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Abstract

In this study, the robust D-stability of a matrix polytope, defined
as the convex hull of a finite set of D-stable matrices, is
considered. A sufficient condition for the robust D-stability of
the matrix polytope is derived for the region D c C defined as
quadratic matrix inequalities (QMI). This condition is given by
linear matrix inequalities (LMIs). The solution of the LMlIs is
addressed by optimizing the maximal eigenvalue function of
symmetric matrices using convex optimization methods.
Illustrative examples are provided to demonstrate the practical
applications of the proposed stability condition.

Keywords: Matrix Polytope; Robust D-Stability; QMI Region; Linear
Matrix Inequality; Convex Programming.

Oz

Bu calismada, sonlu sayida D-kararli matrislerin konveks zarfi
seklinde verilen bir matris politopunun glirbtiz D-kararliligi ele
alinmistir. D < C bolgesi, kuadratik matris esitsizlikleri (KME) ile
tanimlanan bir bolge olmak Gizere, matrisler politopunun gilirblz
D-kararhhgi igin bir yeter kosul elde edilmistir. Bu kosul dogrusal
matris esitsizlikleri (DME) ile verilmistir. DME’lerin ¢6zimu
konveks optimizasyon yontemleri kullanilarak  simetrik
matrislerin  maksimal 6zdeger fonksiyonunun optimize
edilmesiyle ele alinmistir. Kararhlk kosulunun uygulamalari
aciklayici 6rneklerle verilmistir.

Anahtar Kelimeler: Matrisler Politopu; Giirbiiz D-Kararlilik; KME
Bolgesi; Lineer Matris Esitsizligi; Konveks Programlama.

1. Introduction

The asymptotic stability of linear systems described by

the equation x = Ax is an important concept in
dynamical systems and control theory. The system's
stability is determined by the location of the eigenvalues,
which are the roots of the characteristic polynomial of the

matrix A in the complex plane.

Let D c C be a symmetric region of the complex plane to
the real axis. A matrix A € R™ ™ is called D-stable if all its
eigenvalues lie within the set D (Barmish 1994). The
Hurwitz and Schur stability regions are the most well-
known of these regions. If the region D is open left half-
plane, then the matrix A is called Hurwitz stable. If the
region D is an open unit disk, then the matrix A is called
Schur stable. D-stability problem of matrices and
polynomials have been investigated in many works (see
(Bhattacharyya et al. 1995, Fam and Meditch 1978,
Hinrichsen and Pritchard 2005, Yedavalli 2014, Yilmaz
2022, Zaitsev 2024)).

For a matrix A to be Hurwitz stable, a necessary and
sufficient condition is the existence of a positive definite
matrix P > 0 such that the Lyapunov inequality must be
satisfied:

ATP+PA<O.

Similarly, a matrix A is Schur stable if and only if there
exists a positive definite matrix P > 0 such that the Stein
inequality must be hold (see Khalil 2002, Yilmaz and Aksoy
2023):

ATPA—P < 0.

The location of the eigenvalues in the complex plane of a
matrix has been investigated for more specific regions D.
In Gutman (1981), a polynomial-type function has been
adopted to describe the region of the complex plane in
which

conditions have been derived from the Kronecker and

roots are located. Necessary and sufficient
bialternate matrix products and positive definite matrices
in Gutman (1981), Zrida and Bouazizi (2022), Chilali and
Gahinet (1996).

In Zrida and Bouazizi (2022), the concept of quadratic
matrix inequalities (QMI) is introduced to characterize
stability regions defined by

D={z€C:Q+Sz+STZ+ Rzz < 0} (1)

where Q and R are symmetric matrices in R™ ™, with
R > 0and S € R™™ (we take R > 0 in this paper to be

*Sorumlu Yazar/Corresponding Author: Serife YILMAZ

e-posta/e-mail: serifeyilmaz@mehmetakif.edu.tr


https://dergipark.org.tr/tr/pub/akufemubid
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-7561-3288
https://creativecommons.org/licenses/by-nc/4.0/

On The Robust D-Stability of The Polytope of Matrices, YILMAZ.

able to implement the Schur complement lemma).
Various convex regions in the complex plane can be
represented using QMI. Important properties of QMI
regions include being open, convex, and symmetrical to
the real axis. Furthermore, any intersection of QMI
regions is also a QMI region. The robust D-stability of a
parameter-dependent matrix family is determined using
test points to assess whether LMIs are satisfied within
specific intervals. This way, the matrix family's D-stability
bound can be determined reliably.

In this paper, we build on existing results to provide
sufficient conditions for the robust D-stability of matrix
polytopes. Using the Schur complement lemma, we
derive conditions that simplify the associated matrix
inequality problem. To solve the convex optimization
problem arising from these inequalities, we introduce an
algorithm based on Kelley’s method. The proposed
conditions and algorithm are validated through
illustrative examples, demonstrating their effectiveness

in addressing robust D-stability.

The paper is structured as follows. Section 2 introduces
the concept of robust D-stability for a polytope and
provides the necessary background. Section 3 presents
sufficient conditions for robust D-stability of matrix
polytopes using the Schur complement lemma. Section 4
describes a solution algorithm for LMIs based on convex
includes numerical

optimization and examples to

demonstrate its application.
2. Robust D-stability of a Polytope

A useful theorem for determining the eigenvalues of a
matrix A within the set D (1) is given in Chilali and Gahinet
(1996).
sufficient conditions in the form of Linear Matrix
Inequalities (LMIs) for D-stability.

This theorem provides the necessary and

In the following theorem, the Kronecker product (&)
represents an operation that combines two matrices into
a structured block matrix, preserving their algebraic
structure.

Theorem 1 (Chilali and Gahinet (1996)): A € R™*" is D-
stable if and only if there exists a symmetric positive
definite matrix P > 0 such that

0QR@P+S®UAP)+ST® (PAT) + R ® (APAT) < 0.
(2)

We have provided the definition and some results
concerning the D-stability of matrices. Consider a matrix
family of n-dimensional square matrices denoted by A. If
every matrix within the family A is D-stable, then the
family A is referred to as robustly D-stable. The well-

known matrix family is the polytope of matrices, and it is
defined as the convex hull of two or more finite Hurwitz
(Schur) matrices

&
|

= conv{A, A,, ..., Ay}
D ={A(@) =YV q4;:a € A}

N
A={a€]R§N:Zai=1,ai20}.

i=1

Edge Theorem is a recognized theorem in control theory
that gives robust D-stability of a polytope of polynomials
(Bartlett et al. 1988). However, this theorem is not valid
for a matrix polytopes (Barmish et al. 1988).

The robust stability of the polytope of matrices has been
studied using linear matrix inequalities (LMIs) techniques
(Boyd et al. 1994). A necessary condition for A to be
robustly Hurwitz (Schur) stable is the existence of a
common solution P > 0 that satisfies the Lyapunov

(Stein) inequalities:
ATP +PA; <0 (i=12,..,N)
(ATPA, — P < 0)

(see Shorten and Narendra 2002, Yimaz et al. 2014,
Yilmaz et al. 2016).

The Theorem 1 regarding the robust D-stability of the
matrix polytope defined in (3) can be stated as follows.

Theorem 2: A (3) is robustly D-stable if and only if there
exists P(a) > 0 such that
Q®P(@)+SQ (A@)P(a) + ST Q (P(@)AT(a)) +
R® (A(@)P(@)AT(a)) <0
(4)
foralla € A.

For the robust D-stability of A, the existence of positive
definite matrices P(a) > 0 for each a € A is required,
thus resulting in problems of infinite dimension (Geromel
et al. 1998, Oliveira and Peres 2005). In Theorem 2, it is
stated that if such a P(«a) satisfies inequality (4) for all «,
the conclusion follows.

However, if we can establish the existence of a common
positive definite matrix P(a) = P that satisfies the
inequality uniformly for all &, we can avoid the complexity

768



On The Robust D-Stability of The Polytope of Matrices, YILMAZ.

associated with individually determining P(a) for each «.
This reduction is applied to the case of matrix polytopes
A, where finding a common P that satisfies the condition
for Ay, Ay, ..., Ay.

In this paper, we provide sufficient conditions for the
robust D-stability of the polytope of matrices A. For this,
if P > 0 exists for the matrix 4;, 4,, ..., Ay matrices, then
this solution satisfies the matrix inequalities in Theorem 2
for all matrices in the polytope of matrices A. We
obtained this result using the Schur complement lemma.
Many studies are in the literature on solving linear matrix
inequalities (Polyak et al. 2021). Here, we use the Kelley
method to calculate the minimum of the convex function
¢:R” - R, defined on the set of symmetric matrices and
represented by r-dimensional vectors. When solving the
minimum problem using the iterative process, the
constructed algorithm effectively addresses the matrix
inequalities if the ¢ function takes a negative value within
the set of positive matrices.

3. Common Solution to Matrix Polytope

In this section, we give sufficient conditions for the robust
D-stability of the matrix polytope A. To achieve this, we
will linearize the expression A(a@)P(a)A(a)” on the left
side of inequality (4) using Schur’'s complementary
lemma.

Lemma 1 (Geromel 1998): Consider the following matrix

M, M
y=|" 2]

M3 Ms

where M; € R™", M, € R™™, and M5 € R™ ™ with M,
invertible. Then M > 0 if and only if

M; > 0and M, — M,M; M > 0.

Lemma 2: There exists a P > 0 satisfying equation (2) if
and only if there exists a P > 0 such that

—-Q®P-SQ(AP) -S"® (PA") R® (AP) S0
R® (PAT) R®P '

(5)

Proof: Let M; = —(Q ® P + S ® (AP) + ST ® (PAT)),
M, =R® (AP)and M3 =R @ P.Since P > 0andR >
0, all eigenvalues of P and R are positive (Horn and
Johnson 2013, p. 438). On the other hand, the matrix R ®
P is symmetric, and its eigenvalues are the product of the
eigenvalues of P and R (Bernstein 2009, p. 401). Hence,

M; > 0. By utilizing the properties of the Kronecker
product (see Bernstein 2009, Chapter 7), we can derive
the following equations:
M,M;'M7 = [R ® (AP)][R ® P]"'[R ® (AP)]"
i =[R® (AP)][R"* ® P71][RT ® (PAT)]
=[R® (AP)][(R'R) ® (P7*PAT)]
i =[R® (4AP)][I, ® AT]
i =R ® (APAT).
Here, we have used the Kronecker product property

(A®B)(C®D) = (AC) ® (BD)

to simplify the expressions in the above derivation. This
property allows the product of Kronecker terms to be
distributed as the product of their respective matrices.
Therefore,

M1_M2M3_1M2T =—QQ®P-SQ(AP) —

ST ® (PAT) — R ® (APAT) > 0.
O

Theorem 3: Let the matrix polytope A (3) be given and
P > 0 satisfies
Q®P+S® (AP)+S"® (PA])

+R ® (4,;PAT) <0

(6)

for i =1,2,...,N. In that case, the inequality (6) is
satisfied for all A € A. Consequently, the matrix polytope
A is robustly D-stable.

Proof: For each i =1,2,...,N, a P > 0 exists such as
equation (6) holds. Let M(A): = [Ml-j(A)] be a block
matrix with

My (A) =—-[Q®P+SQ®(AP) + ST ® (PAT)],
M;,(A) =RQ (4P),

My, (4) = R"® (PAT);

M,,(A) =RQP.

By Lemma 2,

M(Al) — Mll(Ai) MlZ(Ai) > 0, (7)

M,1(A) My (4)

for i = 1,2,...,N. If both sides of the inequality (7) are
multiplied by ; and summed fromi =1to N

My (A(@) My (A(@)

My (A(@)) Myp(A(a))] ~ °

MA@) = |

where a € A. According to Lemma 2,
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Q®P+5S® (A(@) +ST® (PAT(a)) +
R® (A(@)PAT(a)) <0

is satisfied for every a € A, which proves that A is
robustly D-stable. |

We will convert the given condition into a convex
minimization problem to assess a matrix polytope's
robust D-stability,
provided in Theorem 3.

utilizing the sufficient condition

4. A Solution Algorithm for LMIs Using a Convex
Optimization Method

In this section, we present a convex optimization method
for finding a positive definite matrix P > 0 that satisfies
the inequality (6) for D-stable matrices {44, 4,, ..., Ay}
The maximal and minimal eigenvalues of a symmetric
matrix S € R™" are defined as follows:

Amax (8) = max vTSv, Anin(S) = min vTSv
lvll=1 llvll=1

(see Horn and Johnson 2013, p. 235). If the unit
eigenvector corresponding to the largest eigenvalue is ¥
then

Amax (S) = AN
A similar equality holds for the minimum eigenvalue.

Letx € R" be xT = (%1,%5, ..., x,) and Pbeann xn
symmetric matrix defined as

xl xz X xn
X X Xom_

P=pPe) =7 " o 8)
Xn Xopn-1 Xy

withr =n(n+ 1)/2.
Denote the left-hand side of inequality (6) by

F(x,i)=Q®P+S® (4;P) +ST ® (PAT)
+R ® (A;PAT).

Define the functions ¢(x) and n(x) as follows:

¢(x) = 1r£lza<)1$l Amax(F(x' L))

i max v F(x,i)v,

1N, |[vl=1

n(x) = ”rglniill v P(x)v. (10)

The functions ¢ (x) and n(x) are both convex functions.

If there exists a ¥ € R" such that ¢(X) < 0 andn(%) > 0,
then the matrix P =P(X) > 0 satisfies the matrix
inequality (6) for each i =1,2,..,N. Therefore, the
matrix polytope A = conv{4,, 4,,, Ay} is robustly D-
stable.

For the positive definite matrix P(x) > 0, we take x from
the following box:

X =[-11] x--x[-11] =[-11],
since @ > 0 and aP(x) > 0.

Consider the following convex minimization problem:

minimize o (x)
subjectto n(x) >0, (11)
x€EX.

To address this convex minimization problem, Kelley's
cutting plane method is utilized (see Yilmaz et al. 2014).
This method reformulates problem (11) as follows:

¢’z - min

c1(z) =0,

c,(z) =20,
1<x <1 (=12 .,7)

(12)

where z = (x4, %3, ..., %, L)T, ¢ =(0,...,0,1)7, ¢,(2) =
L—¢(x),and c,(z) = ||rrhin1 vTP(x)v.
vl||=

Let z° be an initial starting point, and let z%,z?, ..., z*

represent subsequent iterations. In the first iteration, the
cutting-plane algorithm tackles the following linear
programming (LP) problem:

minimize L

subjectto  —hl(z%)z > —hT(z°)z° — ¢, (2%
—hT(z"z = —hL(29)2° — ¢, (z%)
1<x<1(i=12..,7)

(13)

where h;(z') denotes a gradient of —¢;(z) at z* (j = 1,2).

Here, we have

. 4]
hi(z") = _a_(zr+1 = VTF (%, D)V)|v=p
z i=i
where 1 is the index that maximizes A< (F(x,i)) and ¥

is a corresponding unit eigenvector.

Additionally, we also have:
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. 4]
ha(2') = =5 (WTP()V)]y=
where ¥ is the unit vector corresponding to A, (P (x)).

Let the point z¥ be the minimizer of the problem defined
in (13). If z¥ satisfies the inequality

min{c; (z5), c,(zF)} = —¢,

where € > 0 is a tolerance, then z¥ is considered an
approximate solution to the problem in (13).

If this condition is not satisfied, we define j* as the index
of the most negative cj(zi‘). To update the constraints in
(13) by adding the linear constraint:

¢ (Z¥*) = b (2 (z - 2 = 0, (14)
and then repeat the process.

This algorithm can be adapted to our problem as follows:
Algorithm 1:

1. Select an initial point z° = (x°, L°)T. Compute
¢ (x®) and c(z%). If $(x°) <0 and c,(z%) >0,
complete. Otherwise, continue to the next step.

2. Find z¥ by solving the LP problem in (13). If
c;(zF) > I¥ and c¢,(zF) >0, complete. Otherwise,

k+1

proceed. Set z = zF, update the constraints in (13)

and repeat the procedure.

The stopping criteria for Algorithm 1 are implicitly
defined through ¢, (z¥) > L¥ and c,(z¥) > 0. These
conditions ensure that the solution satisfies the robust
D-stability criteria. Specifically:

1. When ¢, (z¥) > L¥, by the definition ¢, (2) =

L — ¢(x), it follows that ¢ (x*) < 0. This implies that
the left-hand side of the matrix inequality (6) is strictly
negative, confirming the D-stability of the matrix family.
2. The condition ¢, (z*) > 0 ensures that the
matrix P(x¥) is positive definite, which is a necessary
condition for stability.

Together, these criteria validate that the algorithm has
reached a feasible and robustly D-stable solution.

Example 1: Consider the region D (1) defined by

-1 0 0 1 0 O
Q=0 0 O|,R=]0 0 0],
0 0 O 0 0 O
0 0 0
0 sinE CosE
S = 3 3
0 —cosE sinE
3 3

(see Fig. 1). Let A be the convex hull of the D-stable
matrices

[—0.35 —-0.05 0.15
A; =1-0.15 -0.6 0.05 |,
|—0.05 —-0.1 -0.65
[—0.45 0.67 —0.45
A, =|-0.33 -2.13 1.05 |,
| 0.34 —2.8 1.5
[—0.5 0.02 —0.05
A; =10.07 -0.52 0.05 |.
10.02 —-0.02 -0.47
Yy
LAt
] N
1§ 1
-1 i
o

Figure 1. The region D and eigenvalues of the matrices within
the polytope A in Example 1.

Let z° = (x° L°) = (1,0,0,1,0,1,1)7 be the starting point,
and then apply the Algorithm 1. In this case, c,(z°) = 1,
¢ (x%) = 9.465 and the index i°® = 2 yields this maximal
eigenvalue.

Table 1. Iterative Results of Algorithm 1 for Example 1

k L¥ c1(z5) c,(z%) i*
0 1 -14.395 1 2

1 -31.731 -41.197 -2.561 2

2 -5.792 -9.450 -2.039 2

3 -1.499 -3.222 -1.834 1

26 -0.0026 -0.0043 0.0059 2

27 00023 -0.0051 -0.0016 3

32 -0.0011 -0.0012 0.0028 1

33 -0.0010 -0.0009 0.0025

33 _

The solution of LP problem in step 33 is the point z
(0.0673,—0.1402, —0.2445,0.4850,0.6453,1,—0.0010)"
(see Table 1). Since ¢(z3*) = -0.0001<0 and
c,(z%%) = 0.0025 > 0, the matrix

0.0673 —0.1402 —0.2445
P(z*%*) = |-0.1402 0.4850  0.6453
—0.2445  0.6453 1

satisfies the matrix inequalities (6) for i = 1,2,3. By
Theorem 3, the family of matrices A = conv{A4,, A,, 43}
is robustly D-stable.
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Example 2 (Zrida and Bouazizi 2022): Consider the one-
parameter matrix family A(8) = Ay + 64, for § ER,
where

AO:[—O1 —11]"49:[—01 —01]'

The region D (1) is defined by matrices

0 0 0 1 0 0 0 0 O
Q=[O -1 —1],5':[0 0 1(,R=|0 0 O].
0o 0 -1 0 -1 0 0 0 O

It is the intersection of a horizontal strip between +j/2
and —j /2 and the open left half-plane (j = v—1).

It has been established in Zrida and Bouazizi (2022) that
the one-parameter matrix A(8) is D-stable for § €
(—1,-0.7321) U (2.7321, ) by analzing the intervals in
which the corresponding matrix function determines its
eigenvalues.

In this example, we focus on the second stability interval
(2.7321, 00) and demonstrate the robust D-stablity of the
matrix family within the subinterval [2.74,4] using our
proposed method. We consider the D-stable matrices
A, =A(2.74) and A, = A(4).

Starting with the initial point z° = (1,0,1,1)7, the
Algorithm 1 gives the solution after 12 steps: z'? =
(0.26305,—0.49103,1,-0.00191)". Since ¢ (z'2) =
~0.00017 < 0 and ¢,(2'2) = 0.0176 > 0, the matrix

0.26305

o~ —0.49103
PGEE) =1 049103 1 ]

satisfies the inequalities (6) fori = 1,2. By Theorem 3, the
matrix A(a) = (1 — a)A; + aA, is D-stable for all a €
[0,1] (see Fig. 2).

1.0 1

D region

—-1.0 +

Figure 2. In Example 2, the eigenvalues of A(9) for § € [2.74,4].

4. Conclusions

This paper presents sufficient conditions for robust D-
stability for matrix polytopes. We introduced a solution
method utilizing the maximal eigenvalue function of
symmetric matrices to solve LMIs. Through examples, the

application of these stability conditions is illustrated.
Future work may explore extensions to broader classes of
matrix families or additional structural constraints.
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