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Abstract. In this paper, we introduce the concept of ϑ-p-proximal contraction mapping
on b-metric spaces. Then, we obtain some best proximity results for these mappings. Also,
an example to support the validity and superiority of our result has been given. Lastly, for
the existence of solutions of nonlinear fractional differential equations of Caputo type we
provide an application.

1. Introduction

In nonlinear analysis, game theory, approximation theory, differential equations, and
control systems, fixed point theory is a crucial tool for resolving a variety of issues. As
a result, numerous authors have enhanced fixed point theory. The Banach contraction
principle [4], which is considered as the foundation of fixed point theory on metric spaces,
was presented in this context. Let (Π, η) be a complete metric space and κ : Π → Π be
a contraction mapping, then κ has a unique fixed point. The existence and uniqueness of
fixed points in this field have been showed by numerous results [7, 11, 12]. Lately, Popescu
[17] extended Banach contraction by introducing a new type of contractive condition called
p-contraction. Let (Π, η) be a metric space and κ : Π → Π be a mapping. If there exists a
ϱ in [0, 1) such that

η(κř, κ ŝ) ≤ ϱ[η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|]
for all ř, ŝ ∈ Π, then κ is said to be a p-contraction mapping. Then, Popescu [17] proved
that every p-contraction on a complete metric space has a unique fixed point.

Taking into account nonself mappings κ : A → B where A, B are nonempty subsets of
a metric space (Π, η), the fixed point theory has recently been improved. A solution to the
equation κř = ř cannot exist if the intersection of A and B is empty. Then, it is natural to
search if there is a point ř in A such that η(ř, κř) = η(A, B) which is called a best proximity
point of κ [6]. Numerous authors have written about this subject due to the fact that each
best proximity point turns into a fixed point in the case of A = B = Π [2, 5, 13, 14, 15].

The relevant basic definitions and symbols of best proximity point theory are now re-
stated.
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Let (Π, η) be a metric space and ∅ , A, B ⊆ Π. We will use the subsets of A and B,
respectively:

A0 = {ŝ ∈ A : η(ŝ, ř) = η(A, B) for some ř ∈ B}
and

B0 = {ř ∈ B : η(ŝ, ř) = η(A, B) for some ŝ ∈ A}
where η(A, B) = inf{η(ŝ, ř) : ŝ ∈ A and ř ∈ B}.

Definition 1.1. [5] Let (Π, η) be a metric space and A, B be nonempty subsets of Π. A
mapping κ : A → B is said to be proximal contraction, if there exists a real number
ϱ ∈ [0, 1) such that

η(ŵ1, κř1) = η(A, B)
η(ŵ2, κř2) = η(A, B)

}
⇒ η(ŵ1, ŵ2) ≤ ϱη(ř1, ř2)

for all ŵ1, ŵ2,ř1,ř2 ∈ A.

Definition 1.2. [9] Let (Π, η) be a metric space and ∅ , A, B ⊆ Π. Assume that ϑ : A×A→
[0,∞) is a function and κ : A → B is a mapping. If the following condition holds, we say
that κ is ϑ-proximal admissible

ϑ(ř0, ř1) ≥ 1
η(ř1, κř0) = η(A, B)
η(ř2, κř1) = η(A, B)

 =⇒ ϑ(ř1, ř2) ≥ 1

for all ř0, ř1, ř2 ∈ A.

On the other hand, Czerwik [8, 10] established an extansion of the famous principle in a
different approach than the results found in the literature by introducing a pleasant concept
of a b-metric.

Definition 1.3. [10] Let Π be a non-empty set and η : Π × Π → [0,∞) be a function
satisfying for all ŝ, ř, z ∈ Π,

b1) ŝ = řif and only if η(ŝ, ř) = 0,
b2) η(ŝ, ř) = η(ř, ŝ),
b3) η(ŝ, z) ≤ s[η(ŝ, ř) + η(ř, z)] where s ≥ 1.

Then, η is called a b-metric on Π with coefficient s. Also, (Π, η) is said to be a b-metric
space.

Each metric space is obviously a b-metric space. The opposite might not be right,
though. In fact, letΠ = R and η : Π×Π→ [0,∞) be a function defined by η(ŝ, ř) = (ŝ − ř)2

for all ŝ, ř ∈ Π. Then (Π, η) is a b-metric space with the coefficient s = 2. Choose ŝ = 7,
ř = 4 and z = 5, then

η(7, 4) = 9 > 5 = η(7, 5) + η(5, 4).
Hence, it is not a metric space.

Let (Π, η) be a b-metric space with the coefficient s ≥ 1. Let {řn} be sequence in Π and
ŝ ∈ Π. Then, the sequence {řn} converges to ŝ with respect to τη if and only if

lim
n→∞

η(řn, ř) = 0.

The sequence {řn} is called a Cauchy sequence if for all ε > 0 there is n0 ∈ N satisfying
η(řn, řm) < ε for all m, n ≥ n0. (Π, η) is called a complete b-metric space if each Cauchy
sequence converges to ř ∈ Π with respect to τη.

Any b-metric might not be continuous, in contrast to the regular metric. The following
definition, which is crucial to our primary findings, helps us get beyond this drawback.
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Definition 1.4. [3] Let (Π, η) be a b-metric space with the coefficient s ≥ 1 and ∅ , A, B ⊆
Π with A0 , ∅. The pair (A, B) holds the property (MC) if for every sequences {řn} in A0,
{ŝn} in B0 and ř ∈ A, ŝ ∈ B, we have

lim
n→∞

η(řn, ř) = lim
n→∞

η(ŝn, ŝ) = 0 =⇒ lim
n→∞

η(řn, ŝn) = η(ř, ŝ).

Now, we recall the following definition.

Definition 1.5. [3]Let (Π, η) be a b-metric space with the coefficient s ≥ 1. If each se-
quence {ŝn} in B such that η(ř, B) ≤ limn→∞ η(ř, ŝn) ≤ sη(ř, B) for some ř ∈ A has a
convergent subsequence in B, then B is called an s-approximately compact with respect to
A.

In this paper, we obtain some best proximity results on b-metric spaces by introducing
the concept of ϑ-p-proximal contraction mapping. Also, we give an example to support
the validity and superiority of our results. Finally, an application to an existence of the
solution of nonlinear fractional differential equations for Caputo type is given.

2. Main Results

We begin this section with the following definition.

Definition 2.1. Let (Π, η) be a b-metric space with s ≥ 1, A, B ⊆ Π with A0 , ∅. Assume
that ϑ : A×A→ [0,∞) is a function and κ : A→ B is a mapping. If there exist ϱ ∈

[
0, 1

2s−1

)
such that

η(ŵ, κř) = η(A, B)

η(v, κ ŝ) = η(A, B)

ϑ(ř, ŝ)η(ŵ, v) ≤ ϱ {η(ř, ŝ) + |η(ř, ŵ) − η(ŝ, v)|}

for all ř, ŝ, ŵ, v ∈ A, then we say κ is an ϑ-p-contraction mapping.

Now, we give an important condition for our main result.
(H) If {řn} ⊆ A0 is a sequence satisfying ϑ (řn, řn+1) ≥ 1 and řn → ř ∈ A, then there is

a subsequence
{
řnk

}
of {řn} satisfying ϑ

(
řnk , ř

)
≥ 1 for all k ∈ N.

Theorem 2.1. Let (Π, η) be a complete b-metric space with s ≥ 1, A, B ⊆ Π with A0 , ∅.
Assume that the following conditions hold:

i) the condition (H) holds and κ : A→ B is ϑ-p-proximal contraction mapping with
κ(A0) ⊆ B0,

ii) κ is an ϑ-proximal admissible,
iii) the pair (A, B) satisfies the property (MC),
iv) there are ř0,ř1 ∈ A0 such that η(ř1, κř0) = η(A, B) and ϑ(ř0, ř1) ≥ 1,
v) B is an s-approximately compact with respect to A.

Then, κ has a best proximity point ř∗ in A.If for another best proximity point ŝ∗ ∈ A,
ϑ (ř∗, ŝ∗) ≥ 1, then ř∗ = ŝ∗.

Proof. From the condition (iv), there are ř0, ř1 ∈ A0 such that η(ř1, κř0) = η(A, B) and
ϑ(ř0, ř1) ≥ 1. Since κř1 ∈ κ(A0) ⊆ B0, there exists ř2 ∈ A0 such that

η(ř2, κř1) = η(A, B).

Since κ is an ϑ-proximal admissible, we get ϑ(ř1, ř2) ≥ 1. Similarly, since κř2 ∈ κ(A0) ⊆
B0, there exists ř3 ∈ A0 such that

η(ř3, κř2) = η(A, B).
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Since κ is an ϑ-proximal admissible, we get ϑ(ř2, ř3) ≥ 1. Repeating this process, we can
construct a sequence {řn} in A such that

η(řn+1, κřn) = η(A, B) and ϑ(řn, řn+1) ≥ 1 (2.1)

for all n ≥ 1. Then, we have

η(řn, řn+1) ≤ ϑ(řn, řn+1)η(řn, řn+1)
≤ ϱ {η(řn−1, řn) + |η(řn−1, řn) − η(řn, řn+1)|}

Suppose that there exists n0 ∈ N such that η(řn0−1, řn0 ) ≤ η(řn0 , řn0+1), then we have

η(řn0 , řn0+1) ≤ ϑ(řn0 , řn0+1)η(řn0 , řn0+1)

≤ ϱ
{
η(řn0−1, řn0 ) +

∣∣∣η(řn0−1, řn0 ) − η(řn0 , řn0+1)
∣∣∣}

= ϱ
{
η(řn0−1, řn0 ) + η(řn0 , řn0+1) − η(řn0−1, řn0 )

}
= ϱη(řn0 , řn0+1)
< η(řn0 , řn0+1).

This is a contradiction. Then, we assume that η(řn, řn+1) < η(řn−1, řn) for all n ≥ 1. There-
fore, we get

η(řn, řn+1) ≤ ϑ(řn, řn+1)η(řn, řn+1)
≤ ϱ {η(řn−1, řn) + η(řn, řn−1) − η(řn, řn+1)}
= 2ϱη(řn−1, řn) − ϱη(řn, řn+1)

and so,

η(řn, řn+1) ≤
(

2ϱ
ϱ + 1

)
η(řn−1, řn)

for all n ≥ 1. Using the last inequality, we have

η(řn, řn+1) ≤

(
2ϱ
ϱ + 1

)
η(řn−1, řn)

≤

(
2ϱ
ϱ + 1

)2

η(řn−2, řn−1)

...

≤

(
2ϱ
ϱ + 1

)n

η(ř0, ř1)

for all n ∈ N. Now, assume n ∈ N and p ∈ N. Then, we have

η(řn, řn+p) ≤ sη(řn, řn+1) + s2η(řn+1, řn+2) + ... + spη(řn+p−1, řn+p)

≤
1

sn−1


(

2ϱs
ϱ+1

)n
η(ř0, ř1) +

(
2ϱs
ϱ+1

)n+1
η(ř0, ř1) + · · ·

+
(

2ϱs
ϱ+1

)n+p−1
η(ř0, ř1)


=

(
2ϱs
ϱ + 1

)n
1 +

2ϱs
ϱ + 1

+ · · · +

(
2ϱs
ϱ + 1

)p−1
 η(ř0, ř1)

≤

(
2ϱs
ϱ+1

)n

1 − 2ϱs
ϱ+1

η(ř0, ř1).



72 MUSTAFA ASLANTAS, AND HAKAN SAHIN

Thus, {řn} is a Cauchy sequence in A. Since (Π, η) is a complete b-metric space and A is a
closed subset of Π, there exists a ř∗ ∈ A such that řn → ř∗. Moreover, we have

η(ř∗, B) ≤ η(ř∗, κřn)
≤ sη(ř∗, řn+1) + sη(řn+1, κřn)
= sη(ř∗, řn+1) + sη(A, B)
≤ sη(ř∗, řn+1) + sη(ř∗, B).

Therefore, we get

η(ř∗, B) ≤ lim
n→∞

η(ř∗, κřn) ≤ sη(ř∗, B).

Since B is s-approximately compact with respect to A, there exists a subsequence {κřnk } of
{κřn} such that κřnk → ŝ∗ ∈ B as k → ∞. Therefore by taking k → ∞ in η(řnk+1, κřnk ) =
η(A, B), since the pair (A, B) satisfies the property (MC), we have η(ř∗, ŝ∗) = η(A, B), and
so ř∗ ∈ A0. Also, since κř∗ ∈ κ(A0) ⊆ B0, there exists z ∈ A0 such that

η(z, κř∗) = η(A, B). (2.2)

On the other hand, using the condition (H) we can say that there exists a subsequence{
řnr

}
of {řn} such that ϑ

(
řnr , ř

∗
)
≥ 1 for all r ∈ N. Also, since κ is an ϑ-proximal admissible

mapping, we have ϑ
(
řnr+1, z

)
≥ 1 for all r ∈ N. Now, from (2.1), (2.2) and the condition of

ϑ-p-proximal contraction, we obtain

η(řnr+1, z) ≤ ϑ(řnr+1, z)η(řnr+1, z)

≤ ϱ
(
η(řnr , ř

∗) +
∣∣∣η(řnr , řnr+1) − η(ř∗, z)

∣∣∣)
for all r ∈ N. Thus, taking limit as r → ∞ we have

η(ř∗, z) ≤ ϱη(ř∗, z),

which gives ř∗ = z. From (2.2), the point ř∗ is best proximity point of the mapping κ. Now,
assume that ř∗ and ŝ∗ are different best proximity points of κ in A and ϑ (ř∗, ŝ∗) ≥ 1. Then,
we get

η(ř∗, κř∗) = η(A, B)

and
η(ŝ∗, κ ŝ∗) = η(A, B).

Since the mapping κ is ϑ-p-proximal contraction, we have

η(ř∗, ŝ∗) ≤ ϑ (ř∗, ŝ∗) η(ř∗, ŝ∗)
≤ ϱ (η(ř∗, ŝ∗) + |η(ř∗, ř∗) − η(ŝ∗, ŝ∗)|)

= ϱη(ř∗, ŝ∗)

which gives ř∗ = ŝ∗. This is contradiction. Hence, κ has only one best proximity point. □

Example 2.1. Let Π = R2 and η : Π × Π→ R be a function defined by

η((ř1, ř2), (ŝ1, ŝ2)) = max{ř1, ŝ1} + (ř2 − ŝ2)2

for all (ř1, ř2), (ŝ1, ŝ2) ∈ Π. Then, (Π, η) is a b-metric space with coefficient s = 2. Now,
consider the sets A = [0, 1] × {0} and B = [0, 1] × {1}. We get η(A, B) = 1, A is closed,
A0 = {(0, 0)} and B0 = {(0, 1)}. Also, it can be seen that B is an s-approximately compact
with respect to A and the pair (A, B) satisfies the property (MC). Define a function ϑ :
A × A→ [0,∞) and a mapping κ : A→ B as
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ϑ(ř, ŝ) =


1 , ř, ŝ ∈ A0

0 , otherwise
and

κ(ř1, 0) =
(

ř1

2
, 1

)
,

respectively. Then, we can choose ř0 = (0, 0) = ř1 ∈ A0 such that η(ř1, κř0) = η(A, B)
and ϑ(ř0, ř1) ≥ 1, and so the condition (iv) hold. Also, it is clear that κ : A → B is an
ϑ-proximal admissible and ϑ-p-proximal contraction mapping with κ(A0) ⊆ B0. Hence,
all hypotheses of Theorem 2.1 are satisfied, and so there is a unique best proximity point
ř = (0, 0) of κ.

If we take A = B = Π in Theorem 2.1, then we obtain the following fixed point result.

Corollary 2.2. Let (Π, η) be a complete b-metric space with the coefficient s ≥ 1 and
κ : Π→ Π be a continuous mapping. If the following conditions hold,

i) for all ŝ, ř ∈ Π, it is satisfied

ϑ(ř, ŝ)η(κř, κ ŝ) ≤ ϱ {η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|} ,

ii) If {řn} ⊆ Π is a sequence such that ϑ (řn, řn+1) ≥ 1 and řn → ř ∈ Π, then there
exists a subsequence

{
řnk

}
of {řn} such that ϑ

(
řnk , ř

)
≥ 1 for all k ∈ N.

iii) κ is an ϑ-admissible,
iv) there is ř0 ∈ Π such that ϑ (ř0, κř0) ≥ 1,

then, κ has a fixed point ř∗ in Π.If for another fixed point ŝ∗ ∈ Π, ϑ (ř∗, ŝ∗) ≥ 1, then
ř∗ = ŝ∗.

If we take s = 1 in Corollary 2.2, then we obtain the following fixed point result.

Corollary 2.3. Let (Π, η) be a complete metric space and κ : Π→ Π be a mapping. If the
following conditions hold,

i) for all ŝ, ř ∈ Π, it is satisfied

ϑ(ř, ŝ)η(κř, κ ŝ) ≤ ϱ {η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|} , (2.3)

ii) If {řn} ⊆ Π is a sequence such that ϑ (řn, řn+1) ≥ 1 and řn → ř ∈ Π, then there
exists a subsequence

{
řnk

}
of {řn} such that ϑ

(
řnk , ř

)
≥ 1 for all k ∈ N.

iii) κ is an ϑ-admissible,
iv) there is ř0 ∈ Π such that ϑ (ř0, κř0) ≥ 1,

then, κ has a fixed point ř∗ in Π. If for another fixed point ŝ∗ ∈ Π, ϑ (ř∗, ŝ∗) ≥ 1, then
ř∗ = ŝ∗.

3. Application

For nonlinear fractional differential equations of Caputo type, we provide adequate re-
quirements for their existence and uniqueness in this section. For a continuous function
g : [0,∞)→ R of order α > 0, the Caputo derivative is defined as

C Dα(g(γ)) =
1

Γ(n − α)

∫ γ

0
(γ − s)n−α−1g(n)(s)ds, α > 0, n − 1 < α < n

where Γ is the gamma function and n is an integer.
The following nonlinear fractional differential equation of Caputo type

C Dα(g(γ)) = f (γ, ř(γ)) (3.1)
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with integral boundary conditions

ř(0) = 0 and ř(1) =
∫ θ

0
ř(ŵ)dŵ

where 1 < α ≤ 2, 0 < θ < 1, ř ∈ C[0, 1] which is the space of all continuous real-valued
functions defined on [0, 1] and f : [0, 1] × R → R is a continuous function. Since f is a
continuous, the equation (3.1) is equivalent to the following integral equation [1, 16]:

ř(γ) =
1
Γ(α)

∫ γ

0
(γ − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

−
2γ

(2 − θ2)Γ(α)

∫ 1

0
(1 − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

+
2γ

(2 − θ2)Γ(α)

∫ θ

0

(∫ ŵ

0
(ŵ − r)α−1 f (r, ř(r))dr

)
dŵ. (3.2)

Theorem 3.1. Let χ : R × R→ R be a function. Suppose the following conditions hold:

i) the mapping κ : C[0, 1]→ C[0, 1]

κř(γ) =
1
Γ(α)

∫ γ

0
(γ − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

−
2γ

(2 − θ2)Γ(α)

∫ 1

0
(1 − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

+
2γ

(2 − θ2)Γ(α)

∫ θ

0

(∫ ŵ

0
(ŵ − r)α−1 f (r, ř(r))dr

)
dŵ

for all ř ∈ C[0, 1] and γ ∈ [0, 1], is a continuous mapping where 1 < α ≤ 2, 0 <
θ < 1.

ii) there exists ř0 ∈ C[0, 1] such that χ (ř0 (γ) , κř0 (γ)) ≥ 0 for all γ ∈ [0, 1] .
iii) if for each γ ∈ [0, 1] and ř, ŝ ∈ C [0, 1], χ (ř (γ) , ŝ (γ)) ≥ 0, then χ (κř (γ) , κ ŝ (γ)) ≥

0.
iv) for each sequence {řn} ⊆ C [0, 1] such that for all γ ∈ [0, 1], {řn (γ)} converges

to ř (γ) for some ř ∈ C[0, 1] and χ (řn (γ) , řn+1 (γ)) ≥ 0 for all n ≥ 1, then there
exists a subsequence

{
řnk

}
of {řn} such that χ

(
řnk (γ) , ř (γ)

)
≥ 0 for all γ ∈ [0, 1]

and k ≥ 1.
v) there exists q in [0, 1) such that

| f (ŵ, ř(ŵ)) − f (ŵ, ŝ(ŵ))| ≤
Γ(α + 1)

5

{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2

)
+ N(ř, κ)

} 1
2

where ϱ ∈ [0, 1) and N(ř, κ) =
∣∣∣supŵ∈[0,1] |ř(ŵ) − κř(ŵ)|2 − supŵ∈[0,1] |ŝ(ŵ) − κ ŝ(ŵ)|2

∣∣∣.
Then, the problem (3.1) has a unique solution.

Proof. Let Π = C[0, 1] and η : Π × Π→ [0,∞) a function defined by

η(ŵ, v) = sup
γ∈[0,1]

|ŵ(γ) − v(γ)|2

for all γ ∈ [0, 1] and ŵ, v ∈ Π. Hence, (Π, η) is a complete b-metric space with s = 2. We
shall show that κ satisfies the inequality (2.3). Let’s take ř, ŝ ∈ Π with χ (ř (γ) , ŝ (γ)) ≥ 0
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for all γ ∈ [0, 1].Then, we have

|κř(γ) − κ ŝ(γ)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(α)

∫ γ

0 (γ − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

−
2γ

(2−θ2)Γ(α)

∫ 1
0 (1 − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

+
2γ

(2−θ2)Γ(α)

∫ θ

0

(∫ ŵ
0 (ŵ − r)α−1 f (r, ř(r))dr

)
dŵ

− 1
Γ(α)

∫ γ

0 (γ − ŵ)α−1 f (ŵ, ŝ(ŵ))dŵ

+
2γ

(2−θ2)Γ(α)

∫ 1
0 (1 − ŵ)α−1 f (ŵ, ŝ(ŵ))dŵ

−
2γ

(2−θ2)Γ(α)

∫ θ

0

(∫ ŵ
0 (ŵ − r)α−1 f (r, ŝ(r))dr

)
dŵ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

1
Γ(α)

{∫ γ

0
|γ − ŵ|α−1 (| f (ŵ, ř(ŵ)) − f (ŵ, ŝ(ŵ))|) dŵ

}
+

2γ
(2 − θ2)Γ(α)

{∫ 1

0
(1 − ŵ)α−1 (| f (ŵ, ř(ŵ)) − f (ŵ, ŝ(ŵ))|) dŵ

}
+

2γ
(2 − θ2)Γ(α)

{∫ θ

0

(∫ ŵ

0
|ŵ − r|α−1 (| f (r, ř(r)) − f (r, ŝ(r))|) dr

)
dŵ

}

≤

∫ γ

0

 |γ−ŵ|α−1

Γ(α)
Γ(α+1)

5

×
{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2 + N(ř, κ)

) } 1
2

 dŵ

+
2γ

(2 − θ2)

∫ 1

0

 (1−ŵ)α−1

Γ(α)
Γ(α+1)

5

×
{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2 + N(ř, κ)

) } 1
2

 dŵ

+
2γ

(2 − θ2)

∫ θ

0

∫ ŵ

0

 |ŵ−r|α−1

Γ(α)
Γ(α+1)

5

×
{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2 + N(ř, κ)

) } 1
2

 dr

 dŵ

≤
Γ(α + 1)

5
{ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|)}

1
2

× sup
γ∈[0,1]

{
1

Γ(α + 1)
+

2γ
(2 − θ2)

(
1

Γ(α + 1)
+

1
Γ(α + 1)

)}
≤ {ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|)}

1
2

which implies that
η(κř, κ ŝ) ≤ ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|) (3.3)

ř, ŝ ∈ Π with χ (ř (γ) , ŝ (γ)) ≥ 0 for all γ ∈ [0, 1]. Now, consider the mapping α : Π×Π→
[0,∞) defined by

α(ř, ŝ) =


1 , χ (ř (γ) , ŝ (γ)) ≥ 0 for all γ ∈ [0, 1]

0 , otherwise
.

Then, the inequality (3.3) is satisfied for all ř, ŝ ∈ Πwith α(ř, ŝ) ≥ 1, that is, for all ř, ŝ ∈ Π,

α(ř, ŝ)η(κř, κ ŝ) ≤ ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|)

is satisfied. Also, from (iii), the mapping κ is α-admissible mapping. Using the conditions
(ii) and (iv) we say that all conditions of Corollary 2.3 are met, and so κ has a fixed point.
Therefore, there is a solution to the nonlinear fractional differential equation of Caputo
type (3.1) □
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