27±0.35B 8.22±0.32B

Salinity (ppt) 0.79±0.05A 0.58±0.04B 1.24±0.70C

Conductivity  
(µS/cm)

1597.91±70.93A 1146.29±35.63B 2207.35±54.02C

Letters A-C indicates significant differences between samples (P <0.05)
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population growth. RSW medium (8.83±0.93) has the shortest 
doubling time, followed by RSW+Mn (8.92±1.44) and BG-11 
(17.40±5.69). This aligns with the trend observed in specific 

growth rate. RSW+Mn medium showed the highest biomass 
productivity (0.012±0.011). 

In general two-step production policy followed for commercial 
cultivation. In the first stage of production, the vegetative pro-
cess is maximized. At the second stage, stress conditions are 
tried to be provided for astaxanthin production (Shah et al., 
2019). Only vegetative processes were studied in this study. The 
results of a study which was related to 32 days of cultivation of H. 
pluvialis using standard laboratory prepared wastewater under 
different light spectrums has a slightly better performance in 
terms of cell concentration (51×104 cellsmL-1) than this study 
(Mourya et al., 2023). The maximum biomass concentration was 
found as 27.8 mgL-1 day-1 cultured in a domestic secondary treat-
ed effluent for H. pluvialis (Wu et al. 2013). In another study, cas-

Figure 9.  Time-dependent change of physicochemical parameters of BG-11, RSW, and RSW+Mn for H. pluvialis

Table 7. Growth parameters of H. pluvialis

Abbreviations BG-11 RSW RSW+Mn

μ 0.044±0.012A 0.079±0.0081A 0.080±0.015A

Qx 0.0030±0.0001A 0.010±0.0057A 0.045±0.017A

td 17.40±5.69A 8.83±0.93A 8.92±1.44A

Pb
0.00020±0.00013A 0.00074±0.00083A 0.012±0.011A

μ= specific growth rate, Qx= productivity, td= doubling time, Pb= biomass 

productivity

Figure 11.  Time-dependent change of H. pluvialis cell number.

Figure 10.  Time-dependent change of H. pluvialis dry biomass.
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sava wastewater obtained from three different cassava producers 
diluted to different concentrations (2.5%, 5%, and 10%) to pro-
duce microalgae. The highest biomass was obtained from 2.5% 
diluted CW medium as 9.31 cells mL-1 (Rodrigues et al., 2021).

Statistical analyzes revealed significant differences in cell densi-
ties among the tested microalgae species (C. minutissima,  B. 
braunii, and  H. pluvialis) across varying culture media (BG-11, 
RSW, and RSW+Mn) F (27, 504)= 17.09, (P <0.0001). As expected, 
C. minutissima  exhibited higher cell densities compared to 
both B. braunii and H. pluvialis. Furthermore, the RSW+Mn medi-
um negatively impacted C. minutissima growth, resulting in sig-
nificantly reduced cell densities compared to BG-11 and RSW 
media F (8, 504)= 299.3, (P <0.0001). This effect was specific to C. 
minutissima, as the other species did not exhibit the same sensi-
tivity to the RSW+Mn medium.

Two-way ANOVA and Tukey’s HSD post-hoc test revealed signifi-
cant effects of all microalgae species (C. minutissima, B. braunii, 
and H. pluvialis) and culture mediums (BG-11, RSW, and RSW+Mn) 
on biomass productivity F (27, 504)= 5.182, (P <0.0001). C. minutis-
sima exhibited significantly greater biomass productivity in BG-11 
compared to B. braunii (P <0.0001). H. pluvialis, however, achieved 
maximal biomass productivity in RSW+Mn, significantly outper-
forming all other species-medium combinations F (8, 504)= 68.84, 
(P <0.0001). The significant interaction effect between species and 
medium (P <0.0001) highlights the differential responses of these 
microalgae to varying culture conditions.

Nutritional value of microalgae in aquaponics remineralized 
sludge-water
Nutritional value of C. minutissima, B. braunii and H. pluvialis 
were determined and discussed below following headings. In Ta-
ble 8, 9, and 10 are shown comparison of the biochemical con-
tents of C. minutissima, B. braunii, and H. pluvialis, respectively. 
Microalgae’s biochemical composition can be affected by multi-
ple factors, such as nutrient concentration, composition, light in-
tensity, and temperature.

Crude protein
C. minutissima crude protein concentrations were determined 
for BG-11, RSW, and RSW+Mn groups as 51.88±0.32%, 
55.77±1.81%, and 21.53±0.70%, respectively. C. minutissima cul-
tured in RSW+Mn showed a statistically significant difference 
from other cultures in terms of crude protein levels. RSW medium 
was found to have the best protein concentration compared to 
other groups for C. minutissima. B. braunii crude protein con-
tents were determined for BG-11, RSW, and RSW+Mn groups as 
49.77±0.62%, 38.50±0.78%, and 37.39±0.61%, respectively. Com-
paratively, B. braunii cultured in BG-11 medium exhibited statisti-
cally significant difference (P <0.05). H. pluvialis crude protein 
contents in BG-11, RSW, and RSW+Mn were calculated as 
40.61±4.06%, 33.86±2.75%, and 30.25±0.84%, respectively. BG-
11 culture medium had statistically significant difference com-
pared to other RSW culture mediums for H. pluvialis (P <0.05). 

The lowest protein contents in this study were obtained from H. 
pluvialis. Nitrogen to protein conversion factor (ki) have deter-
mined as 4.78 by Lourenço et al. (2004) and the factor mostly 

used in microalgae studies. In this study, results were also calcu-
lated using a 4.78 nitrogen to protein conversion factor. The pres-
ence of trace elements in the culture medium can result in a high 
ash content in the biomass and a reduction in protein concentra-
tion (Schüler et al., 2020). And low nitrogen concentration in the 
culture medium causes low crude protein in the biomass (Ördög 
et al., 2012). Freeze-dried Chlorella 71105 strain grown in stan-
dard culture medium was found to contain 55.5% crude protein 
(Lubitz, 1963). This percentage of protein concentration is similar 
to this study’s conclusion. Protein concentrations of different cul-
ture groups of B. braunii were shown to be similar and relatively 
high results when compared to other studies (Cabanelas et al., 
2015; Ashokkumar and Rengasamy, 2012). Sydney et al., (2011) in-
vestigated C. vulgaris and B. braunii microalgae species biodies-
el production potential using domestic wastewater and they 
found the maximum protein content as 40.4% of biomass. It is 
possible that macronutrients and micronutrients obtained from 
RSW can influence the nutritional value of microalgae. All mi-
croalgae species cultured in an RSW medium can be evaluated 
as having the potential to be a raw material in different sectors 
with their high protein concentrations.

Total lipids
C. minutissima cultured in BG-11, RSW, and RSW+Mn the total lipid 
contents were determined as 4.18±0.33%, 4.69±0.88%, and 
1.35±0.48%, respectively. Comparing RSW+Mn with other groups, a 
statistically significant difference was found (P <0.05). B. braunii is 
known for the production of hydrocarbons and high levels of lipids. 
However, cultured B. braunii in BG-11, RSW, and RSW+Mn mediums 
the total lipid contents were found as 0.62±0.11%, 0.48±0.11%, and 
0.53±0.31%, respectively. Finally, H. pluvialis BG-11, RSW, and 
RSW+Mn culture groups’ total lipid contents were found as 
0.57±0.30%, 0.70±0.07%, and 0.11±0.02%, respectively. No statisti-
cally significant difference was found among all culture mediums re-
garding total lipids for H. pluvialis and B. braunii (P >0.05). 

Lipid contents of the all microalgae species were found relatively 
low when compared to other studies (Sonkar et al., 2023; Liang et 
al., 2015; Jackson et al., 2020). Microalgae cultures under con-
trolled conditions that promote biomass multiplication resulted in 
a low total lipid concentration (Mularczyk et al., 2020). Different 
Chlorella strains which have 40% crude protein, 20-25% carbohy-
drates, and 20-26% lipids were reported grown at seawater based 
F2 medium in outdoor cultivation (Guccione et al. 2014).  C. vulgar-
is which is grown at modified Fitzgerald medium (Hughes et al. 
1958) showed 40-55% lipid composition with nitrogen depletion in 
medium (Widjaja, 2009). In another study, C. vulgaris cultured in ar-
tificial wastewater medium had 42% average lipid content and the 
lipid productivity was 147 mgL-1day-1 (Feng et al., 2011). Giraldo et 
al. (2021) reported that high bicarbonate dosages increased bio-
mass and lipid productivity in B. braunii. In another study, total lip-
id concentration of B. braunii was found higher than 40% (Cheng 
et al., 2013). Damiani et al. (2010) investigated the impact of contin-
uous high light intensity with nitrogen-sufficient medium and high 
light intensity with nitrogen-deprivation medium on the total lipid 
content (dry weight) and they found 34.85% and 32.99%, respec-
tively. Similar to other studies, the high light intensity and nitrogen 
deprivation have the ability to change the lipid production (46.71%-
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56.92%) of H. pluvialis, dramatically (Liang et al., 2015). All microal-
gae species used in this study had low total lipid concentrations 
compared to above studies.

Total carbohydrates
Total carbohydrate concentrations of C. minutissima were deter-
mined in BG-11, RSW, and RSW+Mn as 18.66±3.68%, 
16.90±0.99%, and 20.20±5.47%, respectively. B. braunii total car-
bohydrate contents were calculated in BG-11, RSW, and RSW+Mn 
as 23.67±1.89%, 39.14±2.43%, and 31.32±2.35%, respectively. H. 
pluvialis total carbohydrate content was found in BG-11, RSW, 
and RSW+Mn as 34.94±5.04%, 27.94±6.75%, and 28.52±0.80%, 
respectively. In comparing all culture mediums for C. minutissima 
and B. braunii, there was no statistically significant difference (P 
>0.05). However, BG-11 exhibited a statistically significant differ-
ence for H. pluvialis (P <0.05). 

The dominant energy storage products in Chlorophytic microal-
gae are carbohydrates and oils (Subramanian et al., 2013). The 
low lipid content in dry microalgal biomass can be explained by 
the high carbohydrate produced within the microalgae cells. It 
has been suggested by Freitas et al. (2017) that arabinose and xy-
lose can be used as carbon sources for microalgal cultures to in-
crease the amount of carbohydrates in biomass (53.8%). In anoth-
er study, Andreeva et al. (2021) reached 47.9% carbohydrate con-
tent in Chlorella vulgaris biomass using carbohydrate additives (a 
mixture of glucose, fructose, sucrose, and maltose). The total car-
bohydrate concentration was determined between 20 to 76% in 
16 different B. braunii strains (Gouveia et al., 2017). The maximum 
sugar content of B. braunii was found to be 28.96% in treated do-
mestic sewage wastewater, which was lower than the carbohy-
drate content of this study (Sydney et al., 2011). It has been un-
derstood that the content of microalgae culture medium directly 
affects the carbohydrate content of microalgae.

Moisture
C. minutissima, cultured in BG-11, RSW, and RSW+Mn culture 
mediums, moisture content was determined as 11.83±0.18%, 
11.09±1.01%, respectively. B. braunii moisture content was calcu-
lated in BG-11, RSW, and RSW+Mn as 16.76±2.67%, 15.43±0.17%, 
and 21.59±0.51%, respectively. H. pluvialis moisture content was 
found in BG-11, RSW, and RSW+Mn as 10.76±1.04%, 17.22±0.90%, 
and 30.10±1.61%, respectively. No statistically significant differ-
ence among all culture mediums for C. minutissima and B. brau-
nii (P >0.05), but BG-11 showed statistically significant difference 
for H. pluvialis (P <0.05).

Fresh algal cells constitutes around 70-95% water after centrifu-
gation (Da Silva et al., 2008). Hosseinizand et al. (2017) stated that 
the moisture content of Chlorella should be decreased from 35-
75% to 10% due to preservation of the biochemical properties. 
Chlorella species moisture content were decreased using hot air 
drying from 70.38±2.90% to 0.88±0.05% and using freeze drying 
from 70.38±2.90% to 3.58±0.19% (Stramarkou et al., 2017).

Ash content
As shown in these tables below, C. minutissima ash contents in 
BG-11, RSW, and RSW+Mn were determined as 11.84±0.19%, 
11.09±1.01%, and 55.94±4.57%, respectively. B. braunii ash con-

tent was calculated in BG-11, RSW, and RSW+Mn groups as 
16.76±2.67%, 15.43±0.17%, and 21.59±0.51%, respectively. H. 
pluvialis ash content was found in BG-11, RSW, and RSW+Mn as 
10.76±1.04%, 17.22±0.90%, and 30.10±1.61%, respectively. There 
was no statistically significant difference among all culture medi-
ums for C. minutissima and H. pluvialis (P >0.05). However, it was 
determined that there was a statistically significant difference in 
the RSW and RSW+Mn groups used in the production of B. brau-
nii species when compared to BG-11 (P <0.05).

The highest ash content was found in RSW+Mn medium similar 
to another study which used landfill leachate based mediums 
(dos Santos et al., 2022). With this study, it is understood that 
high conductivity and salinity concentrations in the culture me-
diums caused an increase of the ash content of harvested spe-

Table 8. C. minutissima nutrition facts in different 
culture mediums

Descriptions BG-11 (%) RSW (%) RSW+Mn (%)

Crude  
protein

51.88±0.32A 55.77±1.81A 21.53±0.70B

Total lipid 4.18±0.33A 4.69±0.88A 1.35±0.48B

Total  
carbohydrate

18.66±3.68A 16.90±0.99A 20.20±5.47A

Moisture 10.60±0.33A 10.84±0.88A 10.90±0.48A

Ash 11.84±0.19A 11.09±1.01A 55.94±4.57A

Letters A-B indicates significant differences between samples (P <0.05)

Table 9. B. braunii nutrition facts in different culture 
mediums

Descriptions BG-11 (%) RSW (%) RSW+Mn (%)

Crude  
protein

49.77±0.62A 38.50±0.78A 37.39±0.61A

Total lipids 0.62±0.11A 0.48±0.11A 0.53±0.31A

Total  
carbohydrates

23.67±1.89A 39.14±2.43A 31.32±2.35A

Moisture 11.41±0.11A 7.20±0.11A 11.49±0.31A

Ash 16.76±2.67AB 15.43±0.17A 21.59±0.05B

Letters A-B indicates significant differences between samples (P <0.05)

Table 10. H. pluvialis nutrition facts in different culture 
mediums

Descriptions BG-11 (%) RSW (%) RSW+Mn (%)

Crude  
protein

40.61±4.06A 33.86±2.75B 30.25±0.84B

Total lipid 0.57±0.30A 0.70±0.07A 0.11±0.02A

Total  
carbohydrate

34.94±5.04A 27.94±6.75AB 28.52±0.80B

Moisture 13.11±0.30A 10.28±0.07B 11.03±0.02AB

Ash 10.76±1.04A 17.22±0.90A 30.10±1.60A

Letters A-B indicates significant differences between samples (P <0.05)
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cies. It may be possible to use leachate and effluent-based 
wastes as microalgae culture mediums, however the biomass 
would have a higher ash content than commercially produced 
microalgae.

CONCLUSION

The comparative study of using BG-11, RSW and RSW+Mn medi-
ums to culture C. minutissima, B. braunii, and H. pluvialis has 
shown sufficient concentrations and value-added compounds. Re-
moval of nitrogen and phosphorus from remineralized sludge-wa-
ter of aquaponics to microalgal biomass was successfully achieved. 
RSW obtained from aquaponics had an advantage to BG-11 mi-
croalgae culture medium due to its low cost, easy for obtaining 
and more environmentally friendliness. Protein composition of C. 
minutissima in RSW had the highest scores compared to other cul-
ture mediums (BG-11 and RSW+Mn). While RSW medium was 
found as an advantageous for C. minutissima cultivation due to its 
high protein content, but B. braunii and H. pluvialis were character-
ized by low lipid contents. Because of this reason RSW medium is 
not recommended for cultivation of B. braunii and H. pluvialis. B. 
braunii culture was found to have the highest carbohydrate con-
tent in the RSW medium. B. braunii is known for its low growth rate 
and long regeneration time. The RSW medium, however, can be 
an advantageous sustainable resource with its fertile properties for 
the production of biomass. Crude protein levels of the microalgae 
species were suitable when compared to other culture mediums in 
the literature. However, total lipid contents of the microalgae spe-
cies were found very low, between 0.11±0.02-4.69±0.88%, due to 
the nitrogen rich culture mediums. RSW culture medium might be 
suggested as an alternative culture medium for green microalgae 
production for batchwise systems. When it comes to culture peri-
od, it may be suggested that B. braunii and H. pluvialis be cultured 
for 20 days using RSW based microalgae mediums, however, C. 
minutissima may require more than 27 days for cultivation 
batchwise. Additional research is required to find the optimum 
physico-chemical conditions, remineralization process of RSW and 
techno-economic analysis of C. minutissima, B. braunii, and H. plu-
vialis cultured in RSW. 

This study partially fulfills the expected objective. C. minutissima, 
B. braunii, and H. pluvialis grew well in remineralized sludge wa-
ter (RSW) medium obtained from nutrient film technique (NFT) 
aquaponics. All microalgae species effectively removed nutrients 
form RSW, achieving bioremediation. C. minutissima exhibited 
the highest crude protein content in RSW medium compared to 
the other cultures. RSW proved to be a low-cost, readily avail-
able, and environmentally friendly alternative to the standard 
BG-11 for C. minutissima cultivation. However, all microalgae 
species had very low lipid content due to the nitrogen-rich RSW 
medium. Consequently, RSW was not suitable for maximizing lip-
id production in B. braunii and H. pluvialis.

Given its characteristically high total oil content and hydrocarbon 
production, B. braunii is a promising candidate for further studies 
on maximizing oil yield. Future research can investigate the effects 
of manipulating nutrients, light, carbon source, and stress factors 
(including high salinity and various trace elements) on oil produc-
tion for this species in remineralized aquaponics sludge water. H. 

pluvialis, valued for its high concentration of important antioxidant 
substances like astaxanthin, canthaxanthin, and lutein, is a promis-
ing candidate to investigate the effects of remineralized aquapon-
ics wastewater on production of these antioxidants. 

In conclusion, microalgae species exhibited differential growth 
responses and biomass productivities depending on the culture 
medium. While C. minutissima thrived in BG-11 and RSW, H. plu-
vialis  achieved superior biomass productivity in the RSW+Mn 
medium, underscoring the importance of optimizing culture con-
ditions for each species to maximize yields. Finally, the effects of 
different concentrations of aquaponic wastewater and stress fac-
tors on the biomass and biochemical composition of C. minutis-
sima can be studied, as well.
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