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multifunctions and other known forms of multifunctions introduced previously are investigated.
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1 Introduction

A multifunction or a multivalued function is set valued function. In last thirty years
the theory of multifunctions has advanced in variety of ways. Applications of this
theory can be found in economic theory, viability theory, noncooperative games, de-
cision theory, artificial intelligence, medicine and existence of solutions for differential
equations. In topology there has been recently significant interest in characterizing
and investigating the properties of several weak and strong forms of continuity of
multifuctions. The development of such a theory is in fact very well motivated in [1,
4, 5, 6, 7, 12, 14, 15, 17]. Kucuk [10] and Cao and Reilly [3] independently defined
and investigated upper(lower)δij-continuous multifunction. The invariance of some
separating properties of the bitoplogical spaces by multifunctions was studied by
Smithson [18]. The notions of continuous (resp. upper semicontinuous, lower semi-
continuous) multifunctions between bitopological spaces wear defined and studied by
Popa [15] and Ganguly [13] introduced and studied the concept of upper (lower) al-
most multifunction between bitopological spaces. Several characterizations of these
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concepts were given by Kucuk and Kucuk in [11]. In this paper we introduce and
study the notions of upper and lower δij-continuous multifunctions between bitopo-
logical spaces. As a consequence, some characterizations and several proprties con-
cerning upper (lower) δij-continuous multifunctions are obtained. The relationship
between upper (lower) δij-continuous multifunctions and with other known forms of
multifuctions introduced previously are established.

2 Preliminary

Let (X, τ1, τ2) be a bitopological space. The closure and interior of a subset A of
X with respect to τi are denoted by τi.cl(A) and τi.int(A), respectively. The set
N(A, τi) denotes the family of all τi-open set containing A. In particular, N(x, τ)
is the family of all τi-open neighborhood (τi-nbds, for short) of x. The set of all τi-
closed sets will be denoted by τ́i. A subset A of a bts (X, τ1, τ2) is called ij−regular
closed (resp. ij−regular open) if A = τi.cl(τj.int(A))(resp.A = τi.int(τj.cl(A))). The
set of all ij−regular closed (resp. ij−regular open) sets of (X, τ1, τ2) is denoted by
ijRC(X) (resp. ijRO(X)). By a multifunction F : X → Y , we mean a point-to-set
correspondence from X into Y , and we always assume that F (x) 6= φ for all x ∈ X.
For a multifunction F : X → Y , we shall denote the upper and lower inverse of a set
B of Y by F−(B) and F−(B) [2], respectively, that is F−(B) = {x ∈ X : F (X) ⊆ B}
and F− = {x ∈ X : F (x) ∩ B 6= φ}. In particular, F−(y) = {x ∈ X : y ∈ F (x)},
for each y ∈ Y . For A ⊆ X, F (A) = ∪x∈AF (x). Then F is said to be a surjection
if F (x) = Y , or equivalently if for each y ∈ Y , there exists an x ∈ X such that
y ∈ F (x). Also, F is said to be injective if for any x1, x2 ∈ X, x1 /∈ x2, we have
F (x1) ∩ F (x2) = φ. The reader can find undefined notions of some generalizing
continuities for multifunctions from the references.

Definition 2.1. Let (X, τ1, τ2) be a bts.[8, 13, 16]. A point x in X will be called
an δij-adherent (resp. θij-adherent) point of a subset A of X if and only if A ∩
τi.int(τj.cl(U)) 6= φ (resp. A ∩ τj..cl(U)) 6= φ for each τi−open nbd U of x. The
set of all δij-adherent (resp. θij-adherent) points of A is called δij-closure (resp. θij-
closure) of A and it is denoted by δij.cl(A) (resp. θij.cl(A)). If A = δij.cl(A) (resp.
A = θij.cl(A)), then A is called δij-closed ( resp. θij-closed). The complement of a
δij-closed ( resp. θij-closed) set is called a δij-open( resp. θij-open) set. The family of
all δij-closed ( resp. δij-open , θij-closed, θij-open) sets of X is denoted by δij.C(X)
(resp. δij.O(X), θij.C(X), θij.O(X)). It is clear that in any bts (X, τ1, τ2), we have
θij.O(X) ⊆ δij.O(X) ⊆ τi and ijRC(X) ⊆ δij.C(X).

Definition 2.2. Let (X, τ1, τ2) be a bts.[8, 13]. A point x in X will be called an δij-
interior (resp. θij-interior) point of a subset A of X if and only if there exists τi-open
nbd U of x such that τi.intτi.cl(U)) ⊆ A (resp. τi.cl(U)) ⊆ A) equivalently, if there
exists ij−regular open (resp. ij−regular closed) nbd U of x such that U ⊆ A. The
family of all δij-interior (resp. θij-interior) points of A will be denoted by δij− int(A)
(resp. θij − int(A)). A subset A of a bts (X, τ1, τ2) is δij-open (resp. θij-open) if and
only if δij − int(A) = A ( resp. θij − int(A) = A).

Definition 2.3. A bts (X, τ1, τ2) [8, 9, 15] is called:
(a) PR2 if and only if ∀x ∈ X, F ∈ τ́is.t.x /∈ F ∃U ∈ N(x, τi), V ∈ N(F, τj)s.t.U ∩
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V = φ.
(b)PSR2 if and only if ∀x ∈ X,U ∈ N(x, τi) ∃V ∈ N(x, τi), τi − int(τi.cl(V )) ⊆ U .
(c)PAR2 if and only if ∀x ∈ X,U ∈ N(x, ijRO(X)) ∃V ∈ N(x, τi), τi.cl(V ) ⊆ U .

Theorem 2.4. Let (X, τ1, τ2) be a bts.[8, 15].
(a) For each A ⊆ X, then τi.cl(A) ⊆ δij.cl(A) ⊆ θij.cl(A).
(b) If A ∈ τj, then τi.cl(A) = δij.cl(A).
(c) If (X, τ1, τ2) is PSR2-space, then τi.cl(A) = δij.cl(A).
(d) If (X, τ1, τ2) is PAR2-space, then δij.cl(A) = θij.cl(A).

3 Upper and Lower δij-Continuous Multifunctions

In this section we define and study the concept of upper and lower δij-continuous
multifunctions.some of their properties are obtained.

Definition 3.1. A multifunction F : (X, τ1, τ2) → (Y,41,42) is called:
(a) Lower δij-continuous at a point x in X if and only if for every increasing 4i-open
set V in Y with F (x)∩V 6= φ, there exists increasing 4i-open nbd U of x such that
F (x0) ∩4i.int(4j.cl(V )) 6= φ, for each x0 ∈ τi.int(τj.cl(U)).
(b) Upper δij-continuous at a point x in X if and only if for every decreasing 4i-open
set V in Y with F (x) ⊆ V , there exists decreasing τi-open nbd U of x such that
F (τi.int(τj.cl(U)) ⊆ 4i.int(4j.cl(V )).
(c) Lower (resp. upper) δij-continuous if it has this property at each point x ∈ X.
The following theorem give us some characterizations of lower δij-continuity of F .

Theorem 3.2. For a multifunction F : (X, τ1, τ2) → (Y,41,42) the following state-
ments are equivalent:
(a) F is lower δij-continuous,
(b) For every increasing ij−regular open set V ⊆ Y and for each x ∈ X with
F (x) ∩ V 6= φ, there exists increasing ij−regular open nbd U of x such that
F (x0) ∩ V 6= φ, for each x0 ∈ U .
(c) For every increasing ij−regular open set V ⊆ Y, F−(V ) is δij-open set in X.
(d) For every increasing δij-open set V ⊆ Y, F−(V ) is δij-open set in X.
(e) For every increasing δij-closed set K ⊆ Y, F−(K) is δij-closed set in X.
(f) For every increasing ij−regular closed set K ⊆ Y, F−(K) is δij-closed set in X.
(g) For each B ⊆ Y, F−(δij.int(B)) ⊆ δij.int(F−(B)).
(h) For each A ⊆ X, F (δij.cl(A)) ⊆ δij.cl(F (A)).

Proof. (a)→ (b): Let x in X and let V by an ij−regular open set in Y with
F (x)∩ V 6= φ. Then V is 4i−open set in Y . By (a), there exists W ∈ N(x, τi) such
that F (x0)∩4i.int(4i.cl(V )) 6= φ, for each x0 ∈ τi.int(τj.cl(W )). But V is ij-regular
open set, so F (x0)∩V 6= φ, for each x0 ∈ τi.int(τj.cl(W )). Put U = τi.int(τj.cl(W )).
Then U is ij-regular open set in X. So F (x0) ∩ V 6= φ for x0 ∈ U .
(b)→ (c): Let V ⊆ Y be an ij-regular open set and let x in X with x ∈ F−(V ).
Then F (x) ∩ V 6= φ. By (b), there exists ij-regular open nbd U of x such that
F (x0) ∩ V 6= φ, for each x0 ∈ U . Which implies that U ⊆ F−(V ). Consequently
F−(V ) is δij-open set in X.
(c)→ (d): Let V ⊆ Y be a δij-open set and let x in X with x ∈ F−(V ). So,
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F (x) ∩ V 6= φ and so there exists y ∈ Y such that y ∈ F (x) ∩ V . Hence, y ∈ F (x)
and y ∈ V . Since V is δij-open set, then there exist ij-regular open set W ⊆ Y such
that y ∈ W ⊆ V . Thus F (x) ∩W 6= φ and so x ∈ F−(W ). Since W is ij-regular
open set, by (c), F−(W ) is a δij-open set of X and from x ∈ F−(W ), there exists an
ij-regular open set U ⊆ X such that x ∈ U ⊆ F−(W ) ⊆ F−(V ). Thus F−(V ) is a
δij-open set in X.
(d)→ (e): Let K ⊆ Y be any δij-closed set. Then T\K is a δij-open set. By (d),
F−(Y \K) is a δij-open set. As we can write F−(K) = X\F−(Y \K) so F−(K) is a
δij-closed set in X.
(e)→ (f): Let K ⊆ Y be any δij-regular closed set. Then K is a δij-closed set. By
(e), F−(K) is a δij-closed set in X.
(f)→ (c): Let V ⊆ Y be an ij-regular open set. Then Y \V is an ij-regular closed
set of Y . By (f), F−(Y \V ) is δij-closed set in X. Thus F−(V ) is δij-open set in X.
(c)→ (a): Let x in X and let V ⊆ Y be any4i-open set with F (x)∩V 6= φ. Since V ⊆
4i.int(4j.cl(V )), then F (x)∩4i.int(4j.cl(V )) 6= φ. So, x is F−(4i.int(4j.cl(V ))).
By (c), there exists ij−regular open nbd U of x such that U ⊆ F−(4i.int(4j.cl(V ))).
Thus F (x0)∩4i.int(4j.cl(V )) 6= φ for each x0 in U . Thus F is lower δij-continuous.
(d)→ (g): Let B ⊆ Y . Since δij.int(B) ⊆ B, then F−(δij.int(B)) ⊆ F−(B). Since
δij.int(B) is δij-open set of Y , then by (d), F−(δij.int(B)) = δijint(F−(δij.int(B))) ⊆
δij.int(F−(B)). Thus F−(δij.int(B))) ⊆ δij.int(F−(B)).
(g)→ (d): Let V be δij-open set of Y . By (g), we have F−(V ) = F−(δij.int(V )) ⊆
δij.int(F−(V )). Thus F−(V ) is δij-open set of X.
(d)→ (h): Under the assumption (e) suppose that (h) is not true, i.e. for some
A ⊆ X, we have F (δij.cl(A)) * δij.cl(F (A)). Then there exists y in Y such that
y ∈ F (δij.cl(A)), but y /∈ δij.cl(F (A)). So, Y \(δij.cl(F (A))) is δij-open set con-
taining y. By (d), we have F−(Y \(δij.cl(F (A)))) is δij-open set in X and F−(Y ) ⊆
F−(Y \(δij.cl(F (A)))). Since Y \(δij.cl(F (A))) ∩ F (A) = φ and A ⊆ F−(F (A)) we
have F−(Y \(δij.cl(F (A))))∩F−(F (A)) = φ and F−(Y \(δij.cl(F (A))))∩A = φ. Since
F−(Y \(δij.cl(F (A)))) is δij-open set in X, then F−(Y \(δij.cl(F (A))))∩δij.cl(A) = φ.
On the other hand, because of y ∈ F (δij.cl(A)), we have F−(Y )∩δij.cl(A) 6= φ, which
is contradiction with F−(Y \(δij.cl(F (A)))) ∩ δij.cl(A) = φ. Thus y ∈ F (δij.cl(A))
implies y ∈ δij.cl(F (A)). Consequently, F (δij.cl(A)) ⊆ δij.cl(F (A)).
(h)→ (e): Let K ⊆ Y be any δij-closed set. Since we have always FF−(K) ⊆ K,
then we obtain δij.cl(FF−(K)) ⊆ δij.cl(K) = K. By (h), F (δij.cl(F

−(K))) ⊆
δij.cl(FF−(K)). Thus F (δij.cl(F

−(K))) ⊆ K and so
δij.cl(F

−(K)) ⊆ F−F (δij.cl(F
−(K))) ⊆ F−(K). Hence F−(K) is δij-closed set

in X.

Theorem 3.3. For multifunction F : (X, τ1, τ2) → (Y,41,42) the following state-
ments are equivalent:
(a) F is upper δij-continuous,
(b) For every ij-regular open set V ⊆ Y for each x ∈ X with F (x) ⊆ V , there exists
ij-regular open nbd U of x such that F (U) ⊆ V .
(c) For each ij-regular open set V ⊆ Y, F−(V ) is δij-open set in X.
(d) For each ij-open set V ⊆ Y, F−(4i.int(4j.cl(V ))) is δij-closed set in X.
(e) For each δij-closed set K ⊆ Y, F−(4j.cl(4i.int(K))) is δij-closed set in X.
(f) For each δij-regular closed set K ⊆ Y, F−(K) is δij-open set in X.
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Proof. It is quite similar to that of Theorem 3.2 and so it is omitted.

Definition 3.4. A multifunction F : (X, τ1, τ2) → (Y,41,42) is called pairwise
point compact if the induced multifunctions F : (X, τi) → (Y,4i), i = 1, 2 are point
compact.

Theorem 3.5. Let F : (X, τ1, τ2) → (Y,41,42) be a pairwise point compact multi-
function and (Y,41,42) be PAR2-space. Then the following statements are equiv-
alent:
(a) F is upper δij-continuous,
(b) For each δij-open set V ⊆ Y, F−(V ) is δij-open set in X.
(c) For each δij-closed set K ⊆ Y, F−(K) is δij-closed set in X.
(d) For each B ⊆ Y, δij.cl(F−(B)) ⊆ F−(δij.cl(B)).

Proof. (a)→ (b): Let V be a δij-open set in Y and let x in X with x ∈ F−(V ). Then
F (x) ⊆ V . Since V is δij-open, then for each y ∈ F (x), there exists ij-regular open
set Wy such that y ∈ Wy ⊆ V . Since (Y,41,42) is PAR2-space. Then there exists
an4i-open set τy such that y ∈ τy ⊆ 4j.cl(τy) ⊆ 4i.int(4jcl(Wy)) = Wy. Hence we
have F (x) ⊆ ∪{Ty : y ∈ F (x)} ⊆ ∪{4j.cl(τy) : y ∈ F (x)} ⊆ ∪{Wy : y ∈ F (x)} ⊆ V .
Since F (x) is a 4i-compact set, there exists points y1, y2, ..., yn ∈ F (x) such that
F (x) ⊆ ∪{τys : ys ∈ F (x), s = 1, 2, ..., n} ⊆ U{4j.cl(τys) : ys ∈ F (x), s =
1, 2, ..., n} ⊆ ∪{Wys : ys ∈ F (x), s = 1, 2, ..., n} ⊆ V . Therefore, we obtain
F (x) ⊆ 4i.int(∪{τys : ys ∈ F (x), s = 1, 2, ..., n} = ∪{τys : ys ∈ F (x), s =
1, 2, ..., n} ⊆ 4i.int(4j.cl(∪{τys) : ys ∈ F (x), s = 1, 2, ..., n}) ⊆ V . Put H =
4i.int((∪{4j.cl{τys) : ys ∈ F (x), s = 1, 2, ..., n})). Then H is ij-regular open set
of Y with F (x) ⊆ H. By (a), there exists ij-regular open nbd U of x such that
U ⊆ F−(H) ⊆ F−(V ). Therefore, x ⊆ U ⊆ F−(V ) and this mean that F−(V ) is
δij-open set in X.
(b)→ (c): Let K ⊆ Y be δij-closed set. Then Y \K is δij-open set in Y . By (b) we
conclude that F−(Y \K) is a δij-open set in X, so F−(K) is δij-closed set in X.
(c)→ (a): Let x in X and let V ⊆ Y be ij-regular open set of Y such that F (x) ⊆ V .
So, Y \V is a δij-closed set in Y . By (c) F−(Y \V ) is a δij-closed set in X. Thus
F−(V ) = X\F−(Y \V ) is δij-open set in X. Since x ∈ F−(V ), there exists ij-regular
open nbd U of x such that x ∈ U ∈ F−(V ). Thus F is upper δij-continuous.
(c)→ (d): Let B ⊆ Y . Since B ⊆ δij.cl(B), then F−(B) ⊆ F−(δij.cl(B)). Since
δij.cl(B) is a δij-closed set of Y , then by (c), F−(δij.cl(B)) is δij-closed set of
X. Hence, we have δij.cl(F−(B)) ⊆ δij.cl(F−(δij.cl(B))) = F−(δij.cl(B)) and so
δij.cl(F−(B)) ⊆ F−(δij.cl(B)).
(d)→ (c): Let B a δij-closed set in Y . Then F−(B) = F−(δij.cl(B)). By (d), we
have δij.cl(F−(B)) ⊆ F−(δij.cl(B)) = F−(B) and F−(B) is δij-closed set in X.

Theorem 3.6. Let F1 : (X, τ1, τ2) → (Y,41,42) and F2 : (Y,41,42) → (Z, Γ1, Γ2)
are lower δij-continuous function then F2 ◦ F1 : (X, τ1, τ2) → (Z, Γ1, Γ2) is lower
δij-continuous function.

Proof. Let K be δij-closed set in Z. From lower δij-continuity of F2, we have F−
2 (K)

is δij-closed set in Y . Since F1 is lower δij-continuous, then F−
1 (F−

2 (K)) is δij-closed
set in Y . But (F2 ◦F1)

−(K) = F−
1 (F−

2 (K)). Therefore F2 ◦F1 is lower δij-continuous
function.
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Proposition 3.7. Let (X, τ1, τ2) be a bts, A ⊆ X be τi−open set and U ⊆ X be
ij-regular open set. Then W = A ∩ U is ij-regular open set in (A, τ1A, τ2A).

Proof. It is very similar to that of Proposition 2.6 in[10].

Theorem 3.8. For a multifunction F1 : (X, τ1, τ2) → (Y,41,42) , the following
statement are true:
(a) If F is lower(resp. upper) δij-continuous and A is an τi-open set in X, then
F |A: (A, τ1|A, τ2|A) → (Y,41,42) is lower (resp. upper) δij-continuous.
(b) Let U = {Uα : α ∈ Ω} be ij-regular open cover of X. Then a p−multifunction
F : (X, τ1, τ2) → (Y,41,42) is lower (resp. upper) δij-continuous if and only if the
restrictions Fα = F | Uα : (Uα, τ1|Uα , τ2|Uα) → (Y,41,42) are lower (resp. upper)
δij-continuous, for each α ∈ Ω.

Proof. (a): Let x ∈ A and V be any ij-regular open set in Y with F |A (x) ∩
V 6= φ. Hence F (x) ∩ V 6= φ. Since F is lower δij-continuous, then there exists
U ∈ N(x, ijRO(x)) such that F (x0) ∩ V 6= φ, for each x0 ∈ U . Then U ⊆ F−. Put
W = U ∩ A. Then W is ij-regular open set in A with W ⊆ A ∩ F− = F |A (V ).
Hence F |A (x0) ∩ V 6= φ, for each x0 ∈ W . Thus F |A is lower δij-continuous. The
proof is the upper δij-continuous of F is similar.
(b): Let F be lower δij-continuous and α ∈ Ω be such that x ∈ Uα and let V be
any ij-regular open set in Y such that Fα(x) ∩ V 6= φ. Since F (x) = Fα(x) and F
is lower δij-continuous, then there exists an ij-regular open nbd U0 of x such that
F (x0)∩V 6= φ, for each x0 ∈ U0. Hence U0 ∈ V0. Put U = Uα∩U0, thus U is ij-regular
open subset of Uα and x ∈ U . Therefore U = Uα ∩ U0 ⊆ Uα ∩ F−(V ) = F−α(V ).
Thus Fα is lower δij-continuous at x. Conversely, suppose that Fα is lower δij-
continuous, for each α ∈ Ω. Let x ∈ X and V be an ij-regular open set in Y such
that F (x)∩V 6= φ. Then there exists α ∈ Ω such that x ∈ Uα. Hence F (x) = Fα(x)
and so Fα(x) ∩ V 6= φ. Since Fα is lower δij-continuous, there exists ij-regular
open set U in Uα with x ∈ U such that Fα(x0) ∩ V 6= φ, for each x0 ∈ U . Then
U ⊆ Fα(V ) = F−(V ) ∩ Uα ⊆ F−(V ). Thus Fα(U) ∩ V 6= φ implies U ⊆ F−α, but
F−α(V ) = F−(V ) ∩ Uα. Take ij-regular open set W in X such that U = Uα ∩W .
Thus U is ij-regular open set W in X. Hence F is lower δij-continuous.
The proof of the upper δij-continuous of F is similar.

4 Mutual Relationships

This section explain some of types of multifunction with some examples.

Definition 4.1. A multifunction F : (X, τ1, τ2) → (Y,41,42) is called [15]:
(a) pairwise lower semicontinuous (p. l. s. c, for short) at a point x ∈ X if the
induced multifuctions F : (X, τi) → (Y,4i), i = 1, 2 are lower semicontinuous at a
point x ∈ X.
(b) pairwise upper semicontinuous (p. u. s. c, for short) at a point x ∈ X if the
induced multifuctions F : (X, τi) → (Y,4i), i = 1, 2 are upper semicontinuous at a
point x ∈ X.
(c) pairwise lower (resp. pairwise upper ) semicontinuous if it has this property at
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each point x ∈ X.
Now we give two examples in order to show that the concepts of upper (resp. lower)
δij-continuity and pairwise upper (resp. pairwise lower) semicontinuous are indepen-
dent.

Example 4.2. Let X = {a, b, c}, τ1 = {X, φ, {a, b}}, τ2 = {X,φ, {b, c}}, Y = {1, 2, 3},
41 = {Y, φ, {2}} and 42 = {Y, φ, {3}}. Define a multifunction F : (X, τ1, τ2) →
(Y,41,42) as follows: F (a) = {1, 2}, F (b) = {2, 3} and F (c) = {1, 3}. Then F is
pairwise lower semicontinuous multifunction but it is not lower δij-continuous mul-
tifunction, since {2} ∈ 12RO(Y ) and {3} ∈ 21RO(Y ), but F−({2}) = {a, b} /∈
δ12O(X) and F−({3}) = {a, b} /∈ δ21O(X).

Example 4.3. Let X = {a, b, c}, τ1 = {X, φ, {a, b}}, τ2 = {X,φ, {b, c}}, Y = {1, 2, 3},
41 = {Y, φ, {2}} and 42 = {Y, φ, {3}}. Define a multifunction F : (X, τ1, τ2) →
(Y,41,42) as follows: F (a) = {2}, F (b) = {3} and F (c) = {1, 2}. Then F is pair-
wise upper semicontinuous multifunction but it is not upper δij-continuous multifunc-
tion. Indeed, {2} ∈ 12RO(Y ) and {3} ∈ 21RO(Y ), but F−({2}) = {a} /∈ δ12O(X)
and F−({3}) = {b} /∈ δ21O(X).

Theorem 4.4. Ever upper (resp. lower) δij-continuous multifunction from any bts
to a PSR2-space is p-upper (resp. p-lower) semicontinuous.

Proof. Let F : (X, τ1, τ2) → (Y,41,42) be upper (resp. lower) δij-continuous mul-
tifunction and (Y,41,42) is PSR2-space. Let V ⊆ Y be 4i-open set. Since
(Y,41,42) is PSR2-space, then V is ij-regular open. By upper (resp. lower) δij-
continuity of F , F−(V ) (resp. F−(V ) is δij-open set in X, then F−(V ) (resp. F−(V ))
is τi-open set in X. So F is p-upper (resp. p-lower) semicontinuous.

Theorem 4.5. Ever p-upper (resp. p-lower) semicontinuous multifunction from a
PSR2-space to any bts-space is upper (resp. lower) δij-continuous.

Proof. Let F : (X, τ1, τ2) → (Y,41,42) be p-upper (resp. p-lower) continuous
multifunction and (X, τ1, τ2) is PSR2-space. Let V ⊆ Y be ij-regular open, then V
is 4i-open set. By p-upper (resp. p-lower) continuity of F , F−(V ) (resp. F−(V )
is τi-open set in X. Since (X, τ1, τ2) is PSR2-space, then F−(V ) (resp. F−(V )) is
ij-regular open set in X. So F is upper (resp. lower) δij-continuous.

Definition 4.6. A p-multifunction F : (X, τ1, τ2) → (Y,41,42) is called:
(a) lower strongly θij-continuous at a point x in X if and only if for every4i-open set
V in Y with F (x)∩V 6= φ, there exists τi−open nbd U of x such that F (x0)∩V 6= φ
for each x0 ∈ τi.cl(U).
(b) upper strongly θij-continuous at a point x in X if and only if for every 4i-open
set V in Y with F (x) ⊆ Y , there exists τi-open nbd U of x such that F (τi.cl(U)) ⊆ V .
(c) lower (resp. upper) strongly θij-continuous if it has this property at each point
x ∈ X.

Theorem 4.7. Every upper (resp. lower) strongly θij-continuous multifunction is
upper (resp. lower) δij-continuous.
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Proof. Let F : (X, τ1, τ2) → (Y,41,42) be upper (resp. lower) strongly θij-continuous
multifunction and V ⊆ Y be ij-regular open set, then V is 4i-open. By upper (resp.
lower) strongly θij-continuity of F , F−(V ) (resp. F−(V )) is θij-open set in X. Hence
F−(V ) (resp. F−(V )) is δij-open set in X. So F is upper (resp. lower) δij-continuous.
The following example shows the converse of Theorem 4.7 is not true in general.

Example 4.8. Let X = {a, b, c} with τ1 = {φ, X, {a}}, τ2 = {φ,X, {b, c}}, Y =
{1, 2, 3}, 41 = {Y, φ, {1}} and42 = {Y, φ}. Define a multifunction F : (X, τ1, τ2) →
(Y,41,42) as follows: F (a) = {1}, F (b) = {2} and F (c) = {2, 3}. Then F is upper
(resp. lower) δij-continuous multifunction but it is not upper (resp. lower) strongly
θij-continuous multifunction. Indeed, {1} ∈ 41 but F−({1}) = {a} /∈ θ12O(X) and
F−({1}) = {a} /∈ θ12O(X).
The following theorem give us the condition for converse.

Theorem 4.9. Every upper (resp.lower) δij-continuous multifunction from a PAR2-
space is upper (resp. lower) strongly δij-continuous.

Proof. Let F : (X, τ1, τ2) → (Y,41,42) be upper (resp. lower) θij-continuous mul-
tifunction, (X, τ1, τ2) be a PAR2-space and (Y,41,42) be a PR2-space. Let V ⊆ Y
be 4i-open set. Since (Y,41,42) is PR2-space, then V is ij-regular open set. By
upper (resp. lower) δij-continuity of F , F−(V ) (resp. F−(V )) is δij-open set in X.
Since (X, τ1, τ2) is a PAR2-space. Then F−(V ) (resp. F−(V ))is θij-open set in X.
Thus F is upper (resp. lower) strongly θij-continuous.

Definition 4.10. A multifunction F : (X, τ1, τ2) → (Y,41,42) is called:
(a) pairwise lower almost continuous at a point x in X if and only if for every 4i-
open set V in Y with F (x) ∩ V 6= φ, there exists τi-open nbd U of x such that
F (x0) ∩4i.int(4j.cl(v)) 6= φ, for each x0 ∈ τi.int(τj.cl(U)).
(b) Pairwise upper almost at a point x in X if and only if for every 4i-open set V
in Y with F (x) ⊆ V , there exists 4i-open nbd U of x such that F (τi.int(τj.cl(U)) ⊆
4i.int(4i.cl(V ))).
(c) pairwise lower(resp. pairwise upper) continuous if it has this property at each
point x ∈ X.

Theorem 4.11. Every upper (resp.lower) δij-continuous multifunction is P - upper
(resp. P -lower) almost continuous.

Proof. Let F : (X, τ1, τ2) → (Y,41,42) be upper (resp. lower) δij-continuous multi-
function and let V ⊆ Y be ij-regular open set. By upper (resp. lower) δij-continuity
of F , F−(V ) (resp. F−(V )) is δij-open set in X. Thus F−(V ) (resp. F−(V ))is τi-
open set in X. So F is P−upper (resp. P−lower) almost continuous.
The following examples show the converse of Theorem 4.11 is not true in general.

Example 4.12. Let X = {a, b, c}, τ1 = {φ,X, {a, b}}, τ2 = {φ,X, {b}, {a, b}}, Y =
{1, 2, 3}, 41 = {Y, φ, {1}, {2, 3}} and 42 = 2Y ,. Define a multifunction F :
(X, τ1, τ2) → (Y,41,42) as follows: F (a) = {1, 2}, F (b) = {1, 3} and F (c) = {2, 3}.
Then F is P -lower almost continuous multifunction but it is not lower δij-continuous
multifunction. Indeed, {1} ∈ ijRO(Y ) but F−({1}) = {a, b} /∈ δijO(X).
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Example 4.13. Let F : (X, τ1, τ2) → (Y,41,42) as in Example 4.12. Define
a multifunction F : (X, τ1, τ2) → (Y,41,42) as follows: F (a) = F (b) = {1} and
F (c) = Y . Then F is P -upper almost continuous multifunction but it is not upper δij-
continuous multifunction. Indeed, {1} ∈ ijRO(Y ), but F−({1}) = {a, b} /∈ δijO(X).
The following theorem gives us the condition for converse.

Theorem 4.14. Every P−upper (resp.P−lower) almost continuous multifunction
from a PSR2- space to any bts-space is P−upper (resp. P -lower) δij-continuous.

Proof. Let F : (X, τ1, τ2) → (Y,41,42) be P−upper (resp. P−lower) almost con-
tinuous multifunction and (X, τ1, τ2) is PSR2- space . Let V ⊆ Y be ij-regular open
set. By P−upper (resp. P−lower) almost continuity of F , F−(V ) (resp. F−(V ))
is τi-open set in X. Since (X, τ1, τ2) is PSR2- space, then F−(V ) (resp. F−(V ))is
ij-regular open set in X. So F is upper (resp. lower) δij-continuous.
The applications of multifunctions with closed graphs, cluster (inverse cluster) set of
functions, separation axioms and weak and strong forms of compactness in bitopolog-
ical spaces are now under consideration and will e the subject of the next paper.

5 Conclusion

The filed of mathematical science which goes under the name of topology is con-
cerned with all questions directly or indirectly related to continuity. Therefore,
generalization of continuity is one of the most important subject in topology. On
the other hand, topology plays a significant role in quantum physics, high energy
physics and supersting theory [5, 6]. Thus we studies upper and lower δij-continuous
multifunctions which are some generalized continuity may have possible applications
in quantum physics, high energy physics and supersting theory.
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