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Abstract

This study presents a mathematical analysis of the SVEITR model, which incorporates
susceptible (s), vaccinated (v), exposed (e), infected (i), treated (t), and recovered (r) populations
to evaluate the dynamics of cholera spread. By integrating treatment and vaccination rates into
the model, we aim to understand their impact on disease transmission and the development of
immunity. Our findings reveal that combining rapid treatment and vaccination significantly
reduces the spread of cholera disease, highlighting the importance of these interventions in public
health strategies. The model demonstrates that timely and widespread implementation of
vaccination and treatment can effectively control outbreaks and mitigate the disease’s impact.
Through a numerical simulation of the Laplace Adomian Decomposition Method, the results
reveal that treatment rate reduces the spread of the disease, and vaccination plays a vital role in
curbing the aftermath of widespread disease. Hence, there is a need for robust healthcare policies
that prioritize these measures to achieve substantial progress in managing and eventually
eradicating cholera, particularly in vulnerable regions. The SVEITR model offers a valuable
framework for policymakers and healthcare professionals to develop effective strategies for

cholera control, contributing to improved public health outcomes.
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Kolera Bulasiminin Dinamikleri Uzerinde Tedavi ve Asilama Etkilerinin Kantitatif

Modellemesi
Oz

Bu calisma, kolera yayiliminin dinamiklerini degerlendirmek amaciyla duyarli (s), asili (v),
maruz kalmis (e), enfekte (i), tedavi edilen (t) ve iyilesen (r) popiilasyonlar1 iceren SVEITR
modelinin matematiksel analizini sunmaktadir. Modele tedavi ve asilama oranlarinin entegre
edilmesiyle, bu Onlemlerin hastaligin bulagsmasi ve bagisiklik tizerindeki etkilerini anlamayi
amacliyoruz. Bulgularimiz, hizh tedavi ve aginin birlestirilmesinin kolera hastaliginin yayilmasini
onemli dl¢lide azalttigin1 ortaya koyarak, bu miidahalelerin halk saglig: stratejilerindeki 6nemini
vurgulamaktadir. Model, asilama ve tedavinin zamaninda ve yaygin olarak uygulanmasinin
salginlart etkili bir sekilde kontrol edebilecegini ve hastaligin etkilerini azaltabilecegini
gostermektedir. Laplace-Adomian Ayristirma Y dntemi ile yapilan sayisal simiilasyon sonucunda,
tedavi oraninin hastaligin yayilimini azalttig1 ve asimin hastaligin yaygin etkilerini azaltmada
hayati bir rol oynadig1 ortaya ¢ikmistir. Bu nedenle, bu 6nlemleri dnceliklendiren saglam saglik
politikalarina duyulan ihtiyag, ozellikle savunmasiz bolgelerde koleranin yonetilmesi ve
nihayetinde ortadan kaldirilmasi i¢in 6nemli ilerlemeler saglamak agisindan gereklidir. SVEITR
modeli, politika yapicilar ve saglik uzmanlart i¢in kolera kontroliine yonelik etkili stratejiler
gelistirmede degerli bir ¢ergceve sunarak, halk sagligi sonuglarinin iyilestirilmesine katkida

bulunmaktadir.

Anahtar Kelimeler: Kolera kontrolii; Tedavi etkinligi; Asilama orani; Kararlilik analizi;

Kantitatif analiz; Simiilasyon.
1. Introduction

Cholera is a highly infectious disease caused by the bacterium Vibrio cholerae, which
remains a public health challenge, particularly in regions with inadequate water and sanitation
infrastructure. Characterized by severe diarrhea and dehydration, cholera can lead to death within
hours if untreated, as in [1-2]. The disease primarily spreads through the consumption of
contaminated water and food, making its control closely linked to the quality of water supply,
sanitation, and hygiene practices in [3]. Despite advancements in medical sciences and public
health strategies, cholera outbreaks continue to pose a substantial health risk in developing

countries. The focus of contemporary cholera research includes treatment efficacy, vaccination,
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water and environmental cleanliness, regional enlightenment, regular hand washing, proper waste
disposal, and community awareness by [4-5]. These components of sensitization and treatment
are crucial in developing a comprehensive approach to control and prevent the disease effectively
[6]. Effective treatment of cholera involves prompt rehydration, which can be lifesaving as
discussed in [7]. Oral rehydration salts (ORS) are the cornerstone of treatment for most patients,
while intravenous fluids are necessary for severe cases [8]. Antibiotics can also reduce the
diarrhea and the volume of rehydration fluids needed can be increased instantaneously with
researching into optimizing the treatment ongoing in endemic African regions such as Sudan,
Ethiopia, Nigeria, Niger and Somalia, aiming to enhance their efficacy and accessibility to healthy

water supply and hygienic environmental settings as in [9-10].

The goal is to ensure that treatment protocols are both efficient and adaptable to various
healthcare infrastructures, thus reducing mortality and morbidity rates associated with cholera
disease [11-12]. Oral cholera vaccines (OCVs) have proven effective in providing immunity and
reducing the incidence of the disease as well [13]. The integration of vaccination into public health
strategies, especially in high-risk areas, can prevent outbreaks and provide long-term protection
[14]. Recently, researchers have focused on improving the efficacy and duration of vaccine-
induced immunity, as well as logistics to enhance vaccine distribution and administration to
endemic regions, where the success of vaccination campaigns depends on the timely and
widespread coverage, particularly before and during cholera outbreaks, as in [15]. Clean water
and proper sanitation are fundamental in preventing cholera transmission, where contaminated
water sources are the primary vectors for the bacterium, highlighting the need for robust water

treatment and safe water storage practices by [16].

Additionally, environmental cleanliness, including the maintenance of clean living
conditions and proper sanitation facilities, is essential in [17-18]. Public health initiatives must
focus on infrastructure development and community education to promote sustainable practices
that ensure water and environmental cleanliness. Educating communities about cholera
prevention and control is vital. Regional enlightenment campaigns can significantly impact public
health by raising awareness about the disease, its transmission, and preventive measures, as in
[19]. These campaigns should focus on informing individuals about the importance of using safe
water, practicing good hygiene, and recognizing the symptoms of cholera for prompt treatment.
Tailored educational programs that consider local customs and practices can enhance community
engagement and compliance with preventive measures [20]. Hand washing technique with soap,
disinfectants, and clean water is one of the simplest and most effective ways to prevent the spread

of cholera. Regular hand washing, particularly before eating and after using the toilet, can
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significantly reduce the transmission of the bacterium [21]. Public health campaigns must
emphasize the importance of this practice and ensure that communities have access to soap and
clean water. Installing hand-washing stations in public places and schools can also promote this
essential hygiene practice. Proper waste disposal is crucial in preventing cholera outbreaks.
Improperly disposed of human waste can contaminate water sources, facilitating the spread of
Vibrio cholerae [22]. Implementing effective waste management systems, including the use of
latrines and sewage treatment facilities, is vital. Public health initiatives should focus on
constructing and maintaining these facilities, as well as educating communities about the
importance of proper waste disposal [23]. Safe disposal practices help break the transmission
cycle and reduce the risk of outbreaks. Awareness campaigns play a crucial role in cholera
prevention, informing the public about the deadly disease, its symptoms, and the importance of
seeking immediate treatment can save lives [24]. Awareness efforts should also highlight the
preventive measures individuals can take to protect themselves and their communities, as in [25].
Utilizing various media platforms, including radio, television, social media platforms, and
community outreach programs, can effectively disseminate information and reach a broad

audience [26].

However, this research focuses on controlling the spread of cholera, which requires a
multifaceted approach. This involves developing a mathematical model that incorporates both
effective treatment and vaccination rates, along with various control measures, including water
and environmental cleanliness, regional education, regular hand washing, proper waste disposal,
and public awareness. By addressing these areas, public health initiatives can significantly reduce
the incidence and impact of cholera, ultimately aiming for its eradication. Proper and continuous
investment in these strategies is essential to overcoming the persistent threat posed by cholera,

particularly in vulnerable regions.
2. Materials and Methods
2.1. Model Formulation

The total population N (t) is distinctly divided into six sub-compartments of population
sizes of are susceptible S(t), vaccinated V(t), exposed E(t), infected I(t), hospitalized/treated T(t)
and recovered population R(t), The rate of migration 7 or inflow into the population resulting to
the spread of cholera is f as human population are exposed through contaminated water and the
hygienic measure put into practice to avoid ingestion and reduce the contact rate of the disease.
Logistic coverage of public awareness of infected individuals at a rate of ¢, where exposed

individuals are subjected to contracting cholera at &, and the rate of recovery is denoted with ¥
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The treatment rate of the hospitalized individuals @, . More than 75% of contamination risk of

vibro-cholerae results in the spread of the disease and ¢ vaccination rate of susceptible
individuals, with & representing the vaccine efficacy and shedding rate of infected human
population, coupled with natural mortality rate for human and vibro-cholerae are @ and f. The

above parameters can be demonstrated with schematic flow in Fig. 1 and a system of nonlinear

differential equations in Eqn. (1) below, respectively.

5,

% o S 0
r 0—@&5‘
o o °
0 0

/ﬂ’ (cr+ﬂ)f

Figure 1: Schematic diagram of the model.

2.2. Model Analysis

From the schematic diagram above, an equation of the model is obtained in Eqn. (1) below:

CCZZ—Lj:;z—,BSI—@1 + 1)S + R

v _ ¢S —(1—&)BIV — uV

dt

d—f =(1-&)BIV + pSI — (k + u)E

g—kE—(a+y+7/+¢2)l

dT

7—%1 (p+T

dR

7—¢T+ﬂ (6 + 1R (1)
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Subjected to the initial condition
S(0)=s,,V(0)=v,,E0)=¢,,1(0)=71,,T7(0)=t,,R(0) =7, 20. )

Parameters of the model solution, descriptions, and references are displayed in Table 1 and Table

2 with values that are time-dependent for cholera spread.

Table 1: Description of model state variables.

Variables | Description

S(t) Susceptible population
V(t) Vaccinated population
E(t) Exposed population
I(t) Infected population
T(t) Treated population
R(t) Recovered population

Table 2: Description of model parameter, values and references

Parameter | Description Values References

N Total population 80,000 [10]

® Recovery rate of hospitalized individuals 0.001 [11]

& Vaccination efficacy 0.5 [1]

¢2 Treatment rate of hospitalized individuals 0.2 [18]

¢1 Vaccination rate of infected individuals 0.03 [2]

yzi Natural death 1.0 [5]

o Immunity waning rate 0.0016 [20]

T Recruitment rate 0.113 [3]

ﬂ Rate of cholera transmission 1.0126 [14]

a Disease induced death rate 0.33182 [21]

V4 Natural recovery rate 0.16524 [17]

k Progression rate between exposed and infected class of 0.25533 [9,16]
individuals
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2.3. Existence and Uniqueness of Model

The system of Eqn. (1) above, which describes an epidemic disease within a human
population, should have parameters that are non-negative. To ensure that the system of differential
Eqn. (1) is both mathematically and epidemiologically well-posed, it is essential to demonstrate
that the state variables in the model are nonnegative. Therefore, the system of Eqn. (1) is bounded
by an initial condition ofS(O) =S, V(O) =V, E(O) =e,, I(O) =1i,, T(O) =t,, R(O) =7,,in
which the solution will persist in being non-negative throughout their evolution, i.e., # > 0 and

that these positive solutions are bounded in this region. We thus apply the theorem (1) below.

Theorem 2.3.1. Let (x,y)be distinct points of normed linear space (X , ---||)over R.

Then the map of p:[0,l]]cR — (X oIl - ||) such that p(1) = Ax + (1 — A)yis continuous on

[0,1].
Proof. Let A, €[0,1] then p(4,)=A,x+(1—4,)y forany A, €[0,1],
|2 = P = (A= 20)x+ (A= 20)¥]| < |2 = 24 (] +[]) ()

g

If € > 0is given, let & =
[+

If [ = 4y| < . then the |p(A)— p(4, )] < &.

Therefore, p is continuous at A, . Since A, is an arbitrary point in [0,1]. then p is continuous
on [0,1]. Let X be a linear space over R . If x,y are distinct points of X, the set Ax + (1— A1)y lies
in0<A<1.

Hence, the solutions of system of Eqn. (1) are bounded if we consider the total population
N(t) =S(t) + V(t) + E(t) + I(t) + T(t) + R(t)
The variation in the total population concerning time is given by:

dN(?) _ ds(r) N av(t) N dE(t) N dl (1) N dT (1) N dR(t)

)
dt dt dt dt dt dt dt
Such that d];(t) =r—-u(S+V+E+I+T+R)-ad —> d];(t) <7 —uN . When

there is no outbreak of cholera, ¢ =0.Thus, substituting Eqn. (1) into Eqn. (4) as time

progressively yields:
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lim N(¢) < lim Z+(N(0)—£]e/”} _T (5)
t—© t—00 lLl ILl ,Ll
N '
Ifso N(0) £ —,as N(f) £ —. Thisisa positive invariant set under the flow described
7

by Eqn. (2) so that no solution path leaves through any boundary SRi . However, it is sufficient to

consider the dynamics of the model in the domain ﬂ?i . In this region, the model can be considered

mathematically and epidemiologically well-posed.
2.4. Positivity and Boundedness of Model

This shows that the total population N(t), and the subpopulations S(t), V(t), E(t), I(t), T(t),
R(t) of the model are bounded and are a unique solution. Hence, its applicability to study physical

systems is feasible.

Theorem 2.4.1. Suppose X = X, is a space of consecutive real numbers, and that are defined as

o=

n Q
L(x,y) = [Z|xl| } Q>1 (6)
i=l

X with the metric is called ¢"space. If ¥ |x|' <o or absolutely convergent and

o=

s Q
L(x,y)= (Z|xi - yi| j , then X with this metric is called an ¢ space.
i=1

Proof. It can be checked that for each n:

0<x2+xZ24+x3+...+x2 < (|xg| + |xz| + |x3|+... +]x,])? (7)

This will result to;

2

SR P )

Therefore,

1
0 < (Fededrand )2 < |+, + x|+ %,
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If i|xn| converges, that is i|xn|is absolutely convergent, then

n=1 n=l1

0
I
0< (x12+x22+x32+...+x3)5 < xl‘ + ‘xz‘ +‘x3‘ +..+ X, = Z X, <00 )
n=l1
Therefore,
0sx, =X, X3 +X] +.t X, £|:§‘x”@<00 (10)
n=1

The sequence x,, is monotone increasing and bounded above, it therefore converges. Thus

Z x, converges absolutely, i. E if x, € &', then x, € & where &' < &2 In case of &' denote

n=1

o0
the set of all sequences of x, of real numbers such that an is convergent absolutely. i.e

n=1

0 0
Z |xn| < cowhere as &7 denote the set of all sequence X, of real numbers such that Z X} <oo

n=1 n=1
. . . 1
converges. From the proceeding x, € & 'e x, €& ’ie (fl C fz. Further, if x, =—, then
4
n

00 o0 o0 1
Z|xn |diverges and thus x, ¢ ¢& ' But ij = 2—3 converges, implying that x, € 52. We

=1 =1 =1 4
n n n n 4
conclude that &' = £%and thus &' # £2.If (x,, ¥, )are sequences of real numbers, then;

1 1
i(xi —yi)2 < ixiz +§:yi2 +2{ixi2}2{2yi2}2 (11)
n=1 n=1

n=1 n=1 n=1

Therefore if le.z < ooand Z yl.2 < oo then Z(xi —y,)> <oofor all n. The monotone

n=1 n=1 n=l1

o0
. . 2. .
increasing sequence {E (x;, =) }15 then bounded above and hence converges i.e
n=1

Z(xi—yl.)2<oo. Thus (xi—yl.)2e§2if (xn,yn)efzas in [18]. Given that the

n=1

S(0)=s,>0, ¥(0)=v, >0, E(0)=¢, >0, 1(0)=i, >0, T(0)=¢,>0, R(0)=r, >0
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and¢ > 0, then the solution of S(t), V(t), E(t), I(t), T(t), R(t) of the Eqn. (1) will always be

nonnegative.

Let: ¥ = {(S(t),V(t),E(t),I(t),T(t),R(t)) eR® N < f} (12)
U

If f.,i=L2....6where fisa constant. Then;

df,

—

ds
df,

dT
df;

dR
q.

[’}

dl
d.

5%}

dv

(%)

dR

IS

dl

w

dv

(=2}

ds
q.

wn

df,
a4,
s

df

dR

df df d
(prprurof<m, | Boeo, [ Do, Do o
=|a| <o
d d

:|5|<oo,£:|¢l|< de =|(1—&)B+ p| < oo, a{; =10/ < o0,

d d d
:|(1_g>ﬁ|<oo‘d_1;z:|o|<oo, ‘fz 0 <o0 ‘f3 <0,

d d

—l0- ) <o, ‘d_f;:|(k+ﬂ)|<oo ‘; —j1-eppl <0, L <l <ce,
=< Lol <Jg <0, | 2| <o} < ‘Zf; < oo,

d d df
a7+t <o ‘£:|0|<oo, ‘£:|0|<oo, Y5 i) <o,
d d
<oy [Loi—fof<en, [ Delf|<on, (el = s <0, [ Lo} [uf <o,
<o, \%=|o|<oo, Ll i<, |l =bl<on. [Lelplcon
dv dE dl dT
:|(,u+5)|<oo (13)

Eqn. (13) above confirms that system of Eqn. (1) is bounded, invariantly and attractively

influential on the bounded region of i]i’i .

2.5. Disease Free Equilibrium

The cholera non-infected equilibrium state represents a scenario in which Eqn. (1) is

entirely free from Vibrio cholerae spread as in [1]. Consequently, when the number of disease
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population of infected, exposed individuals is at equilibrium, i.e [ = E = 0. This context brings

about the solution for the cholerae free equilibrium oint which is derived as follows in Eqn. (14)

dS _dv _dE _dl _dT _dR _,

o2 =2 (14)
dt dt dt dt dt dt
At no outbreak of measles infection, the diseases class, atf > 0, from Eqn. (8),
(SO’VO’EO’IO’ToaRO):[ . ’ ﬂ¢l 90703090 (15)
(@ +1) (p-0+u)1-¢)f+u

2.6. Disease Endemic Equilibrium

Examining cholera endemicity spread, we focus on strategic interventions of treatment and
vaccination of infected individuals with the aim of long-term eradication. The frequency of
choleraon (S,V,E,ILT,R) at ¢ # 0, stressing the dynamic aspect of it to gauge on the crucial role

in its infectious disease and protection on the populace. Let the endemic nature of Eqn. (1) be
E,=(S"V',E",I",T",R") at steady state, I # 0, hence the equation for its endemicity at

equilibrium is obtained in Eqn. (16) below;
g __ m(=e) g, +u+al+ fluty+ol
[(u+y+1=-8))+ WA +(1—&)+(u+y+9)

o _U=m(prk+ o +pu+d) oo fA-e)dy+y+p)
G+u+d)(u+y+1-)p1 " Jy+k+w(5+u+a)

_ =)z + (uty + )k +¢ + S+ p+7)]

I ,
[+ p+7)]
. (u+y+k) +\/(k+(ﬂ+¢1)(5+ﬂ+5) (16)
(S+p+a)(u+k+4,] (r+u+k)
r__ (ura+d) +\/ (u+p+h)+u’
[P (p+ ) +(-8)] \k+a)y+pu+ke+pu+o)

2.7. Basic Reproduction Number

The basic reproduction number R, measures cholera spread by calculating secondary

infections using next-generation matrices for new infections and transitions. Let
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R, = p(G—AI|) where G=F xV 'and p is the spectral radius of the matrix| G — AI |. Thus,

o, (x,) V= ov,(x;)
x| Ox,

J

the R, is obtained as it is defined thatF; ={ ] Such that

_ (ﬂISo +(1-e)pl Voj ( (k+ u)E
f= andy =
0 —kE+ (a+u+y+¢,)I

J, the transmission matrix for

the disease and its transition compartmentally for the disease spread is obtained below in Eqn.

(17)

al(l-e)f+u+4¢] (k+2) 0
F= . (¢1—5+ﬂ)(§1—8)ﬂ+,u V=( i (a+ﬂ+y+¢2)J (17)
. 1 0 72-[(1_8):3+y+¢1] (a+u+y+¢2) 0
k@t (¢1+”)(10‘8)ﬂ+”( —k (k+ﬂ)}

Resolving the above matrix respectively with their eigenvalues being independent factors
of the leading variables, the basic reproduction number for Eqn. (17) is obtained in Eqn. (18) as

discussed in [10]

_ ”[(1_5)ﬂ+ﬂ+¢1] (18)
(@ —o+wd-—e)p+ulla+u+y+¢,)

2.8. Quantitative Analysis of R,

Here, we conduct a quantitative analysis of R . to assess its metric progression concerning

each intervention method. By excluding the values of intervention parameters, we assess Eqn.
(18) using the baseline values provided in Table 1, subsequently resulting in Eqns. (19)-(22). The

outcomes of these calculations are presented in Table 3.

P 7[(1—0.028726) 3 + 0.0087363 + 0.52635324, ]
" [(1.27364— 09377847 + 0.38736c)(1 — 0.7653¢) B + 0.872625](0.9972 + 0.52434364, )

R, =f(g) = -1.7363526¢, +1.4591378864, (19)

5=0,4,=0

&

R, = f(p),.,,, =0-005728262500+0.0000133p +0.0039257856 (20)
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R, = f( 2]FWO:0.093762(0.09756+0.54¢1)+o.137747¢2+—0.018¢

R

Table 3: Standalone metric of vaccination and general awareness on R o

A

s/n ¢l
1 0
2 0.2
3 0.4
4 0.6

&

f() . =1.38947804-1.92764245

PN
0o 0 |o
0o 0 |0

R,
1.4591378

1.1964930

0 0 0.93384824

0 0 0.67120342

B
s/n ¢l

0

0

0

0

0

0.2

0.4

0.6

S

&

1.45913788

1.16731030

0.87548273

0.58365515

2.9. Local Stability for Disease Free Equilibrium

C

s/n ¢l

0

0.2

0.4

0.6

21
(22)
&
1.45913788
0.25434513
0.20246410
0.18416303

Theorem 2.9.1. The disease-free state of the model is locally asymptotically stable if the

threshold of the disease spread R, < 1 and unstable whenever it is of the form R, > 1.

Proof. The disease-free equilibrium is obtained using the Jacobian matrix approach from next

generation matrix of the resulting eigenvalues of respective parameters as of the system of Eqn.

(1) and evaluated at the disease free state using the linearization method thus;

p
(1-¢)p
(1-¢)p

—(atut+y+d)

-(B+u+d+0) 0 0
4 ~[A-8)p+u] 0
g (I-e)p  —(k+p)
0 0 k
0 0 0
0 0 0

9,
/4

S O O O

-(p+up)
¢

S O O o O

—(0+u)

(23)

Computing for the eigenvalues from the characteristic equation as ‘J E Al ‘ =0, we then have

%

p
0
0
0

a—A

0 0 yij
b-1 0 (A-¢)p
1-&)p c-1 (A-¢&)p
0 k d—A
0 0 o,
0 0 4
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a=—(f+u+¢ +0), b=-(0-e)f+ul, c=—k+p), d=—(a+u+y+¢),
e=—(@+u), f =—(0+ u) as obtained from Eqn. (23) the respective eigen vales are deduced
in Eqn. (24) below:

—(a+u+y+¢)-1 0

/ _(gpw)_ﬂ,%=—(a+u+7+¢z),/1=—(¢+ﬂ)

A=~(v+u).A=~ay+p),h=-p,
24

Respective eigenvalues are negatively invariant in the regioninr, indicating a biological

implication that there will be a decrease in the spread over time if necessary control measures as
indicated are strictly adhered to. Hence it is asymptomatically stable VA4, < 0,n = 1,2...6,t >
0.

3. Regional Resilience for Persistence Equilibrium State

Theorem 3.1. The local stability of the persistent equilibrium of the model is ensured that if
R, <1, invariantly and otherwise, it is unstable if R, > lis in the modification of the model

equation as discussed in Eqn. (1).
Proof. Suppose

S=x+§" V=y+V E=z+E I=a+I",T=b+T" ,R=c+R’ 25)

Linearizing Eqn. (1), is then obtained as from Eqn. (26) for respective sensitive parameters for

each state variable that are

§=ﬂ—ﬁ(x+5*)(a+l*)—(¢l+,u)(x+S*)+5(x+R*)

dv . . . "

ZZ(A()HS )=(=&)Bla+ 1)y +V")—u(y+V")

dE . . . " "
E:(l—g)ﬁ(a+1 Y+V )+ p(x+S)a+1")—(k+u)(z+E7) (26)
%:k(z+E*)—(a+y+y+¢2)(a+I*)

L g+ 19+ b+ T
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B o +T)+ @+ 1=+ e+ R)

Linearizing Eqn. (25), it is then obtained that each

% = —fax — (¢ + p)x — ox +higher order + non - linear terms...
dy . .

5 ¢x—(1—¢)pay — py + higher order + non - linear terms...
dz . .

i (1-¢&)pay + Pax — (k + p)z + higher order + non - linear terms... (27)
da . .

= =kz —(a+ u+y+@,)a+higher order + non - linear terms...
db . .

i ¢,a— (@ + p)b+higher order + non - linear terms....

dc . .

= @b +ay — (6 + p) +higher order + non - linear terms...

The characteristic equation obtained from its Jacobian matrix is;

A-1 0 0 — Pax 0 0
px  —lAd-&)pay+wly-4 0  (1-¢&)pay 0 0
Pax (1-¢)pay B-1 Pax 0 0 _0 (28
0 0 kz C-1 0 0
0 0 0 ag, —-(p+u)—1 0
0 0 0 ay @b 0+ p)c

Denoting that 4 =—(fa + 11+ @)x, B = fax—(k + 11)z],C =—~(a + t+y + ¢,)

the resulting eigenvalues of the above matrix are obtained as;
2 =(x+(a+y)+(c+b)L +((x+c)y+s)+az+by)1+b)A —(ab(c +z) +be(a + y)1 +2)2°
+ y(cz(a +b)+xb(a+ y))ﬂ,2 —(a+c)(x+y)A+abcxyz =0. (29)

With the invariance of the eigen values it is said to be locally asymptotically stable because

all are of negative results.
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3.1. Global Stability of Disease-Free Equilibrium

We employ the Lyapunov’s function approach to establish the global asymptotic stability
of the model solution for Eqn. (1) and ta disease free equilibrium, utilizing the Lyapunov

algorithm for the model state variables, this is deduced in Eqn. (30) thus;
®(t,S,V,E,I,T,R)=C1, +C,I, +C,I, (30)

c%) =C/lI +C,1; +C,1;

:Cl((l—g)ﬂle+,812S—(k+/,¢)11)+C2(k11 —(a+y+9, +ﬂ)12)
+C2(¢2[2 — (o, +/U)13)

=Cokl, =G (k+ )1, +C\(1-&) LV + C, pI,S - Cy(a +y + ¢, + W),
+C0,1, — Ci(p, + 1)1,

S(Czk_cl(k+ﬂ))11 +(C1(1—8):BV0 +C S5, —C(a+y+, +/U)+C3¢2)12
—Cs(p, + W1,

S = 4 V. = 7T¢1
g @G-S p-e)prp

E,=0,1,=0,T,=0,R, =0 (31

T oy a4 co |
Yt @ -s+w-o)f+p’ " (k+w)’
c :[(czﬁ,-w—é)a—e)mw)j
oz a5y a+ )

S, =S

do <C[7r(l—g)ﬂ+7z,u+7r¢, _(k+,u)]11 _[ﬂ(y+u+§)(l—g)ﬁ+,u ~ 7r(;/+,u+§)(l—6),3+,u]12

dt ~ '\ [g-0+ml-e) (k+p) \G+w@+u+td)l-e) (4+u)y+p+d)l-g)

)

ZZ<w(R, -1 32
o w( ) (32)

It is pertinent to observe that when time of the disease spread is simultaneously increasing

at ¢t — ooand the constant of C; <1, substituting into the model Eqn. (31), it is revealed that,
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based on Lasalle’s invariance principle ®° =0, is globally asymptotically stable whenever
R, >1 asseenin Eqn. (32), because the basics reproduction number of the model system of Eqn.

(1) is independent of the deiseal state eigen parameters.

3.2. Global Stability of Disease Endemic Equilibrium

Theorem 3.2.1 The Dulac criterion is a method used in dynamical systems to determine the
absence of periodic orbits in a given region of the phase plane, which can be extended to analyze

the global stability of an equilibrium point.

Proof. For a dynamical system described by the differential equations, i. e

dx _ @ _
PREACSUIE et C) (33)

The Dulac criterion states that if there exists a continuously differentiable function B(x, y)

(called the Dulac function) such that the expression in Eqn. (33) gives the equation below;

(B )+ (B, g5 ) G4
X Oox

Which is either strictly positive or strictly negative throughout a simply connected region
D of the phase plane. Then, there are no closed trajectories (periodic orbits) contained entirely
within D. To apply this to determine the global stability of an endemic equilibrium (x*, y*)of
a mathematical model, the endemic equilibrium point (x*, y*), which is also defined by the

Dulac function B(x, y)gives the equation below

(Bl S0 )+ (B 1)g6, ) 35 B 1)g() 35)
X Ox

This indicates that the equation has a constant sign (either strictly positive or strictly
negative) in the region of interest. If such a Dulac function B(x, y) can be found, the system has
no periodic orbits in that region, suggesting the global stability of the endemic equilibrium if no

other attractors exist. Hence, if 3B(x, y) € C' is such that

(Bl S+ (B 1) (5, ) # 0in . (36)
X Ox
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Then, there are no closed trajectories in D . This criterion is useful in proving the global

stability of the endemic equilibrium when combined with other stability analysis techniques.

We then employ this concept of Dulac’s criterion. Let, X =(S,V,E,I,T,R) define the

Dulac’s function, i. E if G = —. The following system of equations are derived.
das 1
G—=——pBSI — (¢ + 1)S + R
= T BSI= (9 + 10 + OR]
& b5 --a)p17 - )
@t
dE 1
G—=—1\0-&)plV+pSI —(k+ u)E 37
=5 U= OBV + BSI = (k + i E] (37)
dl
G—=—WE—(a+u+y+¢,)I
. SI{ (@+p+y+4)I}
dT 1
o 1~ (p+ 0T}
dt
dR 1
G—=—0T+y —(0+ )R
=g T+ A =8+ pR]

The above system of equations then results to;

GdS {”_ﬂ_(¢1+,u)+5_R}
dt | SI I SI
{ _M_ﬁ}
S
dE {(1 g),b’ (k+,u)E} (38)
S
Gl _ k_E_(a+u+7+¢z)}
dt | SI I

Gd_T:{¢2 _((D"'/J)T}

Gd_R:{_T+Z_(5+_ﬂ)R}
s s
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d(GX)

At an initial time, # > 0 orbital resolution of the system of equations is given by

which are obtained below compartmentally for each state variable and resolved descriptively to

dt oS dt oV dt OE dt ol dt) 0T dt

have,

+E{Gd—R}
OR | dt
d(GX>:i{i_ﬁ_w+5£}+i{ﬁ_w_ﬁ}
dt oS | SI 1 St) ov |1 S S
+i{(l—€)ﬂ+ﬁ_(k+u)E}
OE S S

+£{k_E_(0‘+ﬂ+7+¢z)}+i{ﬁ_M}+i{ﬂ+l_w} (39)
or | st I orls st | erlst s s

d(GX) ={_[ﬂ+ﬂ+(¢1 +ﬂ)+5]}+ﬁ{_ 4 +(1—8)ﬂ+ﬂ}
di SI ov SI

+i{_ (1—8)ﬂ+ﬂ+(k+ﬂ)}
OF S

+Q{_k+(a+ﬂ+7+¢2)}+i{_¢z+((p+ﬂ)}+i{_¢+7+(5+u)}
ol SI or S OR SI

AQ=v)+[A=p)+ pBl+(m+ ) m+{1-p)—(pf+H)
d(GX) _ SI I
dt LA=p)f+(6+u) So+pp+((y+pu+td) Avty—p
I ST SI

(40)

d(GX) __|[20-p) +3p8 1+ Jy2m’ +m(=p) v (pB+ | o )
dt SI

This implies that the system has no closed orbit. It therefore portrays epidemiologically
that, no existence of a periodic orbit which implies that there are fluctuations in the number of
infective, which makes it obvious that in allocation of resources for the control of the disease,

vaccination will help to eradicate the rapid spread of cholera with time.
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3.3. Sensitivity Analysis

The primary aim is to assess the sensitivity of the basic reproduction number by computing

its derivatives concerning all relevant parameters. This analysis will result in the determination

R dR

of the normalized forward sensitivity index which is denoted as I, = 57 Xm Here we

investigate the influence of various factors that affects the dynamic progression of cholera disease
dynamics. Hence, the respective equations depicting the influence on cholera spread is obtained

in Eqn. (42) and its values are illustrated in Table 4 below.

OR. _ OR. xﬁ =1.002863633, R, _ R, ><ﬂ =0.001307654,
o of R o4 0¢ R
OR. _OR. ><¢—2 =1.1096546, OR, _ OR, x - 0.15356728, (42)
og, 0¢, R. ou Op R
) . R. OR.
OR. _OR. @ _ 765438, R OB 7 _ 564301
op 0¢ R, or oOr R.

The above results generated descriptively are depicted in Table 3 below.

Table 4: Sensitivity analysis of parameter and indices.

Parameters Sensitivity indices
yij 1.002863633
b, 0.001307654
b, 1.1096546
H 0.15356728
) 0.765438
T 0.564321

Table 4 above shows that the sensitivity indices are positively invariant in ;. The

sensitivity indices depend on the values of each parameter of R, and this brings about changes in

the values that will affect the behavior of the threshold on the spread or vanity of cholera disease.
Based on the Table 3, above, we can conclude that parameter & is the most sensitive to the basic

reproduction number of the cholera disease. Particularly, increasing the value of & will result in

a 80.86% increase in R, , while increasing the value of & will lead to a 91.52% decrease in R,.

3.4. Numerical Simulation

Numerical simulation was conducted on the cholera model by creating the following
iterative scheme of Laplace Adomian Decomposition Method for the model equation. The

(LADM) was employed to computationally analyze the epidemic model. Also, Maple 18 software
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facilitated the generation of iteration formulas for each compartment. These formulars were then
iteratively solved which enables the numerical evaluation of the model’s dynamics and providing
insights into the epidemic’s behavior and progression. Taking the (LADM) transforms from both
sides of the system of Eqn. (1) to the form of Eqn. (43) below.

L ‘le } L[z]- L|BSI = (¢, + 1)S + SR]

L } L[pS]- LI -&)pIV — uV]

L ”Z#} L[(1-&)BIV]- L|SI - (k + u)E] (43)
L %} LIkE]-L[(a + u+ y + $,)I]

L_ o |= 1=l + 1]

L:‘;—I:: = L[pT |- L[y - (6 + )R]

Substituting from Eqn. (1) into Eqn. (43) above to yield
mL[S(t)|= S(0)+ 7 + L[~ a|SI|- 7 — BSI — (4, + 12)S + R]
mL[V (©)|=V(0)+ L] S]- L[4 S - (1— ) IV — uV']
mL[E(t)]|= E(0)+ L[aSI|- L[(1- &) BIV + SI — (k + 11)E]
mL[I(t)]= 1(0) + L[kE| - L|[(ct + g1+ y + ¢,)I]
mI[T(0)]=1(0)+L[$,1]- L{(p+ w)T] (44)
mL[R(®)]= R(0) + L|gT |- L[ — (5 + )R]
Where at initial values of each state variables, S(0)=s,, V(0)=v,, E(0)=¢,, 1(0)=i,

R(0) = r,, the resulting iteration from Eqn. (44) gives that in Eqn. (45) below

Ls®)=2+ = + L 1] afs1]- BSI— (4, + 1)S + &R]
m m m

L O]+ 1[gS)- L[~ ) A1V - ]
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LE®]=2+ L, L[(1-&)BI- L[BSI - (k + u)E] (45)
m m
L[I()]= ) + 1 + LIkE]- L{(a+ pu+y +¢,)I]
m m
mL[T(0) ="+ + Lp, 1]~ L[(p+ w)T]
m m

mL[R(t)]= %0 + % + L[pT]- L[yt - (5 + )R]

Letting the non-linear terms in the above iteration and substitutes by taking the inverse

Laplace transform of both sides, we have

S(t)=s,+m+L" (l L[ — BSI - (¢, + 1)S + aR]j
m

V(t)=v, +L‘l(iL[¢1S]—L[(1 —&)pIV - m/]j
m

E(t)=e, + L-l(l +L[(1-&)B]-L[BSI - (k + y)E]] (46)
m

I(t)=i, +L" (l +LIKE]-Ll(a+u+y+4¢, )1])
m

T(t)=iy+L" [i + L[g,1]- Ll(p+ mT]J
m

R(t)=r, + Ll[ ! L{pT]- L[y - (5 + ,u)R]j

m
Subsequently, iteration results obtained from the above Eqn. (46) which is deduced from

the general iterative series in Eqn. (47) below as,

iS”(t) =5, +7zT+L‘(lL —aiﬁn —¢liSn +¢ziVn —,uiSnD
m L

k=0 k=0 k=0 k=0 k=0

k=0

PNACE +m+L1&L S A-DB =AYV, + BV, —uinD
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iEn (t)=e, + L &Mgpign —L[ﬂ—(k+,u)]iEnj

iln(t)=i0+L‘1(% i (a+,u+}/+¢2)]i j 47)
iTn(t):io+L‘1£i+LaiEn L((p+,u)]ZT]
k=0 m k=0

iRn (=i, +L" & + L¢2iEn — L[5+ ,u)]ian

The initial approximations of each class are given by Eqn. (44). Comparing the coefficients
at n=1, using the recurrence relations obtained from the iterations in Eqn. (47).

Compartmentally, we obtained that

: I 1 1
S1(1) = (s, — ps, = s, +¢1vo)l+[_5mog_5ﬂﬂ_§5¢1jtz

) 1
Vi(t)= (_ U+ gis, — Py, +(1_5)geo)t +55ﬂ1t2
) | I
E ()= ((/’loso — e, — oe, )t + Eamlt

L(t)=KE —(ar+ p+y+@)(= 8y —a+ u+y+d,eyiy +oe, It

T ()= (_ ry +@,5,v, +((ﬂ+ﬂ)io)t
1 1 :
Rl(t):§¢¢z(_¢+ﬂro+§(5+ﬂ)lojt (48)

Further iterations are done to obtain successive iterative terms at n = 2 which gives Eqn. (49)

below
| | 1 . I . 1 . l . 1 .
S, (1) = (Eazzzso + Qs + 30,y + 5 alisypy ~ o sy +Eals0,81 —Ealsoﬂz jt

+(%,uzso + Bus, + Buv, +%ﬁzso +%,B1 Jtz +(éa2i20+%aioﬂ5+§aio7wjt3
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(. 1 1 1
V(1) = _E(alsoﬁl +5ﬂzvo = Piisy + Bruss, _EﬂlﬂZVO +Eﬁ22"0jt2

1 . 1 1 1

_(gaZOﬂ:ﬂl _gﬂlﬂﬂ_gﬂ12ﬂ+gﬂ2ﬂﬂljt3
1 ., 1 . 2 I 1 1 1 .
E, (@) =(—ga212 —Eazoé—gazo,u—goaop+§aeoal —g,uz _galo”ﬂ1jt3
1 . .2 1 . . 1 .

—(Eazlzso — ois, —galso,uo _gazsopo — e, B, +5aleoazjt2

2

L(t)= —éaz +(00a’s0 +%52i0 + 8, — Soie, + p’iy — ppi, jt—(,ua’o +%p2i0 jt
| 1 o,. A S . .

T,(t) = Eaazs0+55 10+5,uzo—550160+§,u iy — Hpiy |t

2

A T
+ ,um0+5p zO—Epmeot

.. 1 R BT |
R, () =(—55,010 +5/‘2”0 — HO, —5p2l0 +§¢l¢eojt2

and so on. This can be further resolved untived until the desired number of iterations is obtained.

Thus, the obtained raw solution to each model compartment is summarily expressed in some form

as shown in Eqn. (49) below:

S@0)=2 5,0V (@)= v, (0).E0)= D e,(0,1() = X i, (), R(®) = D 1, (1) (49)

Evaluating these series results using the corresponding variables and parameter values, gives:

S(t) =500.012 — 30.4440t + 1.1315290300t2 — 0.05075029853¢3
—3.509616000x10713¢> — 5.179149070x10~7¢t*

V(t) =120—-1.5060¢ — 0.01591470000¢> +0.001033697580¢°
+9.015111000x 1077 ¢*

E(t)=65+18.1785¢t —1.171778775t* +0.04929560765¢°
+5.087939775%x107"¢*

I(t) = 23.0.9 - 60z + 0.0292567500¢> — 0.0008440367798¢

4 (50)
—4.378044000x10"¢
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T(¢) = 23.0.9 — 607 +0.0292567500¢* — 0.0008440367798¢"
—4.378044000x 1077 ¢*

R(t) =14 —0.0155¢ — 0.005054500000¢> + 0.000145824254 1¢°
+2.473075000%x 107 ¢*

Hence, from the results of successive iterations in Eqn. (50), the comparison of control
intervention effects on sub-populations in its graphical illustration is depicted as shown in Table

5 below.

Table 5: Comparison of parameters ¢, and ¢, values for & at & =0,0.2,..0.5.

Variables Description at £=0.1,0.25,0.5
E(t) exposed population 0.5,0.25,0.125
I(t) infected population 0.5,0.25
R(t) recovered population 0.1,0.25...0.5
¢1 treatmen tintervention 0.1,0.2,...0.5
¢ Vaccination intervention 0.1,0.2,...0.5

2

4. Iterative Results

Graphical illustration of the resulting iterations is thus shown below:

2000 4
1750 -
1500 -
1250 A

1000 -

S[cl(t)

750 1

500 -
250 1

0.0 05 10 15 20 25 30 35 40
Time

Figure 2: Effect of treatment rate on susceptible individuals.
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Figure 3: Adverse effect of treatment rate on the population of vaccinated individuals.
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Figure 4: Adverse Increase of vaccination efficacy on individuals in the recovered population.
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Figure 5: Increase in vaccination rate on exposed population.
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Figure 6: Effect of treatment rate on infected population.
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Figure 7: Effect of treatment rate on infected population.
5. Discussion of Graphical Results

From results obtained, Fig. 2 and Fig. 3, depicts that the effect of treatment ¢, and

vaccination rate ¢ on the population of susceptible, infected, exposed and recovered is vital to

the control of cholera disease as this brings about a rise in its efficacy and steep-slope in the spread
of the viral disease in the disease compartments. In Fig. 4 shows the effect of vaccination rate on
the population of the recovered individuals, as a rise the vaccination rate increases the population
of the susceptible and rescored population which leads to a drastic fall in the exposed and infected
population. Consequently, Fig. 5 and Fig. 6 depicts that an increases in treatment rate of exposed
individuals will lead to an increase in the population of non-diseases classes. However,
comparison of the control policies of on the infected population of Fig. 7 came with a rise in

treatment and vaccination rate increases bring about drastic fall in the wide spread of cholera
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disease in the disease population. Lastly, from the susceptible population of Fig. 8, the adverse
effect of vaccination and treatment on this population brings about a rapid influx of non-disease
class of individuals who reunite into the population free of the deadly diseases. This implies that,
vaccination and treatment rate are vital control measures to eradicating the wide spread of cholera
from the populace. The effect of vaccination and treatment brings about convergence to the spread

of cholera disease in the exposed and infected population respectively.
6. Conclusion

The study explains that combining rapid treatment, and vaccination will significantly aid
in the control of the spread of cholera. These interventions reduce infection rates and mitigate the
disease's impact in endemic regions. It is imperative for healthcare personnel to prioritize and
adhere to these measures to assist in controlling cholera outbreaks effectively. Prompt treatment
and widespread vaccination should be an integral component of public health strategies to combat
this persistent and potentially devastating disease. It is therefore recommended that adequate
awareness, environmental sanitation in lieu of water treatment, and antibiotics can also be looked
into in the future to study towards curtailing the spread of this disease. We can achieve substantial

progress in managing and eventually controlling the spread of cholera.
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