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Abstract  Öz 
 

This study proposes a hybrid approach that integrates 
econometric and deep learning models—specifically, 
Vector Autoregression (VAR), Long Short-Term Memory 
(LSTM), and Gated Recurrent Unit (GRU)—to enhance 
electricity price forecasting. By combining historical data 
with external factors like weather and market indicators, 
this hybrid approach aims to improve prediction accuracy 
in volatile energy markets. The model captures complex 
temporal dependencies through a hybrid VAR, LSTM, and 
GRU structure and is tested on historical electricity price 
data supplemented with weather and market variables. 
Performance is evaluated using mean absolute error 
(MAE), root mean square error (RMSE), symmetric mean 
absolute percentage error (SMAPE), and root mean 
squared logarithmic error (RMSLE). Results show that 
deep learning models, particularly GRU, outperform VAR 
regarding MAE, RMSE, and RMSLE, suggesting superior 
predictive accuracy for absolute and relative forecasting 
tasks. However, SMAPE results highlight that the VAR 
model performs better in capturing proportional errors, 
suggesting its relative robustness in volatile price 
environments. Including weather and market data 
significantly improves the model’s robustness and 
accuracy. This study’s hybrid approach combines the 
interpretability of econometric models with the predictive 
power of deep learning, offering insights into the impact of 
external factors on energy prices. The model supports 
better decision-making and risk management for energy 
market participants in dynamic market environments. 
 
 
 
 
 
Keywords: Energy price forecasting, Gated Recurrent 
Unit (GRU), Long Short-Term Memory (LSTM), deep 
learning models, time series analysis. 

  

Bu çalışma, elektrik fiyat tahminini geliştirmek için üç 
farklı modeli, ekonometrik (Vektör Otoregresyon, VAR) 
ve derin öğrenme tekniklerini (Uzun Kısa Süreli Bellek, 
LSTM ve Geçitli Tekrarlayan Birim, GRU) entegre 
ederek hibrit bir yaklaşım önermektedir. Geçmiş verileri 
hava durumu ve piyasa göstergeleri gibi dış faktörlerle 
birleştiren bu hibrit yaklaşım, değişken enerji 
piyasalarında tahmin doğruluğunu artırmayı 
amaçlamaktadır. Model, hibrit bir VAR, LSTM ve GRU 
yapısı aracılığıyla karmaşık zamansal bağımlılıkları 
yakalar ve hava durumu ve piyasa değişkenleri ile 
desteklenen geçmiş elektrik fiyatı verileri üzerinde test 
edilir. Performans, ortalama mutlak hata (MAE), kök 
ortalama kare hata (RMSE), simetrik ortalama mutlak 
yüzde hata (SMAPE) ve kök ortalama karesel logaritmik 
hata (RMSLE) kullanılarak değerlendirilmiştir. Sonuçlar, 
özellikle GRU olmak üzere derin öğrenme modellerinin 
MAE, RMSE ve RMSLE açısından VAR'dan daha iyi 
performans gösterdiğini ve mutlak ve göreceli tahmin 
görevleri için üstün tahmin doğruluğu sağladığını ortaya 
koymaktadır. Bununla birlikte, SMAPE sonuçları VAR 
modelinin oransal hataları yakalamada daha iyi 
performans gösterdiğini vurgulamakta ve bu da değişken 
fiyat ortamlarında göreceli sağlamlığını ortaya 
koymaktadır. Hava durumu ve piyasa verilerinin dahil 
edilmesi, modelin sağlamlığını ve doğruluğunu önemli 
ölçüde artırmaktadır. Bu çalışmanın hibrit yaklaşımı, 
ekonometrik modellerin yorumlanabilirliği ile derin 
öğrenmenin tahmin gücünü birleştirerek dış faktörlerin 
enerji fiyatları üzerindeki etkisine dair içgörüler 
sunmaktadır. Model, dinamik piyasa ortamlarında enerji 
piyasası katılımcıları için daha iyi karar alma ve risk 
yönetimini desteklemektedir. 
 
Anahtar Kelimeler: Enerji fiyat tahmini, Geçitli 
Tekrarlayan Birim (GRU), Uzun Kısa Süreli Bellek 
(LSTM), derin öğrenme modelleri, zaman serisi analizi. 
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1. INTRODUCTION 

 

Electricity price prediction is a critical area of research that has gained significant 

attention due to the increasing complexity of power systems and the volatility of 

electricity markets. Accurate forecasting of electricity prices is essential for market 

participants, including utilities, consumers, and investors, as it directly impacts 

decision-making processes related to energy trading, consumption, and investment 

strategies. This essay explores various methodologies and approaches for predicting 

electricity prices, highlighting the challenges and advancements in the field. 

 

The traditional methods for electricity price forecasting have primarily relied on time 

series analysis techniques, such as the Autoregressive Integrated Moving Average 

(ARIMA) (Zhang et al., 2018; Dash et al., 2019), vector auto-regression (VAR) (Meher, 

2019) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models (Liu et al., 2010). These models utilize historical price data to identify patterns 

and trends, allowing for estimating future prices based on past values. Similarly, Zhong 

discusses integrating deep learning techniques with traditional time series methods to 

enhance forecasting accuracy, particularly in complex power systems (Zhong, 2023). 

Nonetheless, the volatile and nonstationary nature of electricity price data often poses 

significant challenges for purely statistical approaches, leading researchers to seek 

more sophisticated methods (Lehna et al., 2022). 

 

In response, advanced machine learning and deep learning models have gained 

prominence for their superior ability to capture nonlinearities in complex energy 

markets. Various neural network–based architectures have been proposed, each aiming 

to enhance day-ahead price accuracy. For instance, Deep Belief Networks (DBN) have 

been utilized to conduct deep feature extraction, showcasing robust predictive 

performance (Cao et al., 2022). Likewise, Recursive Neural Networks have been 

tailored for specific markets such as PJM, highlighting the role of temporal 

dependencies in volatile pricing environments (Mandal et al., 2010). 

 

Recurrent Neural Networks (RNN), particularly Long Short-Term Memory (LSTM) 

networks, are frequently cited for their effectiveness in handling sequential data in 

electricity price forecasting. Their memory capabilities enable them to track evolving 

price dynamics more accurately over time (Uğurlu et al., 2018). Moreover, integrating 

LSTM with optimization algorithms—such as differential evolution—has proven 

beneficial for robust forecasting in rapidly fluctuating electricity markets (Peng et al., 

2018). 

 

Hybrid approaches that combine multiple techniques have further advanced the field. 

Guo and Zhao (2017) proposed a hybrid Bayesian-Fruit Fly Optimization-Least 

Squares Support Vector Machine (BND-FOA-LSSVM) model, emphasizing the value 

of optimization methods for improved forecast precision. Yao et al. (2021) similarly 

demonstrated that a backpropagation (BP) neural network optimized by Simulated 

Annealing Particle Swarm Optimization (SAPSO) can mitigate overfitting and expedite 

convergence in short-term price prediction. 

 

Beyond electricity price forecasting, parallel research trends in predictive maintenance 

for machinery degradation also underscore the value of hybrid and deep learning 
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models. For example, Kara (2021) integrated deep learning with other methodologies 

to refine Remaining Useful Life (RUL) predictions, aligning with similar efforts in 

bearing performance (Geetha et al., 2024) and multi-stage degradation analysis (Sun et 

al., 2024; Wang et al., 2024). Such studies highlight the adaptability of deep 

architectures, including LSTM and attention-based transformers, which can be 

extended across diverse forecasting and prognostic tasks (Liang et al., 2024; Cao et al., 

2024; Hu et al., 2024). 

 

Finally, recent work by Zhong (2023) illustrates a unified model that integrates 

Artificial Neural Networks (ANN), LSTM, and transformer networks for load 

forecasting and electricity price prediction. This composite approach signals an 

emerging trend in EPF research: leveraging multiple neural architectures within a 

single framework to address the growing complexity of power markets. 

 

Electricity price forecasting has gained significant attention due to the complexities of 

deregulated energy markets, driven by the integration of renewable energy, volatile 

supply-demand dynamics, and external influences like weather conditions. Traditional 

econometric models, like Vector Autoregression (VAR), offer the advantage of 

interpretability and can effectively model linear relationships among variables. 

However, they often fail to capture the nonlinear and nonstationary nature of electricity 

price data. On the other hand, deep learning models, such as Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU), excel at capturing these complexities and 

identifying long-term dependencies, but they lack the transparency needed for informed 

decision-making. This study addresses these limitations by introducing a novel hybrid 

modeling framework that integrates econometric and deep learning approaches. The 

proposed method combines VAR’s interpretability and temporal insights with LSTM 

and GRU’s ability to model complex patterns and long-term trends, offering a 

comprehensive solution for electricity price forecasting.  

 

Additionally, this research emphasizes the integration of external variables, such as 

weather and market data, which significantly enhance the model’s robustness and 

prediction accuracy. Unlike previous studies that primarily focus on standalone 

econometric or deep learning models, this research highlights the synergy of combining 

both approaches, bridging a critical gap in the literature. The findings demonstrate that 

this hybrid framework outperforms traditional methods, providing more accurate 

forecasts and actionable insights for energy market participants. This not only 

contributes to advancing forecasting methodologies but also supports practical 

decision-making in the context of increasingly volatile and complex energy markets. 

 

The remainder of this paper is organized as follows: Section 2 presents a detailed 

overview of the dataset and the variables utilized for modeling; Section 3 introduces 

the methodology, as well as the deep learning techniques, namely LSTM and GRU 

models, used for forecasting; Section 4 discusses the empirical findings, highlighting 

the interplay between meteorological factors and energy market dynamics; finally, 

Section 5 concludes the study, summarizing the main insights and proposing directions 

for future research 
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2. DATA DESCRIPTION AND CHARACTERISTICS 

 

This study uses a diverse dataset to forecast the electricity production and consumption 

of Estonian energy customers equipped with solar panels (Kaggle, 2024). The dataset 

includes various meteorological and market data, enabling an in-depth analysis of the 

factors influencing energy behavior. This section provides a detailed overview of the 

variables used for model development. 

 

The dataset consists of time-series data, which includes weather information, energy 

market prices, and records of photovoltaic capacity installed by customers. Specifically, 

we focus on predicting the amount of electricity produced and consumed based on these 

variables. Table 1 presents the features included in the dataset. 

 

Table 1. Summary of Variables Used in the Forecasting Model 

 
Variable Name Unit Description 

Electricity Price Euros per 

megawatt hour 

(€/MWh) 

The price of electricity in euros per 

megawatt-hour (MWh) on the day-ahead 

market. 

Gas Price Euros per 

megawatt hour 

(€/MWh) 

The lowest and highest prices of natural gas 

on the day-ahead market for the trading day, 

are expressed in euros per megawatt-hour 

equivalent. 

Temperature Degrees Celsius 

(°C) 

The temperature is measured at the end of 

each hour. 

Dewpoint Degrees Celsius 

(°C) 

The dew point temperature is measured at 

the end of each hour. 

Rainfall Millimeters (mm) The rainfall from large-scale weather 

systems during the hour. 

Snowfall Centimeters (cm) The snowfall during the hour. 

Surface Pressure Hectopascals 

(hPa) 

The air pressure at the surface. 

Cloud cover 

[low/mid/high/total] 

Percentage (%) Cloud cover at different atmospheric levels 

is categorized into low (0-3 km), mid (3-8 

km), and high (above 8 km), along with 

total cloud cover. 

Windspeed Meters per second 

(m/s) 

The wind speed was measured at 10 meters 

above ground level. 

Wind Direction Degrees (°) The wind direction at 10 meters above 

ground. 

Shortwave Radiation Watt-hours per 

square meter 

(Wh/m²) 

The global horizontal irradiation. 
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Direct Solar Radiation Watt-hours per 

square meter 

(Wh/m²) 

The direct solar radiation. 

Diffuse Radiation Watt-hours per 

square meter 

(Wh/m²) 

The diffuse solar irradiation. 

 

This comprehensive set of variables allows us to create a robust model considering 

meteorological and economic factors. By integrating these features, the model aims to 

accurately predict energy production and consumption, facilitating better energy 

management strategies for solar panel customers. 

 

Figure 1 illustrates the temporal evolution of various variables relevant to forecasting 

electricity production and consumption in October 2022 and April 2023. The graphs 

provide detailed visualizations of electricity and gas prices (in €/MWh), alongside 

meteorological data, including temperature (°C), dewpoint (°C), rainfall (mm), 

snowfall (mm), surface pressure (hPa), and cloud cover percentages at different 

altitudes (low, mid, high, and total). Additional variables such as wind speed (m/s), 

wind direction (°), shortwave radiation (W/m²), direct solar radiation (W/m²), and 

diffuse radiation (W/m²) are also presented. 

 

The visualization reveals significant seasonal and temporal variations in these 

variables. For instance, temperature and solar radiation levels show a clear cyclic 

pattern corresponding to seasonal changes, peaking in summer and reaching their 

lowest in winter. The electricity price fluctuates significantly, with observable peaks in 

winter months, likely influenced by increased demand and variability in energy supply 

conditions. Gas prices also display a gradual downward trend over the observed period. 

 

Meteorological elements like rainfall and snowfall exhibit sporadic yet notable peaks 

during colder months, particularly around winter. Wind speed and cloud cover 

percentages present fluctuations throughout the period, which could impact the 

efficiency and predictability of solar energy production. Understanding these temporal 

dynamics is essential for developing robust forecasting models that integrate these 

variables to accurately predict energy consumption and production patterns. 

 

This comprehensive view of the data underscores the importance of considering 

economic and meteorological factors when modeling energy systems, especially for 

renewable energy sources like solar power that are heavily influenced by weather 

conditions. 
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Figure 1. Temporal Patterns of Electricity Price, Weather, and Atmospheric Variables 
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Figure 2 presents histograms depicting the distribution of key variables in the dataset, 

including electricity prices, gas prices, temperature, and various meteorological 

variables such as cloud cover, rainfall, and solar radiation. These distributions provide 

critical insights into the variability and skewness of the data, which have important 

implications for model training and performance. 

 

The histogram for electricity prices shows a right-skewed distribution, with most prices 

concentrated in the lower range and occasional extreme spikes. Gas prices and 

temperature follow more balanced, near-normal distributions, indicating less volatility 

compared to electricity prices. Other variables, such as rainfall, snowfall, and solar 

radiation, exhibit highly skewed distributions, with values clustered around low ranges 

and rare high-value occurrences. Cloud cover variables display bimodal or skewed 

patterns, reflecting distinct weather conditions. These visualizations highlight the 

diversity and complexity of the dataset, emphasizing the challenges of capturing 

extreme values and variable-specific behaviors in forecasting models. 

 

 
 

Figure 2. Distribution of Electricity Prices, Market Variables, and  

Meteorological Factors 

 

Figure 3 presents the correlation matrix of the variables used in forecasting electricity 

production and consumption. The matrix visually represents the strength and direction 

of linear relationships between different variables. Positive correlations are indicated 

in shades of red, while negative correlations are represented in shades of blue. The 

intensity of the color corresponds to the magnitude of the correlation coefficient. 
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Key observations from the correlation matrix include a strong positive correlation 

between dewpoint and temperature (0,94), indicating that these variables tend to 

increase or decrease together. Similarly, shortwave radiation and direct solar radiation 

show a high positive correlation (0,95), which is expected as both are related to solar 

energy input. Conversely, surface pressure and temperature demonstrate a negative 

correlation (-0,27), suggesting that the other decreases as one increases. This 

correlation matrix is essential for understanding the relationships among variables, 

which can inform the selection of features for predictive modeling and highlight 

potential multicollinearity issues that may need to be addressed in the analysis. 

 

 
Figure 3. Correlation Matrix of Variables Influencing Electricity Production and 

Consumption 

 

Figure 4 displays the feature importance values derived from the predictive model for 

forecasting electricity production and consumption. The bar chart highlights the 

relative significance of each variable in contributing to the model's performance. 

Higher values indicate a greater impact on the model’s predictive capability. 

 

The Gas Price variable stands out as the most influential factor, suggesting that 

fluctuations in gas prices significantly impact electricity production and consumption 

patterns. Other notable variables include Dewpoint, Surface Pressure, and Diffuse 

Radiation, indicating their relevance in the forecasting model. In contrast, variables 

such as Mid-Level Cloud Cover and Wind Direction appear to have a lower impact, 

contributing minimally to the model. This analysis is crucial for understanding which 

factors are most influential, guiding further refinement of the model by focusing on the 

most impactful features and potentially reducing complexity by excluding less relevant 

ones. 
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Figure 4. Feature Importance for Predicting Electricity Price 

 

 

3. METHODOLOGY 

 

The VAR model allows for the simultaneous modeling of multiple time series variables, 

where each variable is regressed on its own lagged values and the lagged values of 

other variables in the system. It is particularly effective when dealing with 

macroeconomic data, where multiple variables interact dynamically (Sims, 1980). 

 

The primary advantage of VAR models is their ability to provide information about the 

direction and magnitude of the interactions between variables. Additionally, its 

dynamic structure allows using tools such as impulse response functions (IRFs) to 

analyze how variables respond to shocks within the system (Lütkepohl, 2005). 

 

The VAR model is based on a system of equations where 𝑌𝑡 represents a vector of k 

time series variables. Each variable in the system is modeled as a function of its lags 

and the lags of the other variables. The model can be expressed as follows: 

 

𝑌𝑡 =  𝐴1𝑌𝑡−1 +  𝐴2𝑌𝑡−2 +  … +  𝐴𝑝𝑌𝑡−𝑝 +  𝜀𝑡      (1) 

 

where 𝑌𝑡 𝑘-dimensional vector of time series variables, 𝐴𝑖 𝑘 × 𝑘  coefficient matrices 

for each lag, capturing the influence of past values of all variables in the system, 𝑝 the 

lag length of the model, 𝜀𝑡 a vector of error terms or innovations, assumed to be white 

noise with zero mean and constant variance. 

 

Long Short-Term Memory (LSTM) cells are highly relevant as they enable the model 

to capture both short-term fluctuations and long-term dependencies within the data. For 

instance, changes in weather patterns, market conditions, and other external factors that 

influence energy prices often exhibit both immediate and lingering effects. By 

leveraging the cell and hidden states in the LSTM, the model can effectively learn to 
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retain critical information across multiple time steps, which is crucial for accurate 

forecasting. 

 

The forget, input, and output gates allow the LSTM to dynamically control the 

information flow, making it suitable for time series applications where relevant patterns 

may recur over varying time horizons. This capability aligns with the objectives of 

hybrid modeling approaches that integrate econometric and deep learning models for 

robust energy market predictions. 

 

LSTM networks are Recurrent Neural Networks (RNN) designed to capture long-term 

dependencies in time series data. Due to their ability to retain information over long 

sequences, LSTM models have become a popular choice in time series forecasting, 

including in applications like energy price prediction, where complex dependencies 

exist between past prices, weather data, and other external factors (Chang et al., 2019; 

Zhou et al., 2019; Wang et al., 2020). LSTM networks were introduced to overcome 

the vanishing gradient problem associated with traditional RNNs. They are designed 

with memory cells that can store information for long periods, making them particularly 

effective for time series forecasting, where patterns may span over long data sequences 

(Hochreiter & Schmidhuber, 1997). 

 

The architecture of an LSTM network includes three main gates: the input gate, the 

forget gate, and the output gate. These gates regulate the flow of information through 

the network, enabling it to selectively remember or forget information, which is critical 

in modeling the dependencies in sequential data like energy prices and their influencing 

factors (e.g., weather conditions, market dynamics) (Gers et al., 2000). 

 

An LSTM model is composed of a series of LSTM cells. Cell State (𝑐𝑡) represents the 

"memory" of the LSTM, storing relevant information over time. The cell state is 

updated based on the input and forget gates. 

 

LSTM models use three gates to control the flow of information. Forget Gate (𝑓𝑡) 

decides what information to discard from the cell state. It is defined as: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),      (2) 

 

where 𝑓𝑡 is the forget gate output, 𝑊𝑓 and 𝑏𝑓 are the weight matrix and bias for the 

forget gate, ℎ𝑡−1 is the previous hidden state, 𝑥𝑡 is the current input, and 𝜎 is the 

sigmoid activation function. 

 

Input Gate determines which new information is stored in the cell state. It is expressed 

as: 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),      (3) 

 

where 𝑊𝑖 and 𝑏𝑖 are the weight matrix and bias vector for the input gate. The candidate 

values to be added are calculated as: 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐).      (4) 
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Output Gate decides the next hidden state based on the updated cell state: 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),      (5) 

 

where 𝑊𝑜 and 𝑏𝑜 are the weight matrix and bias vector for the output gate. 

 

The hidden state is then: 

 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡).      (6) 

 

The cell state is updated based on the input and forget gates: 

 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 .      (7) 

 

These equations control what information is added to or removed from the memory, 

effectively allowing the model to capture and leverage long-term 

dependencies (Hochreiter & Schmidhuber, 1997). 

 

Figure 5 illustrates the Long Short-Term Memory (LSTM) cell architecture, 

highlighting the roles of the forget, input, and output gates in managing both long-term 

(𝑐𝑡) and short-term (ℎ𝑡) memory states. This design allows the LSTM to retain relevant 

information over extended sequences. It is particularly effective for applications 

involving temporal data with complex dependencies, such as energy price forecasting 

influenced by external factors 

 

 
 

Figure 5. LSTM Cell Architecture: Gate Mechanisms for Long-Term and Short-Term 

Memory Management 

 

In the context of energy price prediction, where long-term dependencies and temporal 

patterns play a significant role, the GRU model's gating mechanism allows it to capture 

these dependencies effectively without overcomplicating the model. The GRU can 
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focus on relevant time steps by selectively retaining or forgetting past information 

through the reset and update gates. It is suitable for modeling complex time series data 

such as energy prices influenced by external factors (e.g., weather data, market trends). 

 

The GRU model is a variant of the Recurrent Neural Network (RNN) architecture 

designed to improve the learning of long-term dependencies. GRUs are particularly 

useful when computational efficiency is a priority, as they have fewer parameters than 

LSTM models while maintaining performance (Cho et al., 2014). GRU model’s ability 

to efficiently capture dependencies in time series data makes it a powerful component 

in hybrid models that forecast complex energy markets. The GRU has fewer parameters 

than the LSTM, leading to faster training times and lower computational costs (Chung 

et al., 2014). 

 

A GRU cell uses two main gates to manage information: the reset gate (𝑟𝑡) and 

the update gate (𝑧𝑡). These gates control what information is kept and what is discarded, 

allowing the GRU to manage long-term dependencies efficiently while minimizing 

computational complexity. 

 

The reset gate determines how much of the past information (ℎ𝑡−1) should be forgotten: 

 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟),      (8) 

 

where 𝑊𝑟 and 𝑏𝑟 are the weight matrix and bias vector for the reset gate, 𝜎 is the 

sigmoid activation function, ℎ𝑡−1 is the previous hidden state, and 𝑥𝑡 is the current 

input. 

 

The update gate controls how much of the past information is retained and how much 

of the new information is added: 

 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧),      (9) 

 

where 𝑊𝑧 and 𝑏𝑧 are the weight matrix and bias vector for the update gate. 

 

The candidate hidden state (ℎ̃𝑡) is computed based on the reset gate’s influence: 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ),     (10) 

 

where 𝑟𝑡 is the reset gate output, determining how much of the previous hidden state 

(ℎ𝑡−1) contributes. 

 

The final hidden state (ℎ𝑡) is computed using both the update gate and the candidate 

hidden state: 

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡.      (11) 

 

This equation appropriately combines the previous hidden state and the new candidate 

state, balancing new and old information. 
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Figure 6 provides a detailed schematic representation of the GRU cell architecture, 

showcasing the role of its gating mechanisms—reset gate and update gate—in 

controlling information flow within the network. This figure visualizes how the GRU 

cell processes and combines the current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1 to 

produce an updated hidden state ℎ𝑡, propagated forward in the sequence. 

 

 
 

Figure 6. Schematic Representation of the GRU Cell and Its Gating Mechanisms 

 

 

4. EMPIRICAL FINDINGS 

 

This section presents the empirical results of analyzing the interaction between 

meteorological variables and energy market dynamics using multiple modeling 

approaches. To gain a comprehensive understanding, we employed the Vector 

Autoregression (VAR) model alongside Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU) methods. This combination of models allows for both statistical 

inference and advanced forecasting capabilities, enabling the extraction of valuable 

insights from the dataset. 

 

The VAR model was used to analyze the dynamic interrelationships between variables, 

focusing on understanding how the past values of meteorological and market factors 

impact energy prices over time. Meanwhile, LSTM and GRU methods, known for their 

ability to handle sequential data, were used to make precise and long-term forecasts of 

electricity consumption and production patterns, leveraging their capability to capture 

long-range dependencies. 

 

To prepare the dataset for the VAR model, several data preprocessing steps were 

undertaken to ensure data quality and feature selection, focusing on enhancing both the 

interpretability and statistical soundness of the model. Initially, the coefficient of 

variation (CV) was calculated for each variable in the dataset. This metric—computed 

as the ratio of the standard deviation to the mean—was used to assess the relative 

variability of each variable over time. Variables with a CV greater than 0,5 were 

retained for analysis, ensuring that the model captured only those variables with 

significant variability. This step helped eliminate static variables that could introduce 

noise rather than meaningful insights. 
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To address the potential issue of multicollinearity, a correlation matrix was computed, 

and columns with a correlation coefficient greater than 0,8 were dropped. By removing 

one variable from each pair of highly correlated features, the model was optimized to 

reduce redundancy and multicollinearity, ultimately improving the reliability of 

estimated relationships among variables. 

 

In Table 1, the Augmented Dickey-Fuller (ADF) test is presented under two 

specifications: one with only a constant term (𝐴𝐷𝐹(𝑐)) and one with both a constant 

and a linear trend (𝐴𝐷𝐹(𝑐𝑡)). The results show that several variables, including Rain, 

Snowfall, Total Cloud Cover, Mid-Level Cloud Cover, and High-Level Cloud Cover, 

appear to be strongly stationary in both specifications since their test statistics exceed 

the relevant critical values at the 1% level. In these cases, adding a trend component 

does not alter the conclusion that the series is stationary. 

 

Conversely, Gas Price, Temperature, and Shortwave Radiation fail to reject the unit 

root hypothesis at conventional significance levels under both 𝐴𝐷𝐹(𝑐) and 𝐴𝐷𝐹(𝑐𝑡). 

Thus, these three appear to be nonstationary in their current forms, suggesting potential 

benefits of differencing or transformation if they are to be used in models requiring 

stationarity. Electricity Price exhibits mixed results: it is significant under the constant-

only specification at the 5% level but not under the constant+trend specification, 

indicating possible partial stationarity or sensitivity to trend. Overall, the ADF tests 

imply that some weather-related series (e.g., rainfall, snowfall, cloud cover) are level-

stationary, while certain price measures and temperature data may require further 

transformation. 

 

Table 2. ADF Test Results 

 

Variable 𝑨𝑫𝑭(𝒄) 𝒑 −value 𝑨𝑫𝑭(𝒄𝒕) 𝒑 −value 

Electricity Price -3,016** 0,0335 -3,024 0,1256 

Gas Price -1,393 0,5854 -1,413 0,8572 

Temperature -1,854 0,3540 -1,853 0,6786 

Rain -11,711*** 0,0000 -14,410*** 0,0000 

Snowfall -7,778*** 0,0000 -7,772*** 0,0000 

Total Cloud Cover -3,895*** 0,0021 -3,967*** 0,0098 

Mid-Level Cloudcover  -14,072*** 0,0000 -14,065*** 0,0000 

High-Level Cloud Cover -15,098*** 0,0000 -15,085*** 0,0000 

Shortwave Radiation -1,463 0,5516 -1,519 0,8224 

Notes: 𝐴𝐷𝐹(𝑐) refers to the test specification with constant, and 𝐴𝐷𝐹(𝑐𝑡) refers to the 

specification with constant and trend. The reported test statistic values should be compared with 

the critical values at the 1%, 5%, and 10% significance levels to assess stationarity. For 𝐴𝐷𝐹(𝑐), 

the critical values are approximately -3,441 (1%), -2,866 (5%), and -2,569 (10%). For 𝐴𝐷𝐹(𝑐𝑡), 

the critical values are approximately -3,973 (1%), -3,418 (5%), and -3,131 (10%). The maximum 

lag length was set to 12, and the final lag was determined by the significance of the last lagged 

dependent variable at the 10% level. Statistical significance at the 1%, 5%, and 10% levels is 

denoted by ***, **, and *, respectively. 
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Table 2 reports the Zivot–Andrews test, which allows for a single endogenously 

determined structural break. The results under the Level Break (𝑐) and Level + Trend 

Break (𝑐𝑡) models show that Rain, Snowfall, Total Cloud Cover, Mid-Level Cloud 

Cover, High-Level Cloud Cover, and Electricity Price are statistically significant at 

least at the 5% level. This outcome suggests these variables become stationary once 

one accounts for a specific break date. For instance, Electricity Price has break dates 

around late 2022, and its p-values (< 0,02) confirm stationarity with a shift. 

 

In contrast, Gas Price, Temperature, and Shortwave Radiation do not exhibit 

stationarity under either Zivot–Andrews model; their test statistics remain above the 

critical thresholds, and the corresponding 𝑝 −values indicate that the unit root 

hypothesis cannot be rejected. While a break date is still computed (e.g., 2022-12-14 

for Gas Price), the test statistic is insufficiently large in absolute value to confirm 

stationarity. Consequently, these variables likely contain a persistent unit root behavior, 

even when a single structural break is considered. 

 

In the context of Vector Autoregression (VAR) modeling, stationarity is a critical 

assumption to ensure the validity of the analysis. Given that certain variables, such as 

Gas Price, Temperature, and Shortwave Radiation, were identified as non-stationary, 

their first differences were taken before their inclusion in the VAR model. This 

transformation ensures that all variables in the analysis satisfy the stationarity 

requirement, facilitating accurate and robust results. 

 

Table 3. Zivot–Andrews Test Results 

 
Variable 𝒁𝑨(𝒄) 𝒑 −value Break Date 𝒁𝑨(𝒄𝒕) 𝒑 −value Break Date 

Electricity Price -5,168** 0,0167 2022-12-16 -5,478** 0,0153 2022-07-27 

Gas Price -3,217 0,8330 2022-12-14 -4,340 0,2926 2022-06-28 

Temperature -3,187 0,8459 2022-10-16 -3,422 0,8477 2022-11-12 

Rain -14,600*** 0,0000 2022-05-25 -14,589*** 0,0007 2022-05-25 

Snowfall -8,284*** 0,0000 2022-11-19 -8,597*** 0,0009 2022-02-22 

Total Cloud Cover -5,660*** 0,0022 2022-09-12 -5,768*** 0,0051 2022-09-12 

Mid-Level Cloudcover  -14,429*** 0,0000 2022-11-18 -15,072*** 0,0007 2022-11-18 

High-Level Cloud Cover -15,294*** 0,0000 2023-02-24 -15,714*** 0,0007 2023-01-06 

Shortwave Radiation -3,668 0,5691 2022-08-14 -2,967 0,9691 2022-08-14 

Notes: This table shows the Zivot–Andrews test results under two model specifications: Level 

Break (𝑐) and Level and Trend Break (𝑐𝑡). The break date is endogenously determined and 

reported in the final column for each specification. Critical values for the level-break model (𝑐) 

are approximately -5,276 (1%), -4,811 (5%), and -4,566 (10%), while for the level and trend 

model (𝑐𝑡) they are -5,576 (1%), -5,073 (5%), and -4,827 (10%). Statistical significance at the 

1%, 5%, and 10% levels is denoted by ***, **, and *, respectively. A maximum of 12 lags was 

allowed, with the final lag determined at the 10% significance level for the last lagged dependent 

variable. 
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Figure 7 illustrates the decomposition of three non-stationary variables—Gas Price, 

Temperature, and Shortwave Radiation—into their respective components: original 

series, trend, and residuals. The decomposition highlights persistent trends and 

significant variations in the residuals for each series, consistent with the results 

presented in Tables 2 and 3. For Gas Price, the trend component shows distinct long-

term fluctuations, likely influenced by external market dynamics, while the residuals 

reveal high-frequency variability that further supports non-stationarity. Similarly, 

Temperature exhibits pronounced seasonal trends that align with climatic cycles and 

irregular residuals indicative of stochastic influences. Finally, Shortwave Radiation 

displays distinct periodic trends, reflecting solar radiation patterns, with residuals 

capturing short-term anomalies. 

 

The persistence of trends and irregularities in the residuals for all three variables 

supports the conclusion that these series are non-stationary in their current forms. This 

finding aligns with the Augmented Dickey-Fuller (ADF) test results, which fail to reject 

the null hypothesis of a unit root for these variables under constant-only and constant-

with-trend specifications. Furthermore, the Zivot–Andrews test confirms that even after 

accounting for structural breaks, the unit root behavior remains for these variables, 

suggesting that differencing or transformation is necessary to achieve stationarity. 
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Figure 7. Decomposition of Non-Stationary Variables:  

Gas Price, Temperature, and Shortwave Radiation 

 

Figure 8 presents the historical and forecasted electricity prices in euros per megawatt 

hour (€/MWh), derived using the VAR model. The graph illustrates the historical and 

forecasted values, providing a comparative perspective on how the model predicts 

future electricity prices based on previous data. The forecasted prices and a 95% 

confidence region are displayed in the shaded orange area, highlighting the uncertainty 

range around the model's predictions. 

 

The historical segment of the plot shows the variations in electricity prices over time, 

indicating seasonal patterns and volatility, which are crucial for understanding energy 
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market dynamics. The forecasted values extend into the future and suggest potential 

trends that decision-makers can use for planning and resource allocation. The wide 

confidence region in the forecast period signifies the uncertainty in predictions, 

emphasizing the influence of external factors on electricity prices. In this context, the 

VAR model’s strength lies in its ability to capture interdependencies between variables, 

providing insights into price movements and the associated risk. 

 

 
 

Figure 8. Historical and Forecasted Electricity Prices Using The VAR Model 

 

Figures 16 to 24, presented in the appendix, display the impulse response functions 

(IRFs) for the variables included in the Vector Autoregression (VAR) model over a 10-

step horizon. They illustrate how each variable responds to a shock in another variable 

over time. The responses are plotted over ten periods following an initial shock, with 

solid lines representing the estimated impulse response and dashed lines indicating the 

95% confidence intervals. 

 

The results reveal significant interactions between electricity prices and external factors 

such as gas prices, temperature, and shortwave radiation, highlighting the critical role 

of both market and climatic dynamics in energy pricing. Weather variables like cloud 

cover (total, mid-level, and high-level) demonstrate hierarchical feedback 

relationships, influencing each other and interacting with electricity and gas prices. 

Rain and snowfall, on the other hand, exhibit relatively isolated impacts with limited 

influence on the broader system. 

 

These IRFs provide valuable insights into the magnitude and duration of shocks, 

showcasing the complex interdependencies in the energy-climate nexus. The figures 

collectively enhance the understanding of the temporal adjustments and feedback 

mechanisms governing electricity prices and related variables. 

 

Figure 9 presents the Forecast Error Variance Decomposition (FEVD) analysis for the 

Vector Autoregression (VAR) model variables. The FEVD quantifies the proportion of 

the forecast error variance of each variable that can be attributed to shocks in the other 
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variables over time. This analysis provides insights into the relative importance of 

different shocks in explaining the variability of each variable in the model. 

 

The y-axis represents the percentage contribution to the forecast error variance, while 

the x-axis indicates the forecast horizon (up to four periods). The bars represent the 

variance decomposition results, showing the contribution of each shock to the forecast 

error variance of a specific variable. For instance, the variance in electricity prices can 

be influenced by other factors such as temperature, gas price, and cloud cover. 

 

This analysis is crucial for understanding the extent to which different factors, such as 

weather and energy market conditions, influence the variability of the forecasted 

outcomes. It highlights which variables have the most significant impact on the others, 

allowing for a deeper understanding of the dynamic relationships within the energy and 

meteorological dataset. This type of analysis is particularly useful for policymakers and 

energy analysts in identifying key drivers of variability and assessing the 

interconnectedness of different market and weather factors. 

 

 
 

Figure 9. Forecast Error Variance Decomposition (FEVD) for Variables in the  

VAR Model 
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In this study, we implemented a Bidirectional Long Short-Term Memory (Bi-LSTM) 

model for predicting energy prices based on historical time series data and external 

variables like weather and market factors.  The Bi-LSTM model was constructed using 

the Keras library. The model consists of a bidirectional LSTM layer followed by dense 

layers, enabling the network to effectively capture past and future temporal 

dependencies. The first layer is a Bidirectional LSTM layer with 128 units. 

Bidirectionality allows the model to process information from both past and future 

states, improving its ability to understand complex dependencies in the time series data. 

Following the LSTM layer, the model includes two fully connected dense layers. The 

first dense layer has 64 units, acting as a feature abstraction layer, while the final dense 

layer outputs predictions with the required shape. 

 

The hyperparameter selection for the Bi-LSTM model was performed using Bayesian 

Optimization from the bayes_opt Python package (Nogueira, 2014). This library 

provides a convenient and efficient framework for exploring the hyperparameter space 

and identifying optimal configurations for complex machine-learning models. 

Specifically, the Bayesian Optimization framework systematically searched the 

hyperparameter space, including learning rate (LR), batch size, and the number of 

epochs. This process identified the best combination of hyperparameters: an LR of 

approximately 0,022, a batch size of 167, and 97 epochs. The optimization utilized a 

predefined range for each parameter (e.g., LR: [1e-5, 1e-1], batch size: [16, 264], 

epochs: [10, 100]) and aimed to minimize the validation loss during training. 

 

The optimized LR was implemented with the Adam optimizer, allowing the model to 

make stable and incremental weight updates, avoiding overshooting while ensuring 

convergence. The batch size 167 provided an efficient balance between computational 

speed and gradient stability. Similarly, 97 epochs were identified as the optimal 

duration to capture the data's underlying temporal dependencies without overfitting, as 

confirmed by the stable validation loss curve. These hyperparameters, determined 

through Bayesian Optimization, were subsequently validated using metrics such as 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared 

Error (RMSE) on the test set, achieving robust predictive performance. 

 

The model’s performance over training epochs was visualized by plotting the training 

and validation loss curves (Figure 10). This plot provides insights into the convergence 

of the model. Training Loss is shown in solid blue, representing the model’s error on 

the training set. Test Loss is shown in dashed orange, indicating how well the model 

generalizes to unseen data. Both loss curves were visualized to ensure the model did 

not overfit the training data. A stable or decreasing validation loss relative to the 

training loss indicates good generalization. 
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Figure 10. Training and Testing Loss Convergence for the LSTM Model 

 

Figure 11 depicts the training performance of the Bi-LSTM model in forecasting 

electricity prices, comparing the real electricity prices (blue) and the predicted prices 

generated by the model (orange) over the training period. This visualization evaluates 

the model’s ability to learn temporal dependencies and the underlying dynamics of 

historical electricity price data, which are influenced by factors such as weather 

conditions, market fluctuations, and past price trends. 

 

The figure highlights the Bi-LSTM model’s capability to closely align with real 

electricity prices, effectively capturing key trends, seasonal patterns, and significant 

price spikes during high-demand periods. The model demonstrates robust performance 

in tracking short-term price variations and long-term dependencies, underscoring its 

suitability for energy market forecasting. Furthermore, the model successfully predicts 

major price fluctuations, critical for operational decision-making and risk mitigation in 

volatile markets. 

 

Although minor discrepancies are observed between the predicted and actual values, 

these deviations are consistent with the inherent volatility and noise in electricity price 

data. Such variability is typical in complex time series forecasting tasks. Overall, the 

results validate the Bi-LSTM model's effectiveness and reliability in accurately 

modeling and predicting electricity price movements during the training phase. 
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Figure 11. Training Results of the Bi-LSTM Model:  

Comparison of Real and Predicted Electricity Prices 

 

Figure 12 illustrates the testing performance of the Bidirectional Long Short-Term 

Memory (Bi-LSTM) model, demonstrating its ability to forecast electricity prices on 

previously unseen data. The figure compares real electricity prices (blue) with the 

predicted prices generated by the model (orange) over the testing period. This phase 

evaluates the model's generalization capacity and predictive accuracy, which are critical 

for practical applications in dynamic energy markets influenced by factors such as 

weather conditions and market behavior. 

 

During the testing phase, the Bi-LSTM model effectively captures the overall trend and 

trajectory of electricity prices, including the gradual decline observed in the data. This 

alignment between real and predicted values highlights the model's ability to generalize 

and adapt to new, unseen data, further validating its robustness in modeling long-term 

dependencies. 

 

While the Bi-LSTM model demonstrates strong predictive performance, certain 

discrepancies are evident during periods of sharp price spikes and dips. These 

deviations are typical in forecasting volatile markets, where extreme price fluctuations 

can occur due to sporadic external factors. Despite these challenges, the model 

maintains a reasonable proximity to actual values, even during periods of significant 

variability. This indicates the Bi-LSTM model's suitability for forecasting tasks where 

trend recognition and adaptability are critical for operational decision-making. 
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Figure 12. Testing Results of the Bi-LSTM Model:  

Real vs. Predicted Electricity Prices 

 

Figure 13 depicts the convergence behavior of the Gated Recurrent Unit (GRU) model 

during the training and testing phases. The training loss (solid blue) and testing loss 

(dashed orange) are plotted over 97 epochs, reflecting the optimization process. The 

loss metric used is Mean Squared Error (MSE), which effectively captures the 

prediction errors in continuous data, making it highly suitable for regression tasks like 

energy price forecasting. 

 

The figure shows a sharp decline in training and testing loss during the initial epochs, 

indicating rapid learning of underlying patterns. After approximately 20 epochs, the 

losses stabilize, with the training loss gradually decreasing, while the testing loss 

remains relatively steady. This convergence pattern demonstrates that the model 

successfully generalizes to unseen data while avoiding overfitting, as evidenced by the 

consistent testing loss throughout the latter epochs. This highlights the effectiveness of 

the selected hyperparameters and the model's ability to learn temporal dependencies in 

the dataset. 
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Figure 13. Training and Testing Loss Convergence for the GRU Model 

 

This study developed a Gated Recurrent Unit (GRU) model to forecast energy prices 

using historical data and additional features such as weather conditions and market 

indicators. The GRU model was chosen for its capability to capture long-term 

dependencies, which is essential in energy markets where historical trends and external 

factors can significantly influence future price movements. The model architecture 

consists of two sequential GRU layers and fully connected (dense) layers. The first 

GRU layer contains 128 units, and the second GRU layer contains 64 units. The 

sequence is transformed into a final state representation that feeds into the dense layers, 

effectively learning both short-term fluctuations and long-term dependencies. 

 

The dense layers following the GRU layers refine the extracted temporal features and 

produce the final predictions. The first dense layer consists of 128 units, a feature 

abstraction layer that reduces the data complexity. The subsequent two dense layers 

contain 32 units each, further simplifying the learned features and enhancing the 

model's generalization ability. The final output layer matches the target variable’s 

dimensions, ensuring the model’s predictions are compatible with the expected output 

format. 

 

The hyperparameters for the GRU model were optimized using Bayesian Optimization 

to ensure an efficient and systematic search for the best configuration. This process 

explored the hyperparameter space for the learning rate (LR), batch size, and the 

number of epochs, ultimately selecting the following optimal values: a learning rate of 

0,0021, a batch size of 191, and 97 epochs. These values were identified by minimizing 

the validation loss during training, resulting in a model that balances predictive 

accuracy and training efficiency. 

 

The selected learning rate, implemented with the Adam optimizer, provides a stable 

convergence path, allowing for effective gradient updates without overshooting the 

optimal solution. The batch size of 191 offers a trade-off between computational 

efficiency and gradient stability, ensuring robust training on the diverse energy price 

dataset. Additionally, the training duration of 97 epochs was sufficient to capture 

complex temporal dependencies in the data while minimizing the risk of overfitting. 
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These hyperparameters, determined through Bayesian Optimization, improved the 

GRU model's ability to accurately forecast electricity prices, as evidenced by its strong 

performance across evaluation metrics such as MAE, RMSE, and MAPE. 

 

Figure 14 presents the training performance of the Gated Recurrent Unit (GRU) model 

in forecasting electricity prices. This plot compares the real electricity prices and the 

predicted prices generated by the model over the training period. This comparison 

evaluates how well the GRU model learns the underlying patterns in historical energy 

price data, influenced by complex factors such as market conditions and weather 

variables. 

 

In the training phase, the GRU model demonstrates a high alignment between the real 

and predicted electricity prices. The model captures the overall trend and seasonal 

fluctuations in the data, including major price peaks and troughs. It effectively learns 

both short-term and long-term dependencies within the dataset. This alignment is 

crucial for validating the model’s ability to represent the dynamic behavior of electricity 

prices, which are known for their volatility and susceptibility to external influences. 

 

While the GRU model performs well in capturing the general price movements, slight 

discrepancies are observed in areas with extreme price spikes. This is a common 

challenge in energy price forecasting due to the sudden and often unpredictable nature 

of these fluctuations. Nonetheless, the model maintains a close track of the actual 

values, which is indicative of robust training performance. 

 

 
 

Figure 14. Training Results of the GRU Model:  

Comparison of Real and Predicted Electricity Prices 

 

Figure 15 illustrates the testing performance of the Gated Recurrent Unit (GRU) model 

in forecasting electricity prices, showcasing the comparison between real electricity 

prices (blue) and the predicted prices (orange) over the testing period. This phase 

evaluates the model’s ability to generalize its learning to unseen data, which is critical 

for practical forecasting applications in volatile energy markets. 
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The GRU model effectively captures the overall trends in electricity prices, including 

the gradual decline observed during the latter part of the testing period. It successfully 

tracks major price fluctuations and general price trajectories, demonstrating its ability 

to model both short-term variations and long-term patterns. However, some 

discrepancies are evident, particularly during extreme price spikes, reflecting the 

challenges posed by the highly volatile and nonlinear dynamics of electricity markets. 

 

Despite these deviations, the model achieves a reasonable alignment with real prices, 

maintaining its generalization capabilities. The consistent tracking of real values during 

stable periods emphasizes the model's robustness and reliability. This performance 

underscores the GRU model’s utility in forecasting tasks, where accuracy and the 

ability to handle market volatility are paramount for informed decision-making and risk 

management. 

 

 
 

Figure 15. Testing Results of the GRU Model: Comparison of Real and Predicted 

Electricity Prices 

 

Table 4 provides a multifaceted comparison of Vector Autoregression (VAR), Gated 

Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) models, evaluated 

using four distinct performance metrics—Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Symmetric Mean Absolute Percentage Error (SMAPE), and 

Root Mean Squared Logarithmic Error (RMSLE). These metrics collectively offer 

insights into the models’ ability to handle absolute deviations and relative or 

proportional errors across varying ranges of energy prices. 

 

A key observation in Table 2 is the stark contrast in MAE and RMSE between the deep 

learning methods (GRU and LSTM) and the VAR baseline. Specifically, the MAE for 

GRU and LSTM hovers around 0,16–0,17, whereas VAR’s MAE stands at 

approximately 35,57. This disparity implies that recurrent neural models capture price 

dynamics far more effectively, minimizing large forecast deviations and excelling at 

overall absolute accuracy. The RMSE values follow a similar pattern, with GRU and 

LSTM remaining close to 0,22, contrasting sharply with the VAR model’s RMSE 
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surpassing 51,59. These findings underscore the advantage of non-linear sequence 

models in managing the inherent complexity and volatility of daily energy prices. 

 

Despite their clear superiority in absolute terms, GRU and LSTM show higher SMAPE 

values (35,50% and 39,11%, respectively) compared to the VAR model’s 24,97%. This 

outcome indicates that, relative to moderate or lower price points, the deep learning 

models may introduce more pronounced percentage deviations. A plausible explanation 

lies in the data’s distribution: periods where energy prices approach certain lower 

bounds can yield smaller denominators, thus inflating proportional errors. While VAR 

suffers more in absolute measures, its more uniform percentage error suggests it 

balances deviations more consistently across different price levels. 

 

When examining RMSLE, both GRU and LSTM outperform VAR considerably, 

suggesting superior handling of multiplicative or relative errors. Their RMSLE values 

of approximately 0,12–0,13 demonstrate an enhanced capacity to accommodate 

significant shifts in the price data, reflecting the flexibility of recurrent neural 

architectures in modeling non-linear dynamics. By contrast, VAR’s RMSLE of 0,35 

implies that large log-scaled discrepancies occur more frequently, further highlighting 

the limitations of linear approaches in highly variable energy markets. 

 

Table 4. Performance Metrics Comparison of VAR, LSTM, and GRU Models in 

Electricity Price Forecasting 

 

Model MAE RMSE SMAPE RMSLE 

VAR 35,5669 51,5929 24,97% 0,3479 

GRU 0,1639 0,2233 35,50% 0,1275 

LSTM 0,1735 0,2184 39,11% 0,1245 

 

Table 2’s results emphasize two important implications for energy price forecasting. 

First, GRU and LSTM prove especially effective where mitigating large absolute 

deviations is paramount—such as in budgeting, trading, or bidding contexts that cannot 

tolerate large swings. Second, while VAR fares better in percentage-based errors 

(SMAPE), it exhibits significant weaknesses in overall accuracy and log-scale fit, 

making it less suitable for capturing abrupt or non-linear market shifts. Consequently, 

for stakeholders prioritizing minimal absolute errors, the deep learning models offer a 

robust solution, whereas contexts emphasizing proportional stability might still find 

certain advantages—albeit limited—in the VAR approach. 

 

 

5. CONCLUSION 

 

This study presents a hybrid framework integrating econometric (VAR) and deep 

learning models (LSTM and GRU) to address the challenges of electricity price 

forecasting in highly dynamic and volatile markets. By leveraging the strengths of both 

methodologies—VAR’s interpretability and the deep learning models’ capability to 
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capture nonlinear temporal patterns—this approach provides a robust solution for 

energy price prediction. The inclusion of weather and market variables further enhances 

the model’s accuracy and adaptability, highlighting the importance of incorporating 

external factors in forecasting frameworks. 

 

The findings highlight the superiority of deep learning models over the VAR approach 

in terms of absolute error metrics such as MAE and RMSE. The GRU model achieves 

the best performance with the lowest MAE and RMSE, followed closely by the LSTM 

model. Both deep learning approaches successfully capture the nonlinear temporal 

patterns and dependencies inherent in electricity price time series. However, the VAR 

model demonstrates relatively better performance in terms of SMAPE, indicating its 

ability to handle proportional errors effectively. Additionally, the RMSLE results 

underscore the deep learning models' capacity to manage extreme value fluctuations, 

with LSTM achieving the lowest RMSLE. 

 

Despite the clear advantages of the deep learning models, their limitations in fully 

capturing sudden price spikes and drops remain a challenge. These extreme 

fluctuations, often driven by unpredictable market or environmental events, introduce 

volatility that is inherently difficult to model. While this study demonstrates that GRU 

and LSTM models possess strong generalization capabilities, a more detailed 

investigation into the impact of extreme values on their performance is necessary. 

Understanding these limitations will further enhance their applicability in real-world 

forecasting scenarios where robustness against extreme volatility is crucial. 

 

The unique contribution of this study lies in its hybrid framework, which combines the 

interpretative power of econometric models with the predictive accuracy of deep 

learning models. This dual approach not only enhances the robustness of predictions 

but also provides a structured and interpretable tool to inform policy-making and 

strategic decisions in energy markets. Furthermore, the inclusion of weather and market 

data proves critical in capturing the multifaceted nature of electricity price fluctuations, 

emphasizing the importance of external variables in improving forecasting accuracy. 

This aligns with existing hypotheses suggesting that environmental and market factors 

are key drivers of energy price variability. 

 

In a broader context, these findings underscore the importance of adopting hybrid 

methodologies to address the challenges posed by complex and volatile data structures 

in electricity markets. By successfully integrating econometric and deep learning 

methods, this study contributes a novel framework for energy forecasting with 

implications for risk management, operational efficiency, and policy development in 

energy-intensive industries. 

 

Future research directions include refining the hybrid models by incorporating 

additional factors such as real-time demand-supply imbalances, seasonal variations, or 

geopolitical influences. Exploring advanced architectures, such as attention 

mechanisms or transformer-based models, could further enhance predictive accuracy. 

Moreover, expanding datasets to include high-frequency and real-time market data 

would provide deeper insights into rapid shifts in energy prices, enabling more 

responsive and robust forecasting systems tailored for dynamic market environments. 
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APPENDIX 

 

 
 

Figure 16. Impulse Response Function (IRF) for Electricity Price 
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Figure 17. Impulse Response Function (IRF) for Rain 
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Figure 18. Impulse Response Function (IRF) for Snowfall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C. Öztürk Integrating Econometric and Deep Learning Models for Energy Price Prediction 

170 

 
 

Figure 19. Impulse Response Function (IRF) for Total Cloud Cover 
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Figure 20. Impulse Response Function (IRF) for Mid-Level Cloud Cover 
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Figure 21. Impulse Response Function (IRF) for High-Level Cloud Cover 
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Figure 22. Impulse Response Function (IRF) for Gas Price (Differenced) 
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Figure 23. Impulse Response Function (IRF) for Temperature (Differenced) 
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Figure 24. Impulse Response Function (IRF) for Shortwave Radiation (Differenced) 


