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Abstract 

This study presents a mathematical analysis of the SVEITR model, which incorporates 

susceptible (s), vaccinated (v), exposed (e), infected (i), treated (t), and recovered (r) populations 

to evaluate the dynamics of cholera spread. By integrating treatment and vaccination rates into 

the model, we aim to understand their impact on disease transmission and the development of 

immunity. Our findings reveal that combining rapid treatment and vaccination significantly 

reduces the spread of cholera disease, highlighting the importance of these interventions in public 

health strategies. The model demonstrates that timely and widespread implementation of 

vaccination and treatment can effectively control outbreaks and mitigate the disease’s impact. 

Through a numerical simulation of the Laplace Adomian Decomposition Method, the results 

reveal that treatment rate reduces the spread of the disease, and vaccination plays a vital role in 

curbing the aftermath of widespread disease. Hence, there is a need for robust healthcare policies 

that prioritize these measures to achieve substantial progress in managing and eventually 

eradicating cholera, particularly in vulnerable regions. The SVEITR model offers a valuable 

framework for policymakers and healthcare professionals to develop effective strategies for 

cholera control, contributing to improved public health outcomes.   
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Kolera Bulaşımının Dinamikleri Üzerinde Tedavi ve Aşılama Etkilerinin Kantitatif 

Modellemesi 

Öz 

Bu çalışma, kolera yayılımının dinamiklerini değerlendirmek amacıyla duyarlı (s), aşılı (v), 

maruz kalmış (e), enfekte (i), tedavi edilen (t) ve iyileşen (r) popülasyonları içeren SVEITR 

modelinin matematiksel analizini sunmaktadır. Modele tedavi ve aşılama oranlarının entegre 

edilmesiyle, bu önlemlerin hastalığın bulaşması ve bağışıklık üzerindeki etkilerini anlamayı 

amaçlıyoruz. Bulgularımız, hızlı tedavi ve aşının birleştirilmesinin kolera hastalığının yayılmasını 

önemli ölçüde azalttığını ortaya koyarak, bu müdahalelerin halk sağlığı stratejilerindeki önemini 

vurgulamaktadır. Model, aşılama ve tedavinin zamanında ve yaygın olarak uygulanmasının 

salgınları etkili bir şekilde kontrol edebileceğini ve hastalığın etkilerini azaltabileceğini 

göstermektedir. Laplace-Adomian Ayrıştırma Yöntemi ile yapılan sayısal simülasyon sonucunda, 

tedavi oranının hastalığın yayılımını azalttığı ve aşının hastalığın yaygın etkilerini azaltmada 

hayati bir rol oynadığı ortaya çıkmıştır. Bu nedenle, bu önlemleri önceliklendiren sağlam sağlık 

politikalarına duyulan ihtiyaç, özellikle savunmasız bölgelerde koleranın yönetilmesi ve 

nihayetinde ortadan kaldırılması için önemli ilerlemeler sağlamak açısından gereklidir. SVEITR 

modeli, politika yapıcılar ve sağlık uzmanları için kolera kontrolüne yönelik etkili stratejiler 

geliştirmede değerli bir çerçeve sunarak, halk sağlığı sonuçlarının iyileştirilmesine katkıda 

bulunmaktadır. 

Anahtar Kelimeler: Kolera kontrolü; Tedavi etkinliği; Aşılama oranı; Kararlılık analizi; 

Kantitatif analiz; Simülasyon.  

1. Introduction 

Cholera is a highly infectious disease caused by the bacterium Vibrio cholerae, which 

remains a public health challenge, particularly in regions with inadequate water and sanitation 

infrastructure. Characterized by severe diarrhea and dehydration, cholera can lead to death within 

hours if untreated, as in [1-2]. The disease primarily spreads through the consumption of 

contaminated water and food, making its control closely linked to the quality of water supply, 

sanitation, and hygiene practices in [3]. Despite advancements in medical sciences and public 

health strategies, cholera outbreaks continue to pose a substantial health risk in developing 

countries. The focus of contemporary cholera research includes treatment efficacy, vaccination, 
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water and environmental cleanliness, regional enlightenment, regular hand washing, proper waste 

disposal, and community awareness by [4-5]. These components of sensitization and treatment 

are crucial in developing a comprehensive approach to control and prevent the disease effectively 

[6]. Effective treatment of cholera involves prompt rehydration, which can be lifesaving as 

discussed in [7]. Oral rehydration salts (ORS) are the cornerstone of treatment for most patients, 

while intravenous fluids are necessary for severe cases [8]. Antibiotics can also reduce the 

diarrhea and the volume of rehydration fluids needed can be increased instantaneously with 

researching into optimizing the treatment ongoing in endemic African regions such as Sudan, 

Ethiopia, Nigeria, Niger and Somalia, aiming to enhance their efficacy and accessibility to healthy 

water supply and hygienic environmental settings as in [9-10].     

The goal is to ensure that treatment protocols are both efficient and adaptable to various 

healthcare infrastructures, thus reducing mortality and morbidity rates associated with cholera 

disease [11-12]. Oral cholera vaccines (OCVs) have proven effective in providing immunity and 

reducing the incidence of the disease as well [13]. The integration of vaccination into public health 

strategies, especially in high-risk areas, can prevent outbreaks and provide long-term protection 

[14]. Recently, researchers have focused on improving the efficacy and duration of vaccine-

induced immunity, as well as logistics to enhance vaccine distribution and administration to 

endemic regions, where the success of vaccination campaigns depends on the timely and 

widespread coverage, particularly before and during cholera outbreaks, as in [15]. Clean water 

and proper sanitation are fundamental in preventing cholera transmission, where contaminated 

water sources are the primary vectors for the bacterium, highlighting the need for robust water 

treatment and safe water storage practices by [16]. 

Additionally, environmental cleanliness, including the maintenance of clean living 

conditions and proper sanitation facilities, is essential in [17-18]. Public health initiatives must 

focus on infrastructure development and community education to promote sustainable practices 

that ensure water and environmental cleanliness. Educating communities about cholera 

prevention and control is vital. Regional enlightenment campaigns can significantly impact public 

health by raising awareness about the disease, its transmission, and preventive measures, as in 

[19]. These campaigns should focus on informing individuals about the importance of using safe 

water, practicing good hygiene, and recognizing the symptoms of cholera for prompt treatment. 

Tailored educational programs that consider local customs and practices can enhance community 

engagement and compliance with preventive measures [20]. Hand washing technique with soap, 

disinfectants, and clean water is one of the simplest and most effective ways to prevent the spread 

of cholera. Regular hand washing, particularly before eating and after using the toilet, can 
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significantly reduce the transmission of the bacterium [21]. Public health campaigns must 

emphasize the importance of this practice and ensure that communities have access to soap and 

clean water. Installing hand-washing stations in public places and schools can also promote this 

essential hygiene practice. Proper waste disposal is crucial in preventing cholera outbreaks. 

Improperly disposed of human waste can contaminate water sources, facilitating the spread of 

Vibrio cholerae [22]. Implementing effective waste management systems, including the use of 

latrines and sewage treatment facilities, is vital. Public health initiatives should focus on 

constructing and maintaining these facilities, as well as educating communities about the 

importance of proper waste disposal [23]. Safe disposal practices help break the transmission 

cycle and reduce the risk of outbreaks. Awareness campaigns play a crucial role in cholera 

prevention, informing the public about the deadly disease, its symptoms, and the importance of 

seeking immediate treatment can save lives [24]. Awareness efforts should also highlight the 

preventive measures individuals can take to protect themselves and their communities, as in [25]. 

Utilizing various media platforms, including radio, television, social media platforms, and 

community outreach programs, can effectively disseminate information and reach a broad 

audience [26]. 

However, this research focuses on controlling the spread of cholera, which requires a 

multifaceted approach. This involves developing a mathematical model that incorporates both 

effective treatment and vaccination rates, along with various control measures, including water 

and environmental cleanliness, regional education, regular hand washing, proper waste disposal, 

and public awareness. By addressing these areas, public health initiatives can significantly reduce 

the incidence and impact of cholera, ultimately aiming for its eradication. Proper and continuous 

investment in these strategies is essential to overcoming the persistent threat posed by cholera, 

particularly in vulnerable regions.             

2. Materials and Methods 

2.1. Model Formulation  

The total population N (t) is distinctly divided into six sub-compartments of population 

sizes of are susceptible S(t), vaccinated V(t), exposed E(t), infected I(t), hospitalized/treated T(t) 

and recovered population R(t), The rate of migration or inflow into the population resulting to 

the spread of cholera is as human population are exposed through contaminated water and the 

hygienic measure put into practice to avoid ingestion and reduce the contact rate of the disease. 

Logistic coverage of public awareness of infected individuals at a rate of , where exposed 

individuals are subjected to contracting cholera at , and the rate of recovery is denoted with   

p

b

d

k g
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The treatment rate of the hospitalized individuals . More than 75% of contamination risk of 

vibro-cholerae results in the spread of the disease and vaccination rate of susceptible 

individuals, with representing the vaccine efficacy and shedding rate of infected human 

population, coupled with natural mortality rate for human and vibro-cholerae are  and . The 

above parameters can be demonstrated with schematic flow in Fig. 1 and a system of nonlinear 

differential equations in Eqn. (1) below, respectively. 

 
Figure 1: Schematic diagram of the model. 

 
2.2. Model Analysis 

From the schematic diagram above, an equation of the model is obtained in Eqn. (1) below: 
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Subjected to the initial condition  

.                         (2) 

Parameters of the model solution, descriptions, and references are displayed in Table 1 and Table 

2 with values that are time-dependent for cholera spread.   

 
Table 1: Description of model state variables. 

Variables Description 

S(t) Susceptible population 

V(t) Vaccinated population 

E(t) Exposed population 

I(t) Infected population 

T(t) Treated population 

R(t) Recovered population 

 
 
Table 2: Description of model parameter, values and references 

Parameter Description Values References 

 Total population 80,000 [10] 

 Recovery rate of hospitalized individuals  0.001 [11] 

 Vaccination efficacy 0.5 [1] 

 Treatment rate of hospitalized individuals 0.2 [18] 

 Vaccination rate of infected individuals 0.03 [2] 

 Natural death 1.0 [5] 

 İmmunity waning rate 0.0016 [20] 

 Recruitment rate 0.113 [3] 

 Rate of cholera transmission 1.0126 [14] 

 Disease induced death rate  0.33182 [21] 

 Natural recovery rate 0.16524 [17] 

 Progression rate between exposed and infected class of 
individuals 

0.25533 [9,16] 
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2.3. Existence and Uniqueness of Model 

The system of Eqn. (1) above, which describes an epidemic disease within a human 

population, should have parameters that are non-negative. To ensure that the system of differential 

Eqn. (1) is both mathematically and epidemiologically well-posed, it is essential to demonstrate 

that the state variables in the model are nonnegative. Therefore, the system of Eqn. (1) is bounded 

by an initial condition of , , , , , , in 

which the solution will persist in being non-negative throughout their evolution, i.e., and 

that these positive solutions are bounded in this region. We thus apply the theorem (1) below. 

Theorem 2.3.1. Let be distinct points of normed linear space over ℜ. 

Then the map of  such that is continuous on 

[0,1]. 

Proof. Let  then  for any ,  

                       (3) 

If is given, let .If , then the .    

Therefore, p is continuous at . Sınce  is an arbitrary point in [0,1]. then p is continuous 

on [0,1]. Let X be a linear space over . If x,y are distinct points of X, the set lies 

in . 

Hence, the solutions of system of Eqn. (1) are bounded if we consider the total population  

                                        

The variation in the total population concerning time is given by: 

           (4) 

Such that . When 

there is no outbreak of cholera, .Thus, substituting Eqn. (1) into Eqn. (4) as time 

progressively yields: 
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                                              (5) 

If so , as .   This is a positive invariant set under the flow described 

by Eqn. (2) so that no solution path leaves through any boundary . However, it is sufficient to 

consider the dynamics of the model in the domain . In this region, the model can be considered 

mathematically and epidemiologically well-posed. 

2.4. Positivity and Boundedness of Model 

This shows that the total population N(t), and the subpopulations S(t), V(t), E(t), I(t), T(t), 

R(t) of the model are bounded and are a unique solution. Hence, its applicability to study physical 

systems is feasible. 

Theorem 2.4.1. Suppose is a space of consecutive real numbers, and that are defined as  

                (6) 

X with the metric is called space. If ∑ |𝑥|!"
!#$ < ∞ or absolutely convergent and 

, then X with this metric is called an space. 

Proof. It can be checked that for each 𝑛: 

0 ≤ 𝑥$% + 𝑥%% + 𝑥&%+. . . +𝑥'% ≤ (|𝑥$| + |𝑥%| + |𝑥&|+. . . +|𝑥'|)%           (7) 

This will result to; 
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If  converges, that is is absolutely convergent, then  

                       (9) 

Therefore, 

           (10) 

The sequence 𝑥' is monotone increasing and bounded above, it therefore converges. Thus 

converges absolutely, i. E if , then where . In case of  denote 
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where as denote the set of all sequence of real numbers such that 

converges. From the proceeding i.e . Further, if , then 

diverges and thus . But converges, implying that . We 

conclude that and thus . If are sequences of real numbers, then; 
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and , then the solution of S(t), V(t), E(t), I(t), T(t), R(t) of the Eqn. (1) will always be 

nonnegative. 

 Let:           (12) 

If where is a constant. Then; 

, , , , 
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Eqn. (13) above confirms that system of Eqn. (1) is bounded, invariantly and attractively 
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population of infected, exposed individuals is at equilibrium, i.e I = E = 0. This context brings 

about the solution for the cholerae free equilibrium oint which is derived as follows in Eqn. (14) 

              (14) 

At no outbreak of measles infection, the diseases class, at , from Eqn. (8),  

              (15) 

2.6. Disease Endemic Equilibrium 

Examining cholera endemicity spread, we focus on strategic interventions of treatment and 

vaccination of infected individuals with the aim of long-term eradication. The frequency of 

choleraon (S,V,E,I,T,R) at , stressing the dynamic aspect of it to gauge on the crucial role 

in its infectious disease and protection on the populace. Let the endemic nature of Eqn. (1) be 

 at steady state, , hence the equation for its endemicity at 

equilibrium is obtained in Eqn. (16) below; 

 

          (16) 
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 where and is the spectral radius of the matrix . Thus, 

the  is obtained as it is defined that , . Such that 

 and , the transmission matrix for 

the disease and its transition compartmentally for the disease spread is obtained below in Eqn. 

(17) 

                    (17)          

.  

Resolving the above matrix respectively with their eigenvalues being independent factors 

of the leading variables, the basic reproduction number for Eqn. (17) is obtained in Eqn. (18) as 

discussed in [10]  

          (18) 

2.8. Quantitative Analysis of  

Here, we conduct a quantitative analysis of  to assess its metric progression concerning 
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outcomes of these calculations are presented in Table 3. 
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       (21)  

           (22) 

Table 3: Standalone metric of vaccination and general awareness on . 

A B C 
s/n f1 b f2 ε 𝑅! s/n f1 b f2 ε s/n f1 b f2 ε 

1 0 0 0 0 1.4591378 0 0 0 0 1.45913788 0 0 0 0 1.45913788 

2 0.2 0 0 0 1.1964930 0 0.2 0 0 1.16731030 0 0 0.2 0 0.25434513 

3 0.4 0 0 0 0.93384824 0 0.4 0 0 0.87548273 0 0 0.4 0 0.20246410 

4 0.6 0 0 0 0.67120342 0 0.6 0 0 0.58365515 0 0 0.6 0 0.18416303 

 

2.9. Local Stability for Disease Free Equilibrium 

Theorem 2.9.1. The disease-free state of the model is locally asymptotically stable if the 

threshold of the disease spread  and unstable whenever it is of the form . 

Proof. The disease-free equilibrium is obtained using the Jacobian matrix approach from next 

generation matrix of the resulting eigenvalues of respective parameters as of the system of Eqn. 

(1) and evaluated at the disease free state using the linearization method thus; 

       (23) 
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, , , , 

,  as obtained from Eqn. (23) the respective eigen vales are deduced 

in Eqn. (24) below: 

    

(24) 

Respective eigenvalues are negatively invariant in the region , indicating a biological 

implication that there will be a decrease in the spread over time if necessary control measures as 

indicated are strictly adhered to. Hence it is asymptomatically stable ∀𝜆' < 0, 𝑛 = 1,2. . .6, 𝑡 >

0. 

3. Regional Resilience for Persistence Equilibrium State 

 
Theorem 3.1. The local stability of the persistent equilibrium of the model is ensured that if 

,   invariantly and otherwise, it is unstable if is in the modification of the model 

equation as discussed in Eqn. (1). 

Proof. Suppose 

                    (25)  

Linearizing Eqn. (1), is then obtained as from Eqn. (26) for respective sensitive parameters for 

each state variable that are   
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Linearizing Eqn. (25), it is then obtained that each   

 

 

                        (27) 

 

 

      

The characteristic equation obtained from its Jacobian matrix is; 

       (28)                    

Denoting that 

the resulting eigenvalues of the above matrix are obtained as; 
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3.1. Global Stability of Disease-Free Equilibrium 

We employ the Lyapunov’s function approach to establish the global asymptotic stability 

of the model solution for Eqn. (1) and ta disease free equilibrium, utilizing the Lyapunov 

algorithm for the model state variables, this is deduced in Eqn. (30) thus;  

                                                                            (30) 

 

         

         

        

       (31) 
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based on Lasalle’s invariance principle , is globally asymptotically stable whenever 

 as seen in Eqn. (32), because the basics reproduction number of the model system of Eqn. 

(1) is independent of the deiseal state eigen parameters. 

3.2. Global Stability of Disease Endemic Equilibrium 

Theorem 3.2.1 The Dulac criterion is a method used in dynamical systems to determine the 

absence of periodic orbits in a given region of the phase plane, which can be extended to analyze 

the global stability of an equilibrium point. 

Proof. For a dynamical system described by the differential equations, i. e 

              (33) 

The Dulac criterion states that if there exists a continuously differentiable function  

(called the Dulac function) such that the expression in Eqn. (33) gives the equation below; 

           (34) 

Which is either strictly positive or strictly negative throughout a simply connected region

 of the phase plane. Then, there are no closed trajectories (periodic orbits) contained entirely 

within . To apply this to determine the global stability of an endemic equilibrium of 

a mathematical model, the endemic equilibrium point , which is also defined by the 

Dulac function gives the equation below 

 as                      (35) 

This indicates that the equation has a constant sign (either strictly positive or strictly 

negative) in the region of interest. If such a Dulac function  can be found, the system has 

no periodic orbits in that region, suggesting the global stability of the endemic equilibrium if no 

other attractors exist. Hence, if is such that  

in .                                                             (36) 
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Then, there are no closed trajectories in . This criterion is useful in proving the global 

stability of the endemic equilibrium when combined with other stability analysis techniques. 

We then employ this concept of Dulac’s criterion. Let,  define the 

Dulac’s function, i. E if . The following system of equations are derived. 

 

 

           (37) 

 

 

 

The above system of equations then results to;  
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At an initial time,  orbital resolution of the system of equations is given by  

which are obtained below compartmentally for each state variable and resolved descriptively to 

have,  

 

 

   (39) 

 

 

 

       (40) 

            (41) 

This implies that the system has no closed orbit. It therefore portrays epidemiologically 

that, no existence of a periodic orbit which implies that there are fluctuations in the number of 

infective, which makes it obvious that in allocation of resources for the control of the disease, 

vaccination will help to eradicate the rapid spread of cholera with time. 
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3.3. Sensitivity Analysis 

The primary aim is to assess the sensitivity of the basic reproduction number by computing 

its derivatives concerning all relevant parameters. This analysis will result in the determination 

of the normalized forward sensitivity index which is denoted as 𝛤(
)• = *)•

*(
× (
)•

. Here we 

investigate the influence of various factors that affects the dynamic progression of cholera disease 

dynamics. Hence, the respective equations depicting the influence on cholera spread is obtained 

in Eqn. (42) and its values are illustrated in Table 4 below. 

, ,

, ,                                    (42) 

,  

The above results generated descriptively are depicted in Table 3 below. 

Table 4: Sensitivity analysis of parameter and indices. 

Parameters Sensitivity indices 
  1.002863633 

  0.001307654 

  1.1096546 
  0.15356728 
  0.765438 
  0.564321 

Table 4 above shows that the sensitivity indices are positively invariant in .  The 

sensitivity indices depend on the values of each parameter of  and this brings about changes in 

the values that will affect the behavior of the threshold on the spread or vanity of cholera disease. 

Based on the Table 3, above, we can conclude that parameter  is the most sensitive to the basic 

reproduction number of the cholera disease. Particularly, increasing the value of  will result in 

a 80.86% increase in , while increasing the value of will lead to a 91.52% decrease in 𝑅∗. 

3.4. Numerical Simulation 

Numerical simulation was conducted on the cholera model by creating the following 

iterative scheme of Laplace Adomian Decomposition Method for the model equation. The 

(LADM) was employed to computationally analyze the epidemic model. Also, Maple 18 software 
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facilitated the generation of iteration formulas for each compartment. These formulars were then 

iteratively solved which enables the numerical evaluation of the model’s dynamics and providing 

insights into the epidemic’s behavior and progression. Taking the (LADM) transforms from both 

sides of the system of Eqn. (1) to the form of Eqn. (43) below. 

 

 

           (43) 

 

 

 

Substituting from Eqn. (1) into Eqn. (43) above to yield 

 

 

 

  

           (44) 
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          (45) 

 

 

 

Letting the non-linear terms in the above iteration and substitutes by taking the inverse 

Laplace transform of both sides, we have 
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         (47) 

 

  

The initial approximations of each class are given by Eqn. (44). Comparing the coefficients 

at , using the recurrence relations obtained from the iterations in Eqn. (47). 

Compartmentally, we obtained that 
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Further iterations are done to obtain successive iterative terms at n = 2 which gives Eqn. (49) 
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and so on. This can be further resolved untived until the desired number of iterations is obtained. 

Thus, the obtained raw solution to each model compartment is summarily expressed in some form 

as shown in Eqn. (49) below: 

     (49) 

Evaluating these series results using the corresponding variables and parameter values, gives:  

 𝑆(𝑡) = 500.012 − 30.4440𝑡 + 1.1315290300𝑡% − 0.05075029853𝑡&     

            −3.509616000𝑥10,$&𝑡- − 5.179149070𝑥10,.𝑡/ 

 

       (50) 
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Hence, from the results of successive iterations in Eqn. (50), the comparison of control 

intervention effects on sub-populations in its graphical illustration is depicted as shown in Table 

5 below. 

Table 5: Comparison of parameters  and  values for  at  = 0, 0.2, .. 0.5. 

Variables Description at = 0.1, 0.25, 0.5 
E(t) 
I(t) 
R(t) 

  

 

exposed population  
infected population 
recovered population 
treatmen tintervention 
Vaccination intervention 

  0.5, 0.25, 0.125 
  0.5, 0.25 
  0.1, 0.25...0.5 
  0.1, 0.2,... 0.5 
  0.1, 0.2,... 0.5 

 
 

4. Iterative Results  

Graphical illustration of the resulting iterations is thus shown below: 

 
Figure 2: Effect of treatment rate on susceptible individuals. 
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Figure 3: Adverse effect of treatment rate on the population of vaccinated individuals. 
 

 
Figure 4: Adverse Increase of vaccination efficacy on individuals in the recovered population. 

 

 
Figure 5: Increase in vaccination rate on exposed population. 
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Figure 6: Effect of treatment rate on infected population. 
 

 
Figure 7: Effect of treatment rate on infected population. 
 

5. Discussion of Graphical Results 

From results obtained, Fig. 2 and Fig. 3, depicts that the effect of treatment  and 

vaccination rate  on the population of susceptible, infected, exposed and recovered is vital to 

the control of cholera disease as this brings about a rise in its efficacy and steep-slope in the spread 

of the viral disease in the disease compartments. In Fig. 4 shows the effect of vaccination rate on 

the population of the recovered individuals, as a rise the vaccination rate increases the population 

of the susceptible and rescored population which leads to a drastic fall in the exposed and infected 

population. Consequently, Fig. 5 and Fig. 6 depicts that an increases in treatment rate of exposed 

individuals will lead to an increase in the population of non-diseases classes. However, 

comparison of the control policies of on the infected population of Fig. 7 came with a rise in 

treatment and vaccination rate increases bring about drastic fall in the wide spread of cholera 

2f
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disease in the disease population. Lastly, from the susceptible population of Fig. 8, the adverse 

effect of vaccination and treatment on this population brings about a rapid influx of non-disease 

class of individuals who reunite into the population free of the deadly diseases. This implies that, 

vaccination and treatment rate are vital control measures to eradicating the wide spread of cholera 

from the populace. The effect of vaccination and treatment brings about convergence to the spread 

of cholera disease in the exposed and infected population respectively.  

6. Conclusion 

The study explains that combining rapid treatment, and vaccination will significantly aid 

in the control of the spread of cholera. These interventions reduce infection rates and mitigate the 

disease's impact in endemic regions. It is imperative for healthcare personnel to prioritize and 

adhere to these measures to assist in controlling cholera outbreaks effectively. Prompt treatment 

and widespread vaccination should be an integral component of public health strategies to combat 

this persistent and potentially devastating disease. It is therefore recommended that adequate 

awareness, environmental sanitation in lieu of water treatment, and antibiotics can also be looked 

into in the future to study towards curtailing the spread of this disease.  We can achieve substantial 

progress in managing and eventually controlling the spread of cholera. 
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