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Abstract 

In this study, the robust 𝒟-stability of a matrix polytope, defined 
as the convex hull of a finite set of 𝒟-stable matrices, is 
considered. A sufficient condition for the robust 𝒟-stability of 
the matrix polytope is derived for the region 𝒟 ⊂ ℂ defined as 
quadratic matrix inequalities (QMI). This condition is given by 
linear matrix inequalities (LMIs). The solution of the LMIs is 
addressed by optimizing the maximal eigenvalue function of 
symmetric matrices using convex optimization methods. 
Illustrative examples are provided to demonstrate the practical 
applications of the proposed stability condition.  
 
Keywords: Matrix Polytope; Robust 𝒟-Stability; QMI Region; Linear 
Matrix Inequality; Convex Programming.

Öz 
Bu çalışmada, sonlu sayıda 𝒟-kararlı matrislerin konveks zarfı 
şeklinde verilen bir matris politopunun gürbüz 𝒟-kararlılığı ele 
alınmıştır. 𝒟 ⊂ ℂ bölgesi, kuadratik matris eşitsizlikleri (KME) ile 
tanımlanan bir bölge olmak üzere, matrisler politopunun gürbüz 
𝒟-kararlılığı için bir yeter koşul elde edilmiştir. Bu koşul doğrusal 
matris eşitsizlikleri (DME) ile verilmiştir. DME’lerin çözümü 
konveks optimizasyon yöntemleri kullanılarak simetrik 
matrislerin maksimal özdeğer fonksiyonunun optimize 
edilmesiyle ele alınmıştır. Kararlılık koşulunun uygulamaları 
açıklayıcı örneklerle verilmiştir. 
 
Anahtar Kelimeler: Matrisler Politopu; Gürbüz 𝒟-Kararlılık; KME 
Bölgesi; Lineer Matris Eşitsizliği; Konveks Programlama. 

  

 

1. Introduction 

The asymptotic stability of linear systems described by 

the equation 𝑥̇ = 𝐴𝑥 is an important concept in 

dynamical systems and control theory. The system's 

stability is determined by the location of the eigenvalues, 

which are the roots of the characteristic polynomial of the 

matrix 𝐴 in the complex plane. 

Let 𝒟 ⊂ ℂ be a symmetric region of the complex plane to 

the real axis. A matrix 𝐴 ∈ ℝ𝑛×𝑛  is called 𝒟-stable if all its 

eigenvalues lie within the set 𝒟 (Barmish 1994). The 

Hurwitz and Schur stability regions are the most well-

known of these regions. If the region 𝒟 is open left half-

plane, then the matrix 𝐴 is called Hurwitz stable. If the 

region 𝒟 is an open unit disk, then the matrix 𝐴 is called 

Schur stable. 𝒟-stability problem of matrices and 

polynomials have been investigated in many works (see 

(Bhattacharyya et al. 1995, Fam and Meditch 1978, 

Hinrichsen and Pritchard 2005, Yedavalli 2014, Yılmaz 

2022, Zaitsev 2024)). 

For a matrix 𝐴 to be Hurwitz stable, a necessary and 

sufficient condition is the existence of a positive definite 

matrix 𝑃 > 0 such that the Lyapunov inequality must be 

satisfied: 

𝐴𝑇𝑃 + 𝑃𝐴 < 0.  
 

Similarly, a matrix 𝐴 is Schur stable if and only if there 

exists a positive definite matrix 𝑃 > 0 such that the Stein 

inequality must be hold (see Khalil 2002, Yılmaz and Aksoy 

2023): 
 

𝐴𝑇𝑃𝐴 − 𝑃 < 0. 
 

The location of the eigenvalues in the complex plane of a 

matrix has been investigated for more specific regions 𝒟. 

In Gutman (1981), a polynomial-type function has been 

adopted to describe the region of the complex plane in 

which roots are located. Necessary and sufficient 

conditions have been derived from the Kronecker and 

bialternate matrix products and positive definite matrices 

in Gutman (1981), Zrida and Bouazizi (2022), Chilali and 

Gahinet (1996). 
 

In Zrida and Bouazizi (2022), the concept of quadratic 

matrix inequalities (QMI) is introduced to characterize 

stability regions defined by 
 

𝒟 = {𝑧 ∈ ℂ: 𝑄 + 𝑆𝑧 + 𝑆𝑇𝑧̅ + 𝑅𝑧𝑧̅ < 0} (1) 
 

where 𝑄 and 𝑅 are symmetric matrices in ℝ𝑚×𝑚, with 

𝑅 ≥ 0 and 𝑆 ∈ ℝ𝑚×𝑚 (we take 𝑅 > 0 in this paper to be 
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able to implement the Schur complement lemma).  

Various convex regions in the complex plane can be 

represented using QMI. Important properties of QMI 

regions include being open, convex, and symmetrical to 

the real axis. Furthermore, any intersection of QMI 

regions is also a QMI region. The robust 𝒟-stability of a 

parameter-dependent matrix family is determined using 

test points to assess whether LMIs are satisfied within 

specific intervals. This way, the matrix family's 𝒟-stability 

bound can be determined reliably. 

 

In this paper, we build on existing results to provide 

sufficient conditions for the robust 𝒟-stability of matrix 

polytopes. Using the Schur complement lemma, we 

derive conditions that simplify the associated matrix 

inequality problem. To solve the convex optimization 

problem arising from these inequalities, we introduce an 

algorithm based on Kelley’s method. The proposed 

conditions and algorithm are validated through 

illustrative examples, demonstrating their effectiveness 

in addressing robust 𝒟-stability. 

The paper is structured as follows. Section 2 introduces 

the concept of robust 𝒟-stability for a polytope and 

provides the necessary background. Section 3 presents 

sufficient conditions for robust 𝒟-stability of matrix 

polytopes using the Schur complement lemma. Section 4 

describes a solution algorithm for LMIs based on convex 

optimization and includes numerical examples to 

demonstrate its application. 

2. Robust 𝓓-stability of a Polytope 

A useful theorem for determining the eigenvalues of a 

matrix 𝐴 within the set 𝒟 (1) is given in Chilali and Gahinet 

(1996). This theorem provides the necessary and 

sufficient conditions in the form of Linear Matrix 

Inequalities (LMIs) for 𝒟-stability. 

In the following theorem, the Kronecker product (⊗) 

represents an operation that combines two matrices into 

a structured block matrix, preserving their algebraic 

structure. 

Theorem 1 (Chilali and Gahinet (1996)): 𝐴 ∈ ℝ𝑛×𝑛 is 𝒟-

stable if and only if there exists a symmetric positive 

definite matrix 𝑃 > 0 such that  

𝑄 ⊗ 𝑃 + 𝑆 ⊗ (𝐴𝑃) + 𝑆𝑇 ⊗ (𝑃𝐴𝑇) + 𝑅 ⊗ (𝐴𝑃𝐴𝑇) < 0. 

 (2) 

We have provided the definition and some results 

concerning the 𝒟-stability of matrices. Consider a matrix 

family of 𝑛-dimensional square matrices denoted by 𝒜. If 

every matrix within the family 𝒜 is 𝒟-stable, then the 

family 𝒜 is referred to as robustly 𝒟-stable. The well-

known matrix family is the polytope of matrices, and it is 

defined as the convex hull of two or more finite Hurwitz 

(Schur) matrices 

 

𝒜 = conv{𝐴1, 𝐴2, … , 𝐴𝑁}

⬚ = {𝐴(𝛼) = ∑ 𝛼𝑖𝐴𝑖
𝑁
𝑖=1 : 𝛼 ∈ 𝛬}

 (3) 

 

where 

 

Λ = {𝛼 ∈ ℝ𝑁 : ∑𝛼𝑖

𝑁

𝑖=1

= 1, 𝛼𝑖 ≥ 0}. 

 

Edge Theorem is a recognized theorem in control theory 

that gives robust 𝒟-stability of a polytope of polynomials 

(Bartlett et al. 1988). However, this theorem is not valid 

for a matrix polytopes (Barmish et al. 1988). 

 

The robust stability of the polytope of matrices has been 

studied using linear matrix inequalities (LMIs) techniques 

(Boyd et al. 1994). A necessary condition for 𝒜 to be 

robustly Hurwitz (Schur) stable is the existence of a 

common solution 𝑃 > 0  that satisfies the Lyapunov 

(Stein) inequalities: 

 

𝐴𝑖
𝑇𝑃 + 𝑃𝐴𝑖 < 0  (𝑖 = 1,2, … , 𝑁) 

 

(𝐴𝑖
𝑇𝑃𝐴𝑖 − 𝑃 < 0)  

 

(see Shorten and Narendra 2002, Yılmaz et al. 2014, 

Yılmaz et al. 2016). 

 

The Theorem 1 regarding the robust 𝒟-stability of the 

matrix polytope defined in (3) can be stated as follows. 

 

Theorem 2: 𝒜 (3) is robustly 𝒟-stable if and only if there 

exists 𝑃(𝛼) > 0 such that 

𝑄 ⊗ 𝑃(𝛼) + 𝑆 ⊗ (𝐴(𝛼)𝑃(𝛼)) + 𝑆𝑇 ⊗ (𝑃(𝛼)𝐴𝑇(𝛼)) + 

𝑅 ⊗ (𝐴(𝛼)𝑃(𝛼)𝐴𝑇(𝛼)) < 0 

 (4) 

for all 𝛼 ∈ 𝛬. 

 

For the robust 𝒟-stability of 𝒜, the existence of positive 

definite matrices 𝑃(𝛼) > 0 for each 𝛼 ∈ 𝛬 is required, 

thus resulting in problems of infinite dimension (Geromel 

et al. 1998, Oliveira and Peres 2005). In Theorem 2, it is 

stated that if such a 𝑃(𝛼) satisfies inequality (4) for all 𝛼, 

the conclusion follows. 

 

However, if we can establish the existence of a common 

positive definite matrix 𝑃(𝛼) = 𝑃 that satisfies the 

inequality uniformly for all 𝛼, we can avoid the complexity 
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associated with individually determining 𝑃(𝛼) for each 𝛼. 

This reduction is applied to the case of matrix polytopes 

𝒜, where finding a common 𝑃 that satisfies the condition 

for 𝐴1, 𝐴2, … , 𝐴𝑁. 

 

In this paper, we provide sufficient conditions for the 

robust 𝒟-stability of the polytope of matrices 𝒜. For this, 

if 𝑃 > 0  exists for the matrix 𝐴1, 𝐴2, … , 𝐴𝑁 matrices, then 

this solution satisfies the matrix inequalities in Theorem 2 

for all matrices in the polytope of matrices 𝒜. We 

obtained this result using the Schur complement lemma. 

Many studies are in the literature on solving linear matrix 

inequalities (Polyak et al. 2021). Here, we use the Kelley 

method to calculate the minimum of the convex function 

𝜙:ℝ𝑟 → ℝ, defined on the set of symmetric matrices and 

represented by 𝑟-dimensional vectors. When solving the 

minimum problem using the iterative process, the 

constructed algorithm effectively addresses the matrix 

inequalities if the 𝜙 function takes a negative value within 

the set of positive matrices. 

 

3. Common Solution to Matrix Polytope 

 

In this section, we give sufficient conditions for the robust 

𝒟-stability of the matrix polytope 𝒜. To achieve this, we 

will linearize the expression 𝐴(𝛼)𝑃(𝛼)𝐴(𝛼)𝑇 on the left 

side of inequality (4) using Schur’s complementary 

lemma. 

 

Lemma 1 (Geromel 1998): Consider the following matrix 

 

𝑀 = [
𝑀1 𝑀2

𝑀2
𝑇 𝑀3

] 

 

where 𝑀1 ∈ ℝ𝑛×𝑛, 𝑀2 ∈ ℝ𝑛×𝑚, and 𝑀3 ∈ ℝ𝑚×𝑚 with 𝑀3 

invertible. Then 𝑀 > 0 if and only if  

 

𝑀3 > 0 and 𝑀1 − 𝑀2𝑀3
−1𝑀2

𝑇 > 0. 

 

Lemma 2: There exists a 𝑃 > 0 satisfying equation (2) if 

and only if there exists a 𝑃 > 0 such that 

 

[
−𝑄 ⊗ 𝑃 − 𝑆 ⊗ (𝐴𝑃) − 𝑆𝑇 ⊗ (𝑃𝐴𝑇) 𝑅 ⊗ (𝐴𝑃)

𝑅 ⊗ (𝑃𝐴𝑇) 𝑅 ⊗ 𝑃
] > 0. 

 (5) 

 

Proof: Let 𝑀1 = −(𝑄 ⊗ 𝑃 + 𝑆 ⊗ (𝐴𝑃) + 𝑆𝑇 ⊗ (𝑃𝐴𝑇)), 

𝑀2 = 𝑅 ⊗ (𝐴𝑃) and 𝑀3 = 𝑅 ⊗ 𝑃. Since 𝑃 > 0 and 𝑅 >

0, all eigenvalues of 𝑃 and 𝑅 are positive (Horn and 

Johnson 2013, p. 438). On the other hand, the matrix 𝑅 ⊗

𝑃 is symmetric, and its eigenvalues are the product of the 

eigenvalues of 𝑃 and 𝑅 (Bernstein 2009, p. 401). Hence, 

𝑀3 > 0. By utilizing the properties of the Kronecker 

product (see Bernstein 2009, Chapter 7), we can derive 

the following equations: 

 

𝑀2𝑀3
−1𝑀2

𝑇 = [𝑅 ⊗ (𝐴𝑃)][𝑅 ⊗ 𝑃]−1[𝑅 ⊗ (𝐴𝑃)]𝑇

⬚ = [𝑅 ⊗ (𝐴𝑃)][𝑅−1 ⊗ 𝑃−1][𝑅𝑇 ⊗ (𝑃𝐴𝑇)]

⬚ = [𝑅 ⊗ (𝐴𝑃)][(𝑅−1𝑅) ⊗ (𝑃−1𝑃𝐴𝑇)]

⬚ = [𝑅 ⊗ (𝐴𝑃)][𝐼𝑛 ⊗ 𝐴𝑇]

⬚ = 𝑅 ⊗ (𝐴𝑃𝐴𝑇).

 

Here, we have used the Kronecker product property 

 

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) 

 

to simplify the expressions in the above derivation. This 

property allows the product of Kronecker terms to be 

distributed as the product of their respective matrices. 

Therefore,  

 

𝑀1 − 𝑀2𝑀3
−1𝑀2

𝑇 = −𝑄 ⊗ 𝑃 − 𝑆 ⊗ (𝐴𝑃) −

⬚ 𝑆𝑇 ⊗ (𝑃𝐴𝑇) − 𝑅 ⊗ (𝐴𝑃𝐴𝑇) > 0.
 

□ 

 

Theorem 3: Let the matrix polytope 𝒜 (3) be given and 

𝑃 > 0 satisfies 

𝑄 ⊗ 𝑃 + 𝑆 ⊗ (𝐴𝑖𝑃) + 𝑆𝑇 ⊗ (𝑃𝐴𝑖
𝑇) 

+𝑅 ⊗ (𝐴𝑖𝑃𝐴𝑖
𝑇) < 0 

 (6) 

for 𝑖 = 1,2, … , 𝑁. In that case, the inequality (6) is 

satisfied for all 𝐴 ∈ 𝒜. Consequently, the matrix polytope 

𝒜 is robustly 𝒟-stable. 

 

Proof: For each 𝑖 = 1,2, … , 𝑁, a 𝑃 > 0 exists such as 

equation (6) holds. Let 𝑀(𝐴):= [𝑀𝑖𝑗(𝐴)] be a block 

matrix with 

 

𝑀11(𝐴) = −[𝑄 ⊗ 𝑃 + 𝑆 ⊗ (𝐴𝑃) + 𝑆𝑇 ⊗ (𝑃𝐴𝑇)],

𝑀12(𝐴) = 𝑅 ⊗ (𝐴𝑃),

𝑀21(𝐴) = 𝑅𝑇 ⊗ (𝑃𝐴𝑇),

𝑀22(𝐴) = 𝑅 ⊗ 𝑃.

 

 

By Lemma 2, 

 

𝑀(𝐴𝑖) = [
𝑀11(𝐴𝑖) 𝑀12(𝐴𝑖)
𝑀21(𝐴𝑖) 𝑀22(𝐴𝑖)

] > 0, (7) 

 

for 𝑖 = 1,2, … , 𝑁. If both sides of the inequality (7) are 

multiplied by 𝛼𝑖   and summed from 𝑖 = 1 𝑡𝑜 𝑁 

 

𝑀(𝐴(𝛼)) = [
𝑀11(𝐴(𝛼)) 𝑀12(𝐴(𝛼))
𝑀21(𝐴(𝛼)) 𝑀22(𝐴(𝛼))

] > 0 

 

where 𝛼 ∈ Λ. According to Lemma 2, 
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𝑄 ⊗ 𝑃 + 𝑆 ⊗ (𝐴(𝛼)) + 𝑆𝑇 ⊗ (𝑃𝐴𝑇(𝛼)) + 

𝑅 ⊗ (𝐴(𝛼)𝑃𝐴𝑇(𝛼)) < 0 

 

is satisfied for every 𝛼 ∈ Λ, which proves that 𝒜 is 

robustly 𝒟-stable. □ 

 

We will convert the given condition into a convex 

minimization problem to assess a matrix polytope's 

robust 𝒟-stability, utilizing the sufficient condition 

provided in Theorem 3. 

 

4. A Solution Algorithm for LMIs Using a Convex 

Optimization Method 

 

In this section, we present a convex optimization method 

for finding a positive definite matrix 𝑃 > 0 that satisfies 

the inequality (6) for 𝒟-stable matrices {𝐴1, 𝐴2, … , 𝐴𝑁}. 

 

The maximal and minimal eigenvalues of a symmetric 

matrix 𝑆 ∈ ℝ𝑛×𝑛 are defined as follows: 

 

𝜆max (𝑆) = max
‖𝑣‖=1

𝑣𝑇𝑆𝑣 , 𝜆min(𝑆) = min
‖𝑣‖=1

𝑣𝑇𝑆𝑣 

(see Horn and Johnson 2013, p. 235). If the unit 

eigenvector corresponding to the largest eigenvalue is 𝑣̃ 

then 

 

𝜆max (𝑆) = 𝑣̃𝑇𝑆𝑣̃ 

 

A similar equality holds for the minimum eigenvalue. 

 

Let 𝑥 ∈ ℝ𝑟 be 𝑥𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑟) and 𝑃 be an 𝑛 × 𝑛 

symmetric matrix defined as 

 

𝑃 = 𝑃(𝑥) = [

𝑥1 𝑥2 ⋯ 𝑥𝑛

𝑥2 𝑥𝑛+1 ⋯ 𝑥2𝑛−1

⋮ ⋮ ⋱ ⋮
𝑥𝑛 𝑥2𝑛−1 ⋯ 𝑥𝑟

] (8) 

 

with 𝑟 = 𝑛(𝑛 + 1)/2. 

 

Denote the left-hand side of inequality (6) by  

 

𝐹(𝑥, 𝑖) = 𝑄 ⊗ 𝑃 + 𝑆 ⊗ (𝐴𝑖𝑃) + 𝑆𝑇 ⊗ (𝑃𝐴𝑖
𝑇) 

+𝑅 ⊗ (𝐴𝑖𝑃𝐴𝑖
𝑇). 

 

Define the functions 𝜙(𝑥) and 𝜂(𝑥) as follows: 

 

𝜙(𝑥) = max
1≤𝑖≤𝑁

𝜆max(𝐹(𝑥, 𝑖))

⬚ = max
1≤𝑖≤𝑁,‖𝑣‖=1

𝑣𝑇𝐹(𝑥, 𝑖)𝑣,
 (9) 

 

𝜂(𝑥) = min
‖𝑣‖=1

𝑣𝑇𝑃(𝑥)𝑣. (10) 

The functions 𝜙(𝑥) and 𝜂(𝑥) are both convex functions. 

 

If there exists a 𝑥̃ ∈ ℝ𝑟 such that 𝜙(𝑥̃) < 0 and 𝜂(𝑥̃) > 0, 

then the matrix 𝑃 = 𝑃(𝑥̃) > 0 satisfies the matrix 

inequality (6) for each 𝑖 = 1,2, … , 𝑁. Therefore, the 

matrix polytope 𝒜 = conv{𝐴1, 𝐴2,···, 𝐴𝑁} is robustly 𝒟-

stable. 

 

For the positive definite matrix 𝑃(𝑥) > 0, we take 𝑥 from 

the following box: 

 

𝒳 = [−1,1] × ⋯× [−1,1] = [−1,1]𝑟 , 

 

since 𝛼 > 0 and 𝛼𝑃(𝑥) > 0. 

 

Consider the following convex minimization problem: 

 

minimize 𝜙(𝑥)

subject to 𝜂(𝑥) > 0,

𝑥 ∈ 𝒳.

 (11) 

 

To address this convex minimization problem, Kelley's 

cutting plane method is utilized (see Yılmaz et al. 2014). 

This method reformulates problem (11) as follows: 

 

𝑐𝑇𝑧 → min
𝑐1(𝑧) ≥ 0,

𝑐2(𝑧) ≥ 0,
−1 ≤ 𝑥𝑖 ≤ 1 (𝑖 = 1,2, … , 𝑟)

 (12) 

 

where 𝑧 = (𝑥1, 𝑥2, … , 𝑥𝑟 , 𝐿)𝑇, 𝑐 = (0, … , 0, 1)𝑇, 𝑐1(𝑧) =

𝐿 − 𝜙(𝑥), and 𝑐2(𝑧) = min
‖𝑣‖=1

𝑣𝑇𝑃(𝑥)𝑣. 

 

Let 𝑧0 be an initial starting point, and let 𝑧1, 𝑧2, … , 𝑧𝑘  

represent subsequent iterations. In the first iteration, the 

cutting-plane algorithm tackles the following linear 

programming (LP) problem: 

 

minimize 𝐿
subject to −ℎ1

𝑇(𝑧0)𝑧 ≥ −ℎ1
𝑇(𝑧0)𝑧0 − 𝑐1(𝑧

0)

−ℎ2
𝑇(𝑧0)𝑧 ≥ −ℎ2

𝑇(𝑧0)𝑧0 − 𝑐2(𝑧
0)

−1 ≤ 𝑥𝑖 ≤ 1 (𝑖 = 1,2, … , 𝑟)

 (13) 

 

where ℎ𝑗(𝑧
𝑖) denotes a gradient of −𝑐𝑗(𝑧) at 𝑧𝑖  (𝑗 = 1,2). 

 

Here, we have 

ℎ1(𝑧
𝑖) = −

𝜕

𝜕𝑧
(𝑧𝑟+1 − 𝑣𝑇𝐹(𝑥, 𝑖)𝑣)|𝑣=𝑣̂

𝑖=𝑖̂

 

where 𝑖̂ is the index that maximizes 𝜆max(𝐹(𝑥, 𝑖)) and 𝑣̂ 

is a corresponding unit eigenvector. 

 

Additionally, we also have: 
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ℎ2(𝑧
𝑖) = −

𝜕

𝜕𝑧
(𝑣𝑇𝑃(𝑥)𝑣)|𝑣=𝑣̂ 

 

where 𝑣̂ is the unit vector corresponding to 𝜆min(𝑃(𝑥)). 
 

Let the point 𝑧∗
𝑘  be the minimizer of the problem defined 

in (13). If 𝑧∗
𝑘   satisfies the inequality 

 

min{𝑐1(𝑧∗
𝑘), 𝑐2(𝑧∗

𝑘)} ≥ −𝜀, 
 

where 𝜀 > 0 is a tolerance, then 𝑧∗
𝑘  is considered an 

approximate solution to the problem in (13). 
 

If this condition is not satisfied, we define 𝑗∗ as the index 

of the most negative 𝑐𝑗(𝑧∗
𝑘). To update the constraints in 

(13) by adding the linear constraint: 
 

𝑐𝑗∗(𝑧𝑘+1) − ℎ𝑗∗
𝑇 (𝑧𝑘+1)(𝑧 − 𝑧𝑘+1) ≥ 0, (14) 

 

and then repeat the process. 
 

This algorithm can be adapted to our problem as follows: 
 

Algorithm 1: 
 

1. Select an initial point 𝑧0 = (𝑥0, 𝐿0)𝑇. Compute 

𝜙(𝑥0) and 𝑐2(𝑧
0). If 𝜙(𝑥0) < 0 and 𝑐2(𝑧

0) > 0, 

complete. Otherwise, continue to the next step. 

2. Find 𝑧∗
𝑘  by solving the LP problem in (13). If  

𝑐1(𝑧∗
𝑘) > 𝐿𝑘  and 𝑐2(𝑧∗

𝑘) > 0, complete. Otherwise, 

proceed. Set 𝑧𝑘+1 = 𝑧∗
𝑘, update the constraints in (13) 

and repeat the procedure. 
 

The stopping criteria for Algorithm 1 are implicitly 

defined through c1(z
k) > Lk and c2(z

k) > 0. These 

conditions ensure that the solution satisfies the robust 

𝒟-stability criteria. Specifically:  

1. When 𝑐1(𝑧
𝑘) > 𝐿𝑘, by the definition 𝑐1(𝑧) =

𝐿 − 𝜙(𝑥), it follows that 𝜙(𝑥𝑘) < 0. This implies that 

the left-hand side of the matrix inequality (6) is strictly 

negative, confirming the 𝒟-stability of the matrix family. 

2. The condition 𝑐2(𝑧
𝑘) > 0 ensures that the 

matrix 𝑃(𝑥𝑘) is positive definite, which is a necessary 

condition for stability. 

Together, these criteria validate that the algorithm has 

reached a feasible and robustly 𝒟-stable solution. 
 

Example 1: Consider the region 𝒟 (1) defined by 
 

𝑄 = [
−1 0 0
0 0 0
0 0 0

] , 𝑅 = [
1 0 0
0 0 0
0 0 0

],  

 

𝑆 =

[
 
 
 
 
0 0 0

0 sin 
𝜋

3
cos 

𝜋

3

0 −cos 
𝜋

3
sin 

𝜋

3]
 
 
 
 

 

 

(see Fig. 1). Let 𝒜 be the convex hull of the 𝒟-stable 

matrices 
 

𝐴1 = [
−0.35 −0.05 0.15
−0.15 −0.6 0.05
−0.05 −0.1 −0.65

],  

 

𝐴2 = [
−0.45 0.67 −0.45
−0.33 −2.13 1.05
0.34 −2.8 1.5

], 

 

𝐴3 = [
−0.5 0.02 −0.05
0.07 −0.52 0.05
0.02 −0.02 −0.47

]. 

 

 
Figure 1. The region 𝒟 and eigenvalues of the matrices within 

the polytope 𝒜 in Example 1. 
 

Let 𝑧0 = (𝑥0, 𝐿0) = (1,0,0,1,0,1,1)𝑇 be the starting point, 

and then apply the Algorithm 1. In this case, 𝑐2(𝑧
0) = 1, 

𝜙(𝑥0) = 9.465 and the index 𝑖0 = 2 yields this maximal 

eigenvalue. 
 

Table 1. Iterative Results of Algorithm 1 for Example 1 

𝑘 𝐿𝑘  𝑐1(𝑧
𝑘) 𝑐2(𝑧

𝑘) 𝑖𝑘  

0 1 -14.395 1 2 

1 -31.731 -41.197 -2.561 2 

2 -5.792 -9.450 -2.039 2 

3 -1.499 -3.222 -1.834 1 

⋮ ⋮ ⋮ ⋮ ⋮ 

26 -0.0026 -0.0043 0.0059 2 

27 -0.0023 -0.0051 -0.0016 3 

⋮ ⋮ ⋮ ⋮ ⋮ 

32 -0.0011 -0.0012 0.0028 1 

33 -0.0010 -0.0009 0.0025 2 
 

The solution of LP problem in step 33 is the point 𝑧33 =

(0.0673, −0.1402, −0.2445,0.4850,0.6453,1, −0.0010)𝑇

(see Table 1). Since 𝜙(𝑧33) = −0.0001 < 0 and 

𝑐2(𝑧
33) = 0.0025 > 0, the matrix 

 

𝑃(𝑧33) = [
0.0673 −0.1402 −0.2445

−0.1402 0.4850 0.6453
−0.2445 0.6453 1

] 

 

satisfies the matrix inequalities (6) for 𝑖 = 1,2,3. By 

Theorem 3, the family of matrices 𝒜 = conv{𝐴1, 𝐴2, 𝐴3} 

is robustly 𝒟-stable. 
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Example 2 (Zrida and Bouazizi 2022): Consider the one-

parameter matrix family 𝐴(𝛿) = 𝐴0 + 𝛿𝐴𝑔 for 𝛿 ∈ ℝ, 

where 
 

𝐴0 = [
0 1

−1 −1
], 𝐴𝑔 = [

0 0
−1 −1

]. 

 

The region 𝒟 (1) is defined by matrices 
 

𝑄 = [
0 0 0
0 −1 −1
0 0 −1

] , 𝑆 = [
1 0 0
0 0 1
0 −1 0

] , 𝑅 = [
0 0 0
0 0 0
0 0 0

]. 

 

It is the intersection of a horizontal strip between +𝑗/2 

and −𝑗/2 and the open left half-plane (𝑗 = √−1).  
 

It has been established in Zrida and Bouazizi (2022) that 

the one-parameter matrix A(δ) is 𝒟-stable for δ ∈

(−1,−0.7321) ∪ (2.7321,∞) by analzing the intervals in 

which the corresponding matrix function determines its 

eigenvalues. 
 

In this example, we focus on the second stability interval 

(2.7321,∞) and demonstrate the robust 𝒟-stablity of the 

matrix family within the subinterval [2.74,4] using our 

proposed method. We consider the 𝒟-stable matrices 

A1 = A(2.74) and A2 = A(4). 
 

Starting with the initial point 𝑧0 = (1,0,1,1)𝑇, the 

Algorithm 1 gives the solution after 12 steps: 𝑧12 =

(0.26305,−0.49103,1, −0.00191)𝑇. Since 𝜙(𝑧12) =

−0.00017 < 0 and 𝑐2(𝑧
12) = 0.0176 > 0, the matrix 

 

𝑃(𝑧12) = [
0.26305 −0.49103

−0.49103 1
] 

 

satisfies the inequalities (6) for 𝑖 = 1,2. By Theorem 3, the 

matrix 𝐴(𝛼) = (1 − 𝛼)𝐴1 + 𝛼𝐴2 is 𝒟-stable for all 𝛼 ∈

[0,1] (see Fig. 2). 
 

 
Figure 2. In Example 2, the eigenvalues of 𝐴(𝛿) for 𝛿 ∈ [2.74,4]. 

 

4. Conclusions 

This paper presents sufficient conditions for robust 𝒟-

stability for matrix polytopes. We introduced a solution 

method utilizing the maximal eigenvalue function of 

symmetric matrices to solve LMIs. Through examples, the 

application of these stability conditions is illustrated. 

Future work may explore extensions to broader classes of 

matrix families or additional structural constraints. 
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