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Abstract: In the current context where fossil resources are diminishing globally, and carbon emissions are increasing daily, 
the importance of green energy, particularly wind energy, is growing significantly. The increasing of wind turbines will not only 
reduce the carbon footprint but also decrease dependence on external resources. To increase the installed capacity of wind 
turbines, it is crucial to reduce not only installation costs but also operational costs. The largest proportion of operational 
costs is service, and maintenance costs. One of the most critical approaches to reducing service, and maintenance costs 
is preventive maintenance activities. The objective of preventive maintenance activities is to minimize or ideally eliminate 
production losses through scheduled turbine shutdowns before failures occur. In this study, artificial neural network-based 
algorithms that predict potential hydraulic failures during the operational period were utilized. For this purpose, data from the 
turbine SCADA system over a period of two years, considering the equipment, and sensors connected to hydraulic systems, 
were compiled. The study was conducted using the WEKA program, comparing Multilayer Perceptron (MLP), Radial Basis 
Function Classifier (RBF Classifier), SMOreg (Support Vector Machines for Regression) algorithms. Result of the study, the 
MLP algorithm was applied with a percentage split of 66% for training, and 33% for testing, achieving a prediction accuracy 
of 96.32% 
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1. Introduction
Since wind energy is one of the most important sources 
of clean energy, it has gained global support in recent 
years. Renewable resources are utilized to reduce the 
carbon footprint, and achieve carbon neutrality. Wind 
turbines are often exposed to harsh environmental 
conditions because they are typically installed in re-
mote areas, far from residential zones. Consequently, 
wind turbines frequently experience malfunctions. The 
most common malfunctions include electrical failures, 
control system issues, and sensor defects. Under these 
conditions, fault diagnosis in wind turbines is crucial in 
terms of operational, and maintenance costs. Moreover, 
timely fault diagnosis, and maintenance can signifi-
cantly reduce major financial losses. To minimize tur-
bine downtime, lower operational, and maintenance ex-
penses, and extend service life, machine learning-based 
fault diagnosis is recommended. 

In this study, the hydraulic failures of a wind power 
plant located in Konya between 2020, and 2022 were 
analyzed. The variables considered for failure included 
hydraulic oil temperature, wind speed, hydraulic unit 
pressure, yaw brake pressure, internal ambient tem-
perature, external ambient temperature, active power 
data, and blade angles. Additionally, the fundamental 
characteristics of artificial neural networks (ANN) 
were discussed, and a model capable of predicting hy-
draulic failures using ANN was developed, and its per-
formance evaluated.

1.1. Fundamental Components and Failures of Wind Tur-
bines
Wind turbines primarily consist of a gearbox, generator, 
converter, yaw systems, pitch systems, hydraulic sys-
tems, control systems, and auxiliary systems. Experts, 
and researchers recommend conducting failure analysis 
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on various components such as power systems, mechan-
ical systems, drive systems, generators, and gearboxes, 
as these are the most studied for efficient fault diagnosis. 
Data-driven real-time fault diagnosis is performed using 
data mining technologies in wind turbines. By observing 
useful data, and classifying the system as either faulty 
or normal conditions. The SCADA system contains both 
real-time data, and recorded historical [1].
Real-time monitoring of wind turbine conditions al-
lows for overcoming these defects. Through turbine 
condition monitoring technology, parameters such as 
vibration, temperature, pressure, and electrical data 
tracks. Comparing these results with predefined opti-
mal values enables the early detection of electrical, and 
mechanical failures [2].

1.2. Artificial Neural Networks and Their General Charac-
teristics
Artificial Neural Networks (ANN) were first developed 
by Rosenblatt under the name “perception.” The purpose 
of ANN is to ensure accurate classification of data by de-
termining optimal parameter values. After each itera-
tion (epoch), the error rate is updated, and these rates 
are distributed across the weight parameters, allowing 
the values assigned to each node to be refreshed [3].
ANN is a machine learning method inspired by the 
structure of biological neurons. In the input layer of the 
network, the input values are defined, and the data then 
passes through multiple layers. The data moves through 
various nodes, referred to as neurons, in each layer, 
where its numerical value is calculated, and compared 
with the previous value. The goal of this comparison is 
to minimize the difference, aiming to bring the error 
closer to zero, thereby enabling the network to learn. 
The performance of the network is measured using ac-
curacy functions. Structurally, the network consists of 
three fundamental layers: an input layer, hidden layer, 
and an output layer.
Artificial neural networks (ANN) are mathematically 
composed of inputs, weights, a summation function, an 
activation function, and output layers. Inputs are the 
data provided for the network to learn. The weight val-
ue represents the multiplication of the input data by a 
factor. The magnitude of the weight does not indicate 
the importance of the data. The summation function is 
used to combine information from the inputs for com-
putation. The activation function aids in determining 
the outputs. Activation functions such as Linear, Step, 
and Sigmoid are commonly used [4].
The Sigmoid function is the most widely used activation 
function, limiting the data between 0, and 1. The Tanh 
function, which restricts data between -1, and 1, often 
provides better performance than the Sigmoid function 
due to its directional change in processing [5].
By multiplying the inputs with the weights, the NET in-
puts are obtained. The term “NET” is an abbreviation 
for “Network.” Various methods exist for calculating 
the NET value. The calculation using the summation 

method can be seen in the following equation [6].

 
(1)

From this, it can be understood that the data from the 
first to the nth value are multiplied by their respective 
weights, and summed to obtain the NET inputs. The 
X values represent the inputs, while w represents the 
weights. The same calculation method does not need to 
use throughout the entire ANN model. The NET value 
obtained in artificial neurons is then passed through 
the activation function. The activation function pro-
cesses the NET value, and converts it into the output. 
Increasing the number of neurons in the hidden layer 
may make the ANN system more complex, but it also 
leads to better outputs [6].
Prediction studies using artificial neural networks have 
been applied across various fields in literature. One 
study, which aimed to predict solar radiation data using 
artificial neural networks, and machine learning, em-
ployed daily/hourly solar radiation data from the prov-
inces of Bursa, and Çanakkale for the years 2015-2019. 
The study involved prediction using artificial neural 
networks, and classification analysis using a machine 
learning algorithm [4].
In a study aimed at predicting the production data of 
a solar power plant, the goal was to develop the plant’s 
feasibility software. This study developed the Solar 
Power Plant Feasibility Software by predicting the pro-
duction data of solar, and wind power plants, both re-
newable energy sources, based on meteorological, and 
geological data. To achieve production forecasting, ad-
vanced feed forward back propagation Artificial Neural 
Networks (ANN), the Adaptive Neuro-Fuzzy Inference 
System (ANFIS), and the deep learning model Long 
Short-Term Memory (LSTM) were employed, due to 
their success in predicting with nonlinear models, a key 
application of artificial intelligence [7].
Aiming to forecast wind speed, and guide planned op-
erations, various artificial neural networks, and models 
were compared. In the study, short-term wind speed 
forecasting was performed using ANN methods with 
data obtained from a station in Yalova, Turkey. The 
analysis aimed to predict wind speed one hour ahead, 
allowing for interventions in sudden failures, and main-
tenance planning [8].
Additionally, a study was conducted on identifying, de-
tecting, and locating faults in power transmission lines 
using ANN. In this study, feed forward neural net-
works, convolutional neural networks, and generalized 
regression neural networks were employed [9].
A comprehensive fault detection system for wind tur-
bines is presented, utilizing sensors in the process. 
Specifically, the model is designed with a lightweight, 
highly efficient structure, and employs ensemble-based 
artificial neural networks, achieving a fault detection 
rate of 96.5%. The robustness of this model has been 
validated through various numerical simulations. Ad-
ditionally, it has been compared with other methods, 
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and the operating model has been found to exhibit high-
er accuracy [10].
They have worked on artificial neural network-support-
ed early fault detection for bearing failures in wind tur-
bine generators. It is noted that gearbox failures cause 
significant downtime in wind turbines, and a large por-
tion of these failures originate from gearbox bearings. 
Detecting wear, and degradation in gearbox bearings 
early would enable effective preventive maintenance, 
which in turn would reduce overall maintenance costs. 
In this study, a neural network-based monitoring sys-
tem is proposed using data from the control, and data 
acquisition system. This application was implemented 
on 2 MW onshore turbines located in southern Sweden. 
The results demonstrate that the proposed neural net-
work-based condition monitoring system is capable of 
detecting severe damage [11].

2. Materials and Methods
In this study, artificial neural network-based algo-
rithms were used to predict potential hydraulic fail-
ures that may occur during operation. In this way, 
possible failures will be addressed during non-windy 
periods through preventive actions. The aim of preven-
tive maintenance activities is to minimize or, if possi-
ble, eliminate production losses by performing turbine 
shutdowns before a failure occurs.
For this purpose, data from a two-year period was col-
lected through the turbine SCADA system, taking into 
account the equipment, and sensors connected to the 
hydraulic systems. Sensors located in relevant areas on 
the turbine transmit data to the SCADA system via var-
ious communication protocols. Data related to the topic 
has been analyzed, and compiled in the SCADA system. 
The date, and time of hydraulic failures are recorded 
as fault logs in the SCADA system. The approach here 
involves creating datasets based on the assumption that 
the first 60 seconds before a failure is considered faulty, 
while the subsequent 60-second interval is considered 
fault-free.

2.1. Data Sources
Data from hydraulic failures occurring between 2020, 
and 2022 were used in the models. The variables con-
sidered include hydraulic oil temperature, wind speed, 
hydraulic unit pressure, yaw brake pressure, internal 
temperature, external temperature, production data, 
and blade angles. ▶Table 1 provides a summary of the 
data included in the study, and their respective units.

2.2. Correctly Classified Examples and Confusion Matrix
Correctly classified examples: This is the percentage 
of the total number of examples that the model classi-
fies correctly relative to the total dataset. It reflects the 
overall performance of the classification [12].

 (2)

Confusion Matrix: A matrix that compiles information 
about actual, and predicted classifications. This can be 
seen following ▶Table 2.
Correctly classified data refers to the TN (True Nega-
tive), and TP (True Positive) components. The perfor-
mance of the model is proportional to the number of 
correctly classified data, and indicates the effectiveness 
of the classification [13]. The terms used in the confu-
sion matrix are defined as follows:
TN (True Negative): The number of correct predictions 
where an example is truly negative.
FP (False Positive): The number of incorrect predic-
tions where an example is predicted to be positive.
FN (False Negative): The number of incorrect predic-
tions where an example is predicted to be negative.
TP (True Positive): The number of correct predictions 
where an example is truly positive.

2.3. Classification Accuracy, Sensitivity, Specificity, and 
F-Measure
Sensitivity, and specificity are commonly used statisti-
cal methods for interpreting, and explaining the results 
of data testing. Classification sensitivity, and specificity 
are determined using the equations shown below.

 (3)

Table 1. Variables of Data  

Variables Unit

Hydraulic Oil Temperature Degree Celsius

Wind speed m/sec

Hydraulic Unit Pressure bar

Yaw Brake Pressure bar

Temperature Degree Celsius

Ambient Temperature Degree Celsius

Production kW

Blade Degree-1 Degree

Blade Degree-2 Degree

Blade Degree-3 Degree
 

Table 2. Confusion Matrix 

Predicted Values

Negative Positive

Actual Values
Negative TN (True Negative) FP (False Positive)

Positive FN (False Negative) TP (True Positive)
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 (4)

 (5)

Sensitivity: The ratio of true positives to all data pre-
dicted as positive. It measures the model’s ability to cor-
rectly classify positive examples. A high sensitivity ratio 
indicates that there are few false negatives [13].
Specificity: The ratio of true negatives to all data pre-
dicted as negative. It measures the model’s ability to 
correctly classify negative examples. A high specificity 
ratio indicates that there are few false positives [13].
F-Measure: To provide more meaningful comparative 
results, the F-Measure combines both sensitivity, and 
specificity. The F-Measure is the harmonic mean of sen-
sitivity, and specificity [13].

 (6)

2.4. Kappa Statistics
Kappa statistics is a statistical method used to measure 
the agreement between classifications based on the 
same category. It is a more reliable measure than a sim-
ple percentage calculation. It is a robust method used to 
test inter-rater or intra-rater reliability. The values can 
range from -1 to 1, where 0 represents agreement oc-
curring by chance, and 1 indicates perfect agreement. 
Details are provided in ▶Table 3  [14]. 
Kappa adjusts for the agreement that could have oc-
curred randomly among similar responses.

 (7)

P0: The percentage of agreement between observers
Pe: The percentage of agreement between observers due 
to chance

Table 3. Kappa Coefficient Values Interpretation 

Kappa Value Interpretation

< 0.00 Poor

0.01 – 0.02 Slight

0.21 – 0.40 Fair

0.41 – 0.60 Moderate

0.61 – 0.80 Substantial

0.81 – 1.00 Almost Perfect

  

2.5.  Other Approaches
Mean Absolute Error (MAE): This can be expressed as 
the average of the absolute differences between the actu-
al values, and the predicted values. A low mean absolute 
error indicates good performance of the model  [13].

 
(8)

Relative Absolute Error (RAE): This is a metric used 
to measure the performance of a model. It is the ratio 
of the sum of the model’s absolute errors to the sum of 
the deviations of the actual values from their mean. A 
low relative absolute error indicates good performance 
of the model.

 
(9)

x̄ : The mean of the actual values
: The actual values
: The predicted values

n: The number of samples in the data
Root Mean Square Error (RMSE): This is a metric used 
to measure the performance of a model. It is the square 
root of the average of the squared differences between 
the predicted values, and the actual values [13].

 
(10)

A small RMSE indicates that the model’s predictions 
are accurate.
Root Relative Squared Error (RRSE): This metric is the 
square root of the ratio of the sum of the squared dif-
ferences between the actual values, and the predicted 
values to the sum of the squared differences between 
the actual values, and their mean [13].

 
(11)

A small RRSE indicates that the model’s predictions 
are accurate.

2.6. Model Features and Methods Implemented on WEKA
The algorithms used on the datasets include Multilay-
er Perceptron (MLP), Radial Basis Function Classifier 
(RBF Classifier), and SMOreg (Support Vector Ma-
chines for Regression). The parameter settings in the 
software are the default settings.

2.7. Multilayer Perceptron
The Multilayer Perceptron (MLP) identifies the rela-
tionship between linear or non-linear data. The input 
layers, output layers, and hidden layers form the core of 
the MLP classifier. In most cases, a single hidden layer 
is sufficient for solving the problem. However, addition-
al hidden layers may be added to improve the results, 
although this will increase data processing time[12].
The input layer processes the input data, while tasks 
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such as prediction, and classification are handled by 
the output layer. In MLP, a feed-forward structure is 
established from input to output [15].
All nodes in the network utilize the sigmoid function, 
which ensures that the data remains within the range 
of 0 to 1.   

 (12)

2.7.1. Parameter settings in MLP

Learning Rate: Determines the speed at which the 
weights are updated. A high learning rate can lead to 
instability in the model, while a low learning rate may 
result in slower learning.
Momentum: Ensures more stable weight updates, and 
helps the model avoid local minima. A high momentum 
can accelerate the learning process, but it also increas-
es the risk of instability. On the other hand, a low mo-
mentum slows down the learning process but allows for 
more control over the model.
Hidden Layers: Refers to the number of hidden layers, 
and the number of neurons in each layer. Fewer hidden 
layers make the model more interpretable, and reduce 
the risk of overfitting. However, with fewer hidden lay-
ers, the model may be insufficient for capturing non-lin-
ear relationships, making it less capable of detecting 
complex patterns, and reducing the likelihood of accu-
rate predictions.
Training Time: Specifies the number of iterations re-
quired to train the model. A short training time may 
prevent the model from fully learning the data, while a 
long training time can lead to overfitting.

2.8. Radial Basis Function Classifier
The Radial Basis Function Classifier (RBFC) is a 
feed-forward model used in artificial neural networks. 
The structure of the RBFC consists of an input layer, 
a hidden layer, and an output layer. The input layer is 
where the data is collected, and the calculations take 
place in the hidden layer [16]. The connection weights 
between the hidden layer, and the output layer can be 
determined more quickly, and independently of local 
minima compared to the Multilayer Perceptron (MLP). 
The hidden layer utilizes a Gaussian function, and the 
distance between the input vector, and the center vector 
of the hidden layer is calculated using this function [17].

 (13)

φ(x): Output
x: Input vector
c: Center vector of the RBF
σ: Standard deviation

: Represents the Euclidean distance

2.8.1. Parameter settings in RBFC

Number of Functions: This parameter determines the 
number of Gaussian functions in the model. As the 
number increases, the complexity of the model also in-
creases, which may lead to overfitting.
Scale Optimization Option: Specifies the scale optimi-
zation option. Option 1 sets a single factor for the entire 
model, while Option 2 assigns a separate scale for each 
Gaussian function.

2.9. Sequential Minimal Optimization
SMO is a machine learning algorithm associated with 
Support Vector Machines (SVM) available in WEKA. 
SVMs are used for classification, and regression prob-
lems.

2.9.1. Parameter settings in SMO

C (Complexity Parameter): Balances model flexibility, 
and error rate. A high C value offers a more flexible 
model but increases the risk of overfitting, whereas a 
low C value reduces the risk of overfitting but may re-
sult in more errors.
Kernel Type: Used to determine the relationship be-
tween data points. Various options are available in 
WEKA.
Epsilon Parameter: Represents the tolerance value be-
tween the actual value, and the predicted value. The 
smaller the epsilon, the more precise the model be-
comes.
Tolerance: Defines the tolerance used during the opti-
mization process.

2.10. K-Fold Cross Validation in MLP, RBFC, and SMO
The dataset is divided into K parts. K-1 parts are used 
for training, while the remaining part is used for test-
ing. The test set is rotated each time, ensuring that the 
model is trained K times [4].
The evaluations of K-fold cross-validation in this study 
for K=4, 10, and 24 can be seen in ▶Table 4.

2.11. Percentage-Based Data Splitting in MLP, RBFC, and 
SMO
The program allows the data was split into training, 
and test sets based on percentages. Different scenari-
os where 50%, 66%, and 80% of the data are allocated 
to the training set have been compared can be seen in 
▶Table 5.
Table descriptions can be seen ▶Table 4.

3. Research Findings and Discussion
A comprehensive comparison of the program results 
has been conducted, and the top 3 most important pa-
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rameters of the best-performing algorithm, based on 
the J48 decision tree, have been identified. The points 
where the algorithm made errors are presented as part 
of the program output.
The hydraulic unit oil temperature, hydraulic unit pres-
sure, and yaw brake pressure are identified as the most 
important criteria, as shown in ▶Figure 1 based on the 
J48 decision tree classification method.
▶Figure 2 illustrates that the classification errors in the 
WEKA program indicate approximately 38 degrees, 
and 60 degrees as the range where predicted data for 
the hydraulic unit oil temperature generates errors.
▶Figure 3 shows that the classification errors in the 
WEKA program indicate that the predicted data for hy-
draulic unit pressure generates errors within the range 
of approximately 162 bar to 220 bar.
▶Figure 4 demonstrates that the yaw brake pressure 
predictions generate errors within the range of approx-
imately 223 bar to 228 bar, as indicated by the classifi-
cation error outputs from the WEKA program.

4. Results and Discussions
Data from the turbine SCADA system, collected be-
tween 2020, and 2022, were evaluated using artificial 
neural networks, and other algorithms. The algorithms 
employed include Multilayer Perceptron (MLP), Radial 
Basis Function Classifier (RBF Classifier), and SMOreg 
(Support Vector Machines for Regression). The param-
eters of the algorithms were processed using their de-
fault settings in the WEKA program. The algorithms 
were executed with a percentage-based data split, and 
K-fold cross-validation approaches. For the percent-
age-based data splitting, ratios of 50%, 60%, and 80% 
were selected, while K values of 4, 10, and 24 were cho-
sen for the K-fold cross-validation approach, with re-
sults recorded accordingly. The results were evaluated, 
and compared using statistical measures such as Kappa 
Statistic, Mean Absolute Error, Root Mean Square Er-
ror, Relative Mean Absolute Error, and Root Relative 
Square Error, as well as criteria including Sensitivity, 
Specificity, Error Rate, and F-measure. The findings 

Table 4. K-fold cross-validation in this study for K=4, 10, and 24 with MLP, RBFC, SMO 

Algorithm / 
K Fold

Kappa MAE RMSE RAE [%] RRSE 
[%]

Accuracy [%] Sensitivity 
[%]

Specificity 
[%]

Error 
Rate [%]

F Score 
[%]

 MLP / K=24 0,812 0,117 0,240 23 48 90,63 91,85 89,47 9,38 90,64

 MLP / K=10 0,875 0,100 0,222 20 44 93,75 94,49 93,03 6,25 93,76

 MLP / K=4 0,775 0,149 0,285 29 57 88,75 88,43 89,08 11,25 88,75

 RBFC / K=24 0,45 0,36 0,41 74 82 72,50 70,93 74,32 27,50 72,59

 RBFC / K=10 0,51 0,36 0,4 73 81 75,63 72,36 80,00 24,38 75,99

 RBFC / K=4 0,475 0,36 0,4 73 81 73,75 70,21 78,79 26,25 74,25

 SMO / K=24 0,008 0,495 0,704 99 140 50,42 50,65 50,31 49,58 50,48

 SMO / K=10 0,016 0,491 0,701 98 140 50,83 51,02 50,70 49,17 50,86

 SMO / K=4 0,079 0,460 0,678 92 135 53,96 53,85 54,08 46,04 53,96
 
 Kappa: Kappa statistics are a statistical method

MAE: Mean Absolute Error

RMSE: Root Mean Square Error

RAE: Relative Absolute Error

RRSE: Root Relative Squared Error

Accuracy: Correctly classified examples

Sensitivity: Measures the model’s ability to correctly classify positive examples

Specificity: Measures the model’s ability to correctly classify negative examples 

Error Rate: Incorrectly classified examples

F-Score: Harmonic mean of sensitivity, and specificity

 Table 5. Training Set Ratio in this study for 80%, 66%, and 50% with MLP, RBFC, SMO 

Algorithm / Trai-
ning Set Ratio

Kappa MAE RMSE RAE [%] RRSE 
[%]

Accuracy 
[%]

Sensitivity 
[%]

Specificity 
[%]

Error Rate 
[%]

F Score 
[%]

 MLP / 80% 0,89 0,116 0,225 23 45 94,79 92,31 97,73 5,21 94,94

MLP / 66% 0,925 0,087 0,168 17 33 96,32 96,67 95,89 3,68 96,28

MLP / 50% 0,749 0,163 0,287 33 57 87,50 86,51 88,60 12,50 87,54

 RBFC / 80% 0,62 0,343 0,383 69 77 81,25 82,98 79,59 18,75 81,25

RBFC / 66% 0,452 0,356 0,392 71 78 72,39 80,00 65,91 27,61 72,27

RBFC / 50% 0,442 0,392 0,422 78 84 72,08 73,91 70,40 27,92 72,11

 SMO / 80% 0,012 0,5 0,707 99 141 50,00 52,63 49,35 50,00 50,94

SMO / 66% 0,185 0,43 0,66 86 131 56,44 85,19 50,74 43,56 63,59

SMO / 50% 0,151 0,43 0,66 85 130 57,08 73,17 53,77 42,92 61,99
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Figure 1. J48 Decision Tree

Figure 2. Relationship between Hydraulic Unit Oil Temperature, and Failure Prediction
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Figure 3. Relationship between Hydraulic Unit Pressure, and Failure Prediction

Figure 4. Relationship between Yaw Brake Pressure, and Failure Prediction
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indicated that the MLP algorithm, with a distribution 
of 66% training, and 33% testing, yielded the most suc-
cessful result with an accuracy rate of 96.32%.

5. Conclusions
The uninterrupted generation of electricity is a critical 
issue that affects electricity market operations, produc-
tion, and distribution processes. Additionally, it can 
lead to significant financial losses for investors. Preven-
tive maintenance to avoid electrical outages is the most 
economical approach. This study aims to establish pre-
ventive maintenance activities by predicting hydraulic 
failures in advance. 
Based on the results of this study, it is recommended 
to directly integrate the Multilayer Perceptron (MLP) 
algorithm from artificial neural networks into the SCA-
DA system to test its success rate with real data. This 
would allow for continuous live reading of data, facili-
tating the early prediction of failures.
Additionally, forecasting downtime caused by past fail-
ures for future months could provide financial insights 
by establishing predictions between operational costs, 
and revenue.
To determine the optimal parameter values for the al-
gorithms used in WEKA, the use of optimization algo-
rithms is considered to achieve effective results.
Increasing the diversity, and quantity of data may help 
uncover different relationships within the dataset. Fur-
thermore, by working with various decision tree algo-
rithms, the most accurate data for failure classification 
is selected, and incorporated into the algorithm.
Within the scope of preventive maintenance, the fail-
ures addressed in this study is evaluated, leading to the 
creation of preventive activities.
By examining classification errors, the range in which 
the program makes the most errors identified. The 
causes of errors within this range will investigate.
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