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Research Article 

 

Abstract—This paper investigates the application of machine 

learning (ML) models for predicting diabetes using the Pima 

Indians Diabetes Database, with a focus on enhancing model 

interpretability through the use of SHapley Additive exPlanations 

(SHAP). The study evaluates eight ML models, including Adaptive 

Boosting (AdaBoost), k-Nearest Neighbors (k-NN), Logistic 

Regression (LR), Multi-layer Perceptron (MLP), Naive Bayes 

(NB), Random Forest (RF), Support Vector Machine (SVM), and 

eXtreme Gradient Boosting (XGBoost), utilizing both test/train 

split and 10-fold cross-validation methods. The RF model 

demonstrated superior performance, achieving an accuracy of 

82% and an F1-score of 0.83 in the test/train split, and an accuracy 

of 83% and an F1-score of 0.84 in the 10-fold cross-validation. 

SHAP analysis was employed to identify the most influential 

predictors, revealing that glucose, BMI, pregnancies, and insulin 

levels are the key factors in diabetes prediction, aligning with 

established clinical markers. Additionally, the use of the Synthetic 

Minority Over-sampling TEchnique (SMOTE) for class balancing 

and data scaling contributes to robust model performance. The 

study emphasizes the necessity for interpretable ML in healthcare, 

proposing SHAP as a valuable tool for bridging predictive 

accuracy and clinical transparency in diabetes diagnostics.  

 
 

Index Terms—Diabetes Prediction, Explainable Artificial 

Intelligence, Machine Learning Models, Model Interpretability, 

SHapley Additive exPlanation. 

 

I. INTRODUCTION 

IABETES IS a chronic and increasingly prevalent 

condition with profound implications for public health 

worldwide [1-3]. According to recent estimates, the global 

prevalence of diabetes among adults continues to rise, creating 

a significant burden on healthcare systems and underscoring the 

urgent need for effective preventive and diagnostic tools [4]. 

Early prediction of diabetes can enable timely interventions, 

reducing the likelihood of severe complications, improving 

patient outcomes, and potentially decreasing healthcare costs. 

ML models have shown promise in predicting diabetes by 

identifying patterns within clinical and demographic data, 

facilitating early detection [5-9]. However, despite advances in 

predictive accuracy, traditional ML models often lack 

interpretability, which is a critical limitation in clinical settings 

where transparency is paramount. 

The interpretability of a model is especially crucial in 

healthcare, as it provides clinicians with insights into the 

decision-making process, enhances trust in model predictions, 

and supports more informed and individualized patient care. 

Conventional ML models, such as neural networks and 

ensemble methods, typically operate as “black boxes,” yielding 

high predictive accuracy but offering limited understanding of 

how predictions are derived [10, 11]. This opacity creates 

challenges in clinical applications, as healthcare providers 

require an explanation of model decisions to comply with 

ethical standards, support diagnostic conclusions, and facilitate 

shared decision-making with patients. The field of XAI aims to 

address these challenges by developing methods that enhance 

the transparency and interpretability of ML models, making 

them more suitable for sensitive applications such as diabetes 

prediction [12-14]. 

One promising XAI method is SHAP [15], which assigns 

importance values to each feature in a model’s prediction 

process, helping to elucidate the contribution of specific patient 

characteristics to the overall prediction. SHAP is based on 

Shapley values, a concept from cooperative game theory [16], 

and provides consistent, theoretically grounded explanations 

that allow clinicians to understand which features most strongly 

influence the likelihood of diabetes in individual cases. By 

incorporating SHAP, healthcare providers can make more 

confident decisions, potentially identifying high-risk patients 

based on meaningful patterns in data [17]. 

The utilization of ML models for diabetes prediction has 

garnered significant attention in research, driven by the rising 

global prevalence of diabetes and the pressing need for early 

diagnostic solutions. A substantial body of studies has 

concentrated on evaluating and comparing various ML 

algorithms, with a particular emphasis on the Pima Indians 

Diabetes Database [18]. Verma and Khatoon [19] compared 

LR, SVM, k-NN, and RF models, identifying RF as the best 
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performer with an accuracy of 80.08%. Similarly, Xie [20] 

demonstrated that LR slightly outperformed RF and SVM, 

achieving a prediction accuracy of 79.13%. Chang et al. [21] 

emphasized the importance of interpretable models in the 

context of the Internet of Medical Things (IoMT), exploring 

NB, RF, and J48 Decision Tree (DT) models. RF was 

particularly effective for datasets with more features, while NB 

excelled in simpler configurations. Sahoo et al. [22] conducted 

a comparative analysis of supervised classification algorithms, 

including LR, SVM, and RF. Their study highlighted LR and 

DT classifiers as achieving the highest accuracy, demonstrating 

their suitability for diabetes prediction tasks. Similarly, You 

and Kang [23] identified glucose, BMI, and age as the most 

significant predictors using correlation analysis and employed 

SVM and DT models, achieving an accuracy of 70%. Ashour et 

al. [24] evaluated feedforward neural networks (FNN) and 

convolutional neural networks (CNN), with the former 

achieving the highest accuracy of 82%. Akyol and Şen [25] 

examined ensemble learning methods such as AdaBoost, 

Gradient Boosted Trees, and RF, reporting that AdaBoost 

combined with stability selection achieved the best accuracy of 

73.88%. Reza et al. [26] achieved the highest accuracy of 

79.33% using the RF model for the Pima Indian Diabetes 

Dataset, highlighting its effectiveness in diabetes classification. 

Pyne and Chakraborty [27] implemented an artificial neural 

network (ANN) without feature extraction, achieving a 

classification accuracy of 80.79%. 

Efficient preprocessing plays a critical role in enhancing 

model performance. Jain et al. [28] analyzed imputation 

techniques such as Multivariate Imputation by Chained 

Equations (MICE), k-NN, and mean/mode replacement, finding 

that k-NN based imputation improved the predictive accuracy 

of RF models. Karatsiolis and Schizas [29] proposed a region-

based SVM approach that integrated clustering and kernel 

selection, achieving an accuracy of 82.2%.  

While previous studies have primarily focused on predictive 

accuracy and have implemented only a limited selection of ML 

classifiers, they often lack the integration of XAI methods 

necessary for clinical application. This study addresses this gap 

by systematically integrating SHAP into the classification 

process, thereby enhancing interpretability without sacrificing 

accuracy. Our objective is to improve transparency in diabetes 

prediction models, making them more useful for healthcare 

providers and ultimately contributing to better patient care 

through informed decision-making. 

In this study, we employ a variety of ML models, including 

AdaBoost, k-NN, LR, MLP, NB, RF, SVM, and XGBoost. 

These models were selected for their diverse characteristics, 

which range from linear to non-linear and from probabilistic to 

tree-based approaches. The diversity of model types allows for 

a comprehensive evaluation of classification performance and 

interpretability when XAI methods are applied. Furthermore, 

we utilize the Pima Indians Diabetes Database [18], a widely 

referenced dataset in diabetes prediction research, which 

includes relevant clinical and demographic variables. 

II. MATERIALS AND METHOD 

This section provides a comprehensive explanation of the 

dataset, the application of SHAP for model interpretability, the 

performance evaluation metrics utilized to assess the models, 

and the ML algorithms implemented in this study.  

Fig. 1 outlines the process for predicting diabetes using ML 

models. It begins with data collection, where the Pima Indians 

Diabetes Database is utilized as the dataset. This is followed by 

data normalization, ensuring all features are scaled to a 

consistent range for unbiased model training. Next, class 

balancing is performed, employing techniques like SMOTE to 

address any class imbalances in the dataset, such as unequal 

representation of diabetic and non-diabetic cases. In the test-

train splitting step, the data is divided into training and testing 

sets (80% training, 20% testing) to facilitate model evaluation. 

For enhanced reliability, 10-fold cross validation is applied, 

splitting the training data into ten subsets to train and validate 

the model iteratively. During model training, ML algorithms 

are used to learn patterns from the training data. The trained 

model’s effectiveness is then assessed through performance 

evaluation, using metrics like accuracy, precision, recall, and 

F1-score. Finally, SHAP analysis is conducted to interpret the 

model’s decision-making process, identifying the relative 

importance of features in predicting diabetes.  

 

 
 

Fig.1. Workflow of the proposed system 

 

 
A. Dataset 

The dataset employed in this study is the Pima Indians 

Diabetes Database [18], sourced from the National Institute of 
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Diabetes and Digestive and Kidney Diseases repository. This 

dataset is frequently utilized in diabetes research due to its 

comprehensive inclusion of health-related attributes that are 

predictive of diabetes onset. It is widely available for research 

and has become a standard benchmark in diabetes prediction 

modeling studies. 

The Pima Indians Diabetes Database comprises 768 

instances, each representing an individual of Pima Indian 

heritage who is 21 years or older. The dataset includes a total of 

eight predictive features, each capturing an essential 

physiological or clinical variable. These features include: 

1. Number of pregnancies 

2. Plasma glucose concentration (measured two hours post-oral 

glucose tolerance test) 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skinfold thickness (mm) 

5. Serum insulin level (μU/mL) 

6. Body mass index (BMI) (weight in kg/height in m2) 

7. Diabetes pedigree function (a score representing the genetic 

predisposition to diabetes) 

8. Age (years) 

In addition to the eight features, there is a binary target 

variable, representing whether a subject is diagnosed with 

diabetes (1) or not (0). The collection of these variables 

provides a multidimensional view of the factors associated with 

diabetes risk, facilitating the development of predictive models 

in epidemiological studies. 

The data was initially collected as part of a longitudinal study 

aimed at understanding the prevalence of diabetes and its 

related risk factors within the Pima Indian population, which 

has a historically high prevalence of Type 2 diabetes. Variables 

were measured through clinical tests and self-reported metrics 

under controlled conditions, ensuring consistency and 

reliability in the dataset. This database remains a valuable 

resource for diabetes research, especially in exploring 

predictive analytics and the relationship between physiological 

markers and diabetes onset. 

 The dataset contains no null or missing values. However, 

based on domain knowledge [21], certain features—blood 

pressure, BMI, glucose, insulin, and skin thickness—have 

inconsistent values. Specifically, zero values for these features 

are inaccurate as they fall outside the normal range (see Table 

1). 

Table 1 presents the descriptive statistics of eight features 

used in the classification task. The descriptive statistics for the 

eight features in the diabetes dataset provide a comprehensive 

view of each variable’s central tendency, variability, and range. 

The age feature has a mean of 33.24 years, with a mode of 22, 

suggesting a concentration of younger individuals. The median 

age of 29, combined with a dispersion of 0.35, indicates a 

relatively balanced distribution, covering a broad age range 

from 21 to 81. Blood pressure shows a mean of 69.11 mm Hg, 

with central measures closely aligned (mode of 70 and median 

of 72), suggesting symmetry in the distribution. However, the 

minimum value of 0 may indicate missing or erroneous data, 

given that blood pressure values typically exceed zero, and the 

maximum value of 122 reflects a wide range, with a dispersion 

of 0.28. For BMI, the mean and mode both stand at 

approximately 32 kg/m2, suggesting a balanced distribution, yet 

the minimum of 0 and maximum of 67.1 kg/m2 indicate 

considerable variability, which might signal the need for data 

cleaning or further investigation, given its dispersion of 0.25. 

The diabetes pedigree function, with a mean of 0.47, mode of 

0.25, and median of 0.37, reveals significant variability, 

indicated by a high dispersion of 0.70 and a range from 0.08 to 

2.42. This variability likely reflects diverse genetic or familial 

risks for diabetes across the dataset. Glucose levels have a mean 

of 120.89 mg/dL and display moderate dispersion (0.26), with 

values spanning from 0 to 199 mg/dL. A zero glucose value 

may point to missing data, as this measure is generally non-

zero. Insulin levels, with a mean of 79.80 mu U/ml, show a high 

dispersion of 1.44, and values range widely from 0 to 846, 

suggesting individual differences or data collection issues given 

the unusually high mode of 0. Pregnancies exhibit a mean of 

3.85 and a mode of 1, showing a right-skewed distribution with 

a dispersion of 0.88 and a range from 0 to 17 pregnancies, 

aligning with typical reproductive variability. Lastly, Skin 

thickness has a mean of 20.54 mm and shows a right-skewed 

distribution with zeros appearing as the mode, likely indicating 

missing or incomplete data, and a median of 23. The range 

extends from 0 to 99 mm, with a relatively high dispersion of 

0.78. 

1) Data scaling 

In ML, scaling is a crucial preprocessing step that standardizes 

the range of independent features to ensure consistent and 

effective model performance. Data often contains features with 

varying ranges and units, which can introduce bias during the 

training process, particularly when models rely on distance 

calculations, such as in k-NN and SVM [30]. By normalizing 

or standardizing features, scaling brings data into a uniform 

range, reducing the influence of features with larger numerical 

values and ensuring that each feature contributes equitably to 

the model. This step is especially beneficial in gradient-based 

algorithms, where unscaled data may lead to suboptimal 

convergence or slower learning as the model becomes prone to 

oscillating toward larger-scale features. Beyond enhancing 

model efficiency, scaling offers several key advantages, such as 

improved algorithm accuracy and increased computational 

speed. Models trained on scaled data demonstrate better 

generalization and tend to avoid overfitting by reducing 

variance related to magnitude differences between features 

[31]. As ML solutions are increasingly applied to varied 

datasets across domains, implementing scaling is vital for 

achieving reliable, reproducible, and high-performance models. 

2) Class balancing 

In this study, the Pima Indian Diabetes dataset, characterized by 

two classes—diabetic and non-diabetic individuals—exhibits a 

marked class imbalance, with a significantly higher number of 

non-diabetic cases relative to diabetic ones. Class imbalance is 

a critical issue in ML and statistical modeling, as it can lead to 

biased models that disproportionately favor the majority class, 

consequently compromising the predictive performance, 

especially for the minority class [32]. To mitigate this 

imbalance and enhance model efficacy, we employed SMOTE 

[33]. SMOTE is a sophisticated resampling method that 

generates synthetic examples in the minority class by 

interpolating between existing samples, thus balancing the 

dataset without simply duplicating minority instances. By 
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equalizing the sample size across classes, SMOTE promotes a 

more representative learning process, enabling the model to 

better capture patterns pertinent to both diabetic and non-

diabetic individuals. This process not only improves 

classification accuracy but also ensures that the model’s 

performance is more robust and reliable, particularly in real-

world applications where balanced prediction accuracy across 

classes is crucial.  

 

 

 

TABLE I 

DESCRIPTIVE STATISTICAL VALUE OF THE DATASET 

Feature Distribution Mean Mode Median Dispersion Min. Max. 

Age 

 

33.24 22 29 0.35 21 81 

Blood 

pressure 

 

69.11 70 72 0.28 0 122 

Body mass 

index (BMI) 

 

31.99 32 32 0.25 0 67.1 

Diabetes 

pedigree 

function 
 

0.47 0.25 0.37 0.70 0.08 2.42 

Glucose 

 

120.89 99 117 0.26 0 199 

Insulin 

 

79.80 0 30.50 1.44 0 846 

Pregnancies 

 

3.85 1 3 0.88 0 17 

Skin 

thickness 

 

20.54 0 23 0.78 0 99 

 

B. Machine Learning Models 

To predict diabetes diagnoses, we evaluated multiple ML 

classification models, each with distinct principles and 

methodologies tailored to enhance predictive performance and 

interpretability. Below, we detail the models considered for this 

study. 

Adaptive Boosting (AdaBoost) is a ML algorithm that 

combines multiple weak learners to create a strong learner [34]. 

It works by iteratively weighting the training data, giving more 

weight to misclassified instances in each iteration. This process 

results in a final model that is more accurate and robust than 

any individual weak learner. 

k-Nearest Neighbors (k-NN) works by measuring the 

distances between a test data instance and all instances in the 

training dataset. It then identifies the k nearest training 

instances to classify the test instance [35]. The model is 

advantageous in scenarios with well-defined clusters and is 

non-parametric, requiring minimal assumptions, making it 

adaptable for varying diabetes-related datasets. 

Logistic Regression (LR) is based on a statistical model that 

predicts binary outcomes by estimating probabilities through a 

logistic function [36]. In the context of diabetes prediction, LR 

is favored for its simplicity and interpretability, particularly in 

assessing linear relationships between predictors and the 

likelihood of disease presence. 

Multi-Layer Perceptron (MLP) is a neural network model that 

consists of multiple layers of interconnected nodes, where each 

node represents a neuron [37]. MLPs are characterized by their 

ability to capture non-linear relationships in data through 

backpropagation and activation functions. This model is 

advantageous for its flexibility in learning complex patterns, 

which is beneficial when diagnosing diabetes based on various 

patient features. 

Naive Bayes (NB) assumes independence among predictor 

features and calculates the probability of class membership 

using Bayes’ theorem [38]. Despite the simplicity of this 
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independence assumption, NB often performs well in medical 

contexts where conditional probabilities are informative, thus 

providing a quick and computationally efficient option for 

diabetes prediction. 

Random Forest (RF) enhances the decision tree method by 

constructing an ensemble of multiple trees, each trained on 

different data subsets and feature splits [39]. This model 

improves generalization and reduces overfitting, making it 

robust for the variability present in medical data, such as diverse 

patient demographics and health indicators relevant to diabetes. 

Support Vector Machine (SVM) attempts to find an optimal 

hyperplane that maximizes the margin between classes [40], 

effectively separating diabetic and non-diabetic instances in 

high-dimensional spaces. SVM is particularly suited for 

datasets where feature dimensions are high, offering strong 

performance with appropriate kernel selection, especially for 

complex, non-linear decision boundaries. 

eXtreme Gradient Boosting (XGBoost) optimizes the 

Gradient Boosting algorithm with techniques such as 

regularization, parallelization, and efficient handling of sparse 

data [41]. It has demonstrated success in improving both speed 

and accuracy, which is beneficial in a diabetes diagnosis setting 

where quick, reliable predictions are essential for timely patient 

interventions. 

Each of these models was selected for its unique properties, 

strengths, and applicability to the problem of diabetes 

diagnosis, providing a comprehensive approach to exploring 

the predictive capacity of different ML techniques. 

C. SHapley Additive exPlanation (SHAP) 

SHAP is a model-agnostic interpretability approach rooted in 

cooperative game theory [16]. SHAP aims to enhance model 

transparency by assigning importance scores to features based 

on their contribution to prediction, enabling researchers to gain 

insights into the influence of each feature. By calculating 

Shapley values, SHAP helps to decompose the model output in 

a way that considers all possible feature interactions, making it 

a robust tool for feature interpretability in complex ML models 

[15]. This subsection provides a detailed methodology on two 

SHAP visualizations: SHAP Feature Importance (meanSHAP) 

and SHAP Summary Plot (Beeswarm Plot), each of which plays 

a distinct role in elucidating model behavior. 

1) SHAP feature importance (meanSHAP) 

SHAP feature importance, commonly expressed as 

meanSHAP, quantifies the average effect of each feature on the 

model output by calculating the mean of the absolute SHAP 

values for each feature across all instances in the dataset. 

Mathematically, for a given feature 𝑓, the mean SHAP value is 

computed as [42]: 

 

𝑚𝑒𝑎𝑛𝑆𝐻𝐴𝑃(𝑓) =
1

𝑁
∑|∅𝑓,𝑖|

𝑁

𝑖=1

 (1) 

 

where 𝑁 represents the number of instances, and 𝜙𝑓,𝑖 denotes 

the SHAP value for feature 𝑓 in instance 𝑖. This aggregation of 

absolute SHAP values provides a singular, intuitive metric that 

ranks features by their average importance, capturing both the 

magnitude and frequency of their impact on model predictions. 

The meanSHAP metric serves as a foundational 

interpretability measure, offering a clear, quantitative 

assessment of feature relevance. By focusing on absolute 

values, meanSHAP accounts for both positive and negative 

contributions of each feature, facilitating a comprehensive view 

of feature importance. Unlike traditional importance measures 

that may overlook feature interactions or nonlinear effects, 

meanSHAP is based on Shapley values, which incorporate the 

complete range of feature interdependencies, thus offering a 

reliable and interpretable importance ranking that aligns closely 

with model behavior [15, 43]. 

2) SHAP summary plot (beeswarm plot) 

The SHAP summary plot, also referred to as the beeswarm plot, 

visually represents the distribution of SHAP values across all 

instances for each feature. In this plot, each feature is displayed 

along the vertical axis, while the horizontal axis represents the 

range of SHAP values, indicating the magnitude and direction 

of feature impact on model predictions. Each point on the plot 

corresponds to the SHAP value for an individual instance, with 

the points color-coded to represent the feature values, typically 

on a blue-to-red gradient, where red denotes higher feature 

values and blue denotes lower ones. The beeswarm plot is 

particularly useful in examining how each feature affects the 

model output, providing insights into the distribution of feature 

impact. For instance, a wide horizontal spread of points 

suggests that a feature has variable importance across instances, 

while clustering around zero indicates minimal influence. 

Additionally, by examining the color gradients, researchers can 

infer the relationship between feature values and their 

corresponding SHAP values, revealing patterns such as whether 

higher feature values lead to increased or decreased predictions 

[15, 44]. 

D. Performance Evaluation Metrics 

Evaluation metrics such as accuracy, precision, recall, F1-

score, and confusion matrix are employed to assess the models. 

These statistical measures are derived from ground truth values, 

namely True Positive (TP), False Positive (FP), True Negative 

(TN), and False Negative (FN). The calculations for accuracy, 

precision, recall, and F1-score can be found in Eqs. (2), (3), (4), 

and (5), respectively. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

These variables are calculated using the confusion matrix, 

which is a tabular representation showing the values of the 

actual outcome classes and the predicted outcome classes on the 

testing dataset as shown in Fig. 2.  
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Fig. 2. Confusion matrix 

III. RESULTS 

This section provides a comprehensive analysis of the 

study’s findings, including the evaluation of eight ML models. 

Additionally, the application of XAI method, specifically 

SHAP, is detailed to elucidate the models’ internal mechanisms 

and decision-making processes, enhancing interpretability and 

transparency. To evaluate model performance, the dataset was 

divided into training (80%) and testing (20%) sets and applied 

a 10-fold cross-validation. 

Table 2 presents confusion matrices for several ML models 

tested to predict diabetes in women of Pima Indian heritage. 

Each confusion matrix displays the performance of a specific 

model in classifying individuals as either having diabetes 

(positive) or not having diabetes (negative). The rows of the 

matrix represent the true class (actual diabetes status), while the 

columns represent the predicted class assigned by the model.

 

TABLE II 

CONFUSION MATRICES OF ML MODELS USING TEST/TRAIN SPLIT  

A
d

a
B

o
o

st
 

    Predicted 

N
B

 

    Predicted 

  Diabetic Non-Diabetic   Diabetic Non-Diabetic 

A
ct

u
a

l Diabetic 70 29 

A
ct

u
a

l Diabetic 79 20 

Non-Diabetic 21 80 Non-Diabetic 26 75 

          

k
-N

N
 

    Predicted 

R
F

 

    Predicted 

  Diabetic Non-Diabetic   Diabetic Non-Diabetic 

A
ct

u
a

l Diabetic 75 27 

A
ct

u
a

l Diabetic 76 23 

Non-Diabetic 12 89 Non-Diabetic 13 88 

          

L
R

 

    Predicted 

S
V

M
 

    Predicted 

  Diabetic Non-Diabetic   Diabetic Non-Diabetic 

A
ct

u
a

l Diabetic 72 27 

A
ct

u
a

l Diabetic 71 28 

Non-Diabetic 23 78 Non-Diabetic 12 89 

          

M
L

P
 

    Predicted 

X
G

B
o

o
st

 

    Predicted 

  Diabetic Non-Diabetic   Diabetic Non-Diabetic 

A
ct

u
a

l Diabetic 68 31 

A
ct

u
a

l Diabetic 71 28 

Non-Diabetic 14 87 Non-Diabetic 17 84 

         

 

In Table 2, the AdaBoost algorithm demonstrates a balanced 

performance in terms of sensitivity and specificity, producing 

70 true positives (TP) and 80 true negatives (TN), with 21 false 

positives (FP) and 29 false negatives (FN). The NB model 

performs well in identifying diabetic individuals with 79 true 

positives, though it shows a slight decline in specificity with 75 

true negatives. The k-NN algorithm exhibits high specificity, 

achieving 89 true negatives and only 12 false positives, but 

relatively lower sensitivity with 27 false negatives. The RF 

model delivers balanced performance, achieving 76 true 

positives and 88 true negatives. LR provides an acceptable 

balance between sensitivity and specificity, with 72 true 

positives and 23 false positives, but yields 27 false negatives, 

indicating limitations in identifying diabetic cases. The SVM 

model shows a comparable performance to LR but stands out 

with higher specificity, achieving 89 true negatives. The MLP 

model, with 68 true positives and 87 true negatives, 

demonstrates slightly lower sensitivity and yields 31 false 

negatives. Finally, the XGBoost model strikes a balance 

between sensitivity and specificity, achieving 71 true positives 

and 84 true negatives. 
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Table 3 provides a performance comparison of eight ML 

models based on accuracy, precision, recall, and F1-score using 

two approaches: the test/train split and 10-fold cross-validation. 

For the test/train split (20/80), the RF model stands out with 

the highest performance metrics: an accuracy of 0.82, precision 

of 0.82, recall of 0.82, and F1-score of 0.83. This indicates that 

RF is particularly adept at capturing complex, non-linear 

relationships in the dataset, resulting in balanced and robust 

predictions. Following RF, the k-NN model demonstrates 

competitive performance, achieving an accuracy of 0.81, 

precision of 0.81, recall of 0.80, and F1-score of 0.82. Similarly, 

SVM also shows strong results with an accuracy of 0.80, 

precision of 0.81, recall of 0.80, and F1-score of 0.82, indicating 

its effectiveness in handling high-dimensional data and 

distinguishing between diabetic and non-diabetic cases. In 

contrast, models such as AdaBoost, LR, and NB exhibit 

moderate performance, with accuracy and F1-scores ranging 

between 0.75 and 0.77. While these models offer 

interpretability and computational efficiency, their lower 

sensitivity suggests potential limitations in identifying diabetic 

cases. 
 

TABLE III 

COMPARATIVE PERFORMANCE ANALYSIS OF ML MODELS FOR 

TEST/TRAIN AND CROSS-VALIDATION 

Data 

Splitting 

Model Accuracy Precision Recall F1-

score 

Test/Train 

(20/80) 

AdaBoost 0.75 0.75 0.75 0.76 

k-NN 0.81 0.81 0.80 0.82 

LR 0.75 0.75 0.75 0.76 

MLP 0.78 0.78 0.77 0.79 

NB 0.77 0.77 0.77 0.77 

RF 0.82 0.82 0.82 0.83 

SVM 0.80 0.81 0.80 0.82 

XGBoost 0.78 0.78 0.77 0.79 

Cross-

validation 

(10-fold) 

AdaBoost 0.79 0.79 0.79 0.79 

k-NN 0.81 0.82 0.81 0.82 

LR 0.76 0.76 0.76 0.75 

MLP 0.80 0.80 0.80 0.81 

NB 0.74 0.74 0.74 0.72 

RF 0.83 0.83 0.83 0.84 

SVM 0.79 0.79 0.79 0.80 

XGBoost 0.81 0.81 0.81 0.81 

 

 Cross-validation results further reinforce RF’s superior 

performance, with an accuracy of 0.83, precision of 0.83, recall 

of 0.83, and F1-score of 0.84. The consistency of RF’s 

performance across both evaluation methods underscores its 

reliability and robustness in diabetes prediction. The k-NN 

model also performs exceptionally well, with an accuracy of 

0.81, precision of 0.82, recall of 0.81, and F1-score of 0.82. Its 

strong results are indicative of its effectiveness in leveraging 

the local relationships among data points, particularly after the 

dataset has been balanced and scaled. The XGBoost model 

achieves an accuracy of 0.81 and maintains precision, recall, 

and F1-scores at 0.81 as well. The MLP model achieves 

comparable results, with accuracy, precision, and recall scores 

of 0.80, and an F1-score of 0.81. The slight improvement in F1-

score compared to the test/train split suggests that MLP benefits 

from the diversified training subsets in cross-validation, 

allowing it to better generalize its predictions. The SVM model 

also performs well, achieving an accuracy and precision of 0.79, 

with recall and F1-scores matching at 0.79 and 0.80, 

respectively. SVM’s performance underscores its ability to 

construct decision boundaries effectively, especially in high-

dimensional spaces, though its metrics are slightly lower 

compared to RF and k-NN. The AdaBoost model demonstrates 

moderate performance during cross-validation, with accuracy, 

precision, recall, and F1-scores all at 0.79. While its 

performance is slightly better than that in the test/train split, it 

still lags behind ensemble methods like RF and XGBoost in 

capturing the dataset’s complexity. The LR model maintains 

consistent but relatively lower results compared to more 

advanced models, achieving an accuracy and precision of 0.76, 

recall of 0.76, and an F1-score of 0.75. Its simplicity and 

interpretability remain its key advantages, though its limited 

ability to handle non-linear relationships constrains its 

performance. The NB model exhibits the weakest performance 

among all models, with accuracy, precision, and recall scores at 

0.74, and an F1-score of 0.72. Its simplistic assumption of 

feature independence may not align well with the real-world 

interactions within the dataset, leading to suboptimal results in 

distinguishing diabetic and non-diabetic cases.  

 Figs. 3 and 4 visually compare the performance of various 

ML models under two distinct evaluation methods: the test/train 

split and 10-fold cross-validation. 

Fig. 3 provides a comparative visual analysis, showing that 

models such as RF, k-NN, and SVM consistently achieve 

superior performance across metrics, demonstrating their 

robustness and suitability for diabetes prediction. Simpler 

models, like LR and NB, exhibit moderate performance, which, 

while computationally efficient, reveal limitations in handling 

the dataset’s complexity.  

Fig. 4, on the other hand, presents the performance results 

obtained through 10-fold cross-validation. The results further 

validate the consistency and robustness of RF and k-NN 

models, which maintain high accuracy and F1-scores, 

underscoring their reliability in diabetes prediction tasks. 

Additionally, cross-validation highlights improvements in 

performance for models such as AdaBoost, MLP, and 

XGBoost.  

 
Fig. 5. Importance ranking of the model prediction features 

 

The ranking indicates that glucose level is the most critical 

feature, suggesting that higher glucose levels strongly correlate 

with diabetes likelihood. This aligns with clinical expectations, 

as elevated glucose is a primary indicator of diabetes. BMI 

ranks as the second most important feature, highlighting the 

strong association between obesity and diabetes risk. This 

finding underscores the importance of body weight relative to 
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height in assessing metabolic health. Pregnancy is also 

identified as a critical factor, likely due to the increased 

metabolic stress during pregnancy, which can elevate the risk 

of developing diabetes. Insulin levels demonstrate a 

considerable impact on the model’s predictions, capturing the 

intricate relationship between insulin metabolism and diabetes. 

Less influential features include diabetes pedigree function, 

blood pressure, age, and skin thickness, although they still 

contribute to the predictive model. The relatively lower 

importance of these features may indicate that while they 

provide valuable context, they are not as directly correlated with 

diabetes onset as glucose levels and BMI. 

Fig. 6. is a visual representation that shows the importance of 

various features in predicting diabetes, using SHAP values. In 

this plot, each feature is displayed on the y-axis, ordered by its 

significance in the prediction, with the SHAP value distribution 

across instances plotted horizontally on the x-axis. The SHAP 

values indicate the magnitude and direction (positive or 

negative impact) of each feature on the model’s prediction 

outcome for diabetes risk. Each dot represents an individual 

instance, with the color gradient (from blue to red) 

corresponding to the feature value’s magnitude, where red 

signifies higher values and blue lower ones. 

Glucose often appears as the most significant predictor in 

diabetes-related models. Higher glucose levels, represented by 

red-colored points on the positive side of the SHAP values, 

usually increase the prediction probability for diabetes, 

reflecting the well-established clinical link between elevated 

blood glucose and diabetes risk. BMI, which indicates body 

weight relative to height, typically ranks high in importance. 

Higher BMI values (marked in red) are often associated with a 

higher probability of diabetes due to the strong association 

between obesity and diabetes risk. Pregnancies, which represent 

the number of times a patient has been pregnant, play an 

important role. Higher values (red) generally increase the 

SHAP values, indicating a higher likelihood of diabetes, 

potentially due to physiological changes associated with 

multiple pregnancies. Insulin demonstrates a moderate level of 

importance. Higher insulin levels (red) are positively associated 

with increased diabetes prediction scores, reflecting the body’s 

compensatory response to insulin resistance. Lower values 

(blue), however, have a varying impact, suggesting a more 

complex relationship.  

 

 
Fig. 3. Visualization of the performance metrics results for ML models using test/train split 

 

 
Fig. 4. Visualization of the performance metrics results for ML models using 10-fold cross-validation 

 RF was selected for SHAP analysis due to its superior 

predictive performance. Fig. 5 illustrates the significance of 
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various features in predicting diabetes using SHAP values. In 

this plot, features are ranked based on their average SHAP 

values, highlighting their relative impact on the model’s 

predictions. 

 
Fig. 6. SHAP summary plot 

 

Diabetes pedigree function, blood pressure and age also 

contribute to the model, albeit with less impact compared to 

glucose and BMI. Diabetes pedigree function quantifies the 

genetic predisposition to diabetes. High values (red), indicating 

a stronger family history, consistently increase the SHAP 

values, reinforcing the heritability of diabetes risk. Low values 

(blue) contribute negatively, reducing the prediction 

probability. Older individuals (red dots for age) tend to show a 

higher likelihood of diabetes due to age-related declines in 

metabolic health, while lower ages (blue) reduce the risk. 

Similarly, higher blood pressure values (red) are modestly 

associated with increased predictions, consistent with the link 

between hypertension and diabetes risk. Skin thickness, the 

least impactful feature, shows a nuanced pattern. 

 

IV. DISCUSSIONS 

This study reveals critical insights into the application of ML 

models for predicting diabetes, particularly highlighting the 

efficacy of ensemble methods and the importance of model 

interpretability. The most significant finding is the superior 

performance of the RF model, which achieved an accuracy of 

82% and an F1-score of 0.83 in the test/train split evaluation, 

and an even higher accuracy of 83% and an F1-score of 0.84 in 

the 10-fold cross-validation (Table 3, Fig. 3, and Fig. 4). These 

results underscore RF’s ability to capture complex, non-linear 

relationships within the Pima Indians Diabetes Database. 

Furthermore, the SHAP analysis identified glucose, BMI, 

pregnancies, and insulin as the most influential predictors, 

aligning with established clinical markers of diabetes (Fig. 5 

and Fig. 6). The prominence of glucose levels, as indicated by 

the highest mean SHAP value, reinforces its well-documented 

role as a primary indicator of diabetes risk, while the 

importance of BMI reflects the known association between 

obesity and metabolic disorders. 

TABLE IV 

COMPARISON OF DIABETES PREDICTION STUDIES 

Study Models Best Model Accuracy 

Verma and Khatoon [19] LR, SVM, k-NN, RF RF 80.08% 

Xie [20] k-NN, LR, SVM, RF LR 79.13% 

Chang et al. [21] NB, RF, J48 DT RF 79.57% 

Sahoo et al. [22] 
NB, LR, DT, RF, 

SVM, XGBoost 
LR 74.03% 

You and Kang [23] SVM, DT SVM 70.40% 

Ashour et al. [24] FNN, CNN FNN 82% 

Akyol and Şen [25] 
AdaBoost, Gradient 

Boosted Trees, RF 
AdaBoost 73.88% 

Reza et al. [26] 
Stacking Ensemble 

(Classical + Deep) 

Stacking Ensemble 

(Deep NN) 

75.03% (train/test), 

77.10% (5-fold cross-

validation) 

Pyne and Chakraborty [27] ANN ANN 80.79% 

Jain et al. [28] DT, RF, SVM, NB RF 79.08% 

Karatsiolis and Schizas [29] 

Modified SVM with 

RBF and Polynomial 

Kernel 

Modified SVM 82.2% 

This Study 

AdaBoost, k-NN, 

LR, MLP, NB, RF, 

SVM, XGBoost 

RF 
82% (Train/Test), 

83% (10-fold cross-

validation) 

The findings of this study contribute to a growing body of 

literature that evaluates ML models for diabetes prediction, as 

summarized in Table 4. Our results demonstrate that the RF 

model, particularly when combined with SHAP analysis, 

outperforms previously reported as applied to the same dataset. 

For instance, Akyol and Şen [25] reported an accuracy of 

73.88% using AdaBoost, while Verma and Khatoon [19] 

achieved 80.08% accuracy with RF. Our study’s RF model 

surpasses these benchmarks, achieving 83% accuracy in the 10-

fold cross-validation. This improvement can be attributed to our 
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use of the SMOTE for class balancing and the integration of 

SHAP values for enhanced interpretability. However, our 

results are comparable to those of Xie [20], who reported 

79.13% accuracy with LR, and Jain et al. [28], who achieved 

79.08% accuracy with Random Forest. These variations 

highlight the influence of different preprocessing techniques 

and model configurations on predictive performance. 

A key strength of this study lies in its integration of XAI 

methods, specifically SHAP, to enhance model interpretability. 

While many previous studies have focused on predictive 

accuracy, the clinical applicability of ML models hinges on 

their transparency and the ability to provide actionable insights. 

By incorporating SHAP values, we provide a clear, quantitative 

assessment of feature importance, bridging the gap between 

predictive accuracy and clinical utility. This approach not only 

elucidates the model’s decision-making process but also builds 

trust among healthcare providers by offering a deeper 

understanding of the factors driving predictions. Additionally, 

the use of SMOTE to address class imbalance ensures that the 

models are trained on a representative dataset, thereby 

enhancing their robustness and reliability in real-world 

scenarios. 

Despite the strengths, this study has certain limitations. The 

reliance on the Pima Indians Diabetes Database, while a widely 

used benchmark, may introduce biases related to the specific 

population studied, potentially limiting the generalizability of 

the findings to other ethnic groups. Additionally, the study 

identified inconsistencies in the dataset, particularly in insulin, 

skin thickness, and blood pressure values, which could affect 

model performance. Although SMOTE was employed to 

mitigate class imbalance, the inherent limitations of the dataset 

cannot be entirely overcome. Furthermore, while the SHAP 

analysis enhances interpretability, it is essential to acknowledge 

that model interpretability is a complex and evolving field, and 

the explanations provided by SHAP, while valuable, may not 

fully capture the intricate decision-making processes of the 

models.  

This study makes a significant contribution to the field of 

diabetes prediction by demonstrating the effectiveness of 

advanced ML models, particularly RF and k-NN, and by 

enhancing model interpretability through SHAP analysis. The 

findings underscore the importance of integrating XAI methods 

in healthcare applications to foster trust and facilitate clinical 

adoption. Future research should focus on validating these 

models with more diverse datasets and refining feature 

engineering to address the identified inconsistencies. 

Additionally, exploring the integration of other XAI techniques 

and investigating the longitudinal performance of these models 

in real-world clinical settings could further enhance their 

applicability. The insights gained from this study pave the way 

for developing more transparent, reliable, and clinically 

relevant predictive tools for diabetes, ultimately contributing to 

improved patient outcomes and more effective healthcare 

strategies. The study’s findings open new research avenues, 

particularly in the development of personalized medicine 

approaches, where individual risk factors can be evaluated with 

greater precision and transparency. 

V. CONCLUSION 

 This study demonstrates the successful integration of ML 

models and XAI techniques to enhance the predictive accuracy 

and interpretability of diabetes diagnosis using the Pima Indians 

Diabetes Database. The RF model emerged as the most 

effective classifier, achieving an accuracy of 83% and an F1-

score of 0.84 in 10-fold cross-validation, underscoring its 

capability to model complex, non-linear relationships within 

the dataset. The incorporation of SHAP values provided critical 

insights into the contributions of various predictors, with 

glucose, BMI, pregnancies, and insulin identified as the most 

influential features. These findings align with established 

clinical markers of diabetes, affirming the validity of the 

model’s decision-making process. This study, therefore, not 

only bridges the gap between predictive accuracy and clinical 

transparency but also provides a methodological framework for 

leveraging XAI to enhance the interpretability of ML models in 

healthcare. The incorporation of the SMOTE for class 

balancing further contributed to the robustness of the models, 

ensuring their reliability across diverse datasets and real-world 

scenarios.  

The contributions of this research are multifold, extending 

the frontier of knowledge in both data mining and artificial 

intelligence applications within the healthcare domain. The 

integration of SHAP values into the diabetes prediction process 

is demonstrated to enhance transparency and trustworthiness in 

AI systems, facilitating their adoption in clinical practice. 

However, this study acknowledges its limitations, including the 

reliance on a single dataset, which may constrain the 

generalizability of the findings to other populations and clinical 

settings. Additionally, while SHAP analysis enhances 

interpretability, the inherent complexities of ML models mean 

that complete transparency remains an elusive goal. Future 

research should endeavor to validate these models with more 

diverse datasets and explore the integration of additional XAI 

techniques to further enhance model interpretability. A 

speculative, yet promising, direction could involve the 

development of longitudinal studies that track model 

performance and interpretability over time, providing insights 

into the dynamic nature of diabetes risk factors.  
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