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Abstract. In this paper, we study the concept of statistical convergence with respect to the power

series method in measure, which is a new modification of the power series method. Also, using this
convergence, we obtain the Lebesgue bounded convergence theorem and the fundamental theorems of

measure theory. Finally, we prove Korovkin’s theorem as an application using this notion of convergence.
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1. Introduction

Fast and Steinhauss independently introduced the concept of statistical convergence for sequences of
real numbers [8,15]. The concept of statistical convergence has always been a popular topic and there are
many studies in the literature. Recently, a new variant of statistical convergence, statistical convergence
with power series method, was introduced by Ünver and Orhan [16]. Since this new convergence cannot be
compared with statistical convergence, it has become the subject of study in many fields [2,4,5,7,17,18].

The convergence theorems in its simplest form states that integrability is preserved under taking limits.
These theorems can be used to construct an integrable function. It also has an important place in measure
theory. An essential and well-known one is the Lebesgue bounded convergence theorem. Recently, Kişi
and Güler presented a statistical version of this theorem [10].

The aim of this paper is to construct convergence theorems using the concept of statistical convergence
with respect to power series method in measure. We also analyse the fundamental theorems of measure
theory according to this notion of convergence. In the last part, we aim to present a different perspective
by proving Korovkin’s theorem as an application.

Let us now give the basic definitions and notations necessary for our study.
Let E be a subset of N, the set natural numbers. Then the natural density of E, denoted by δ (E) , is

given by:

δ (E) := lim
1

n
|{k ≤ n : k ∈ E}|

whenever this limit exists, where |.| denotes the cardinality of the set [13].
A sequence x = {xk} of real numbers is statistically convergent to L provided that, for every ε > 0,

lim
1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0

that is,

E := En (ε) := {k ≤ n : |xk − L| ≥ ε}

1 scinar@sinop.edu.tr; 0000-0002-6244-6214.

2025 Ankara University

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

170

https://doi.org/10.31801/cfsuasmas.1579087


ON STATISTICAL POWER SERIES METHOD IN MEASURE 171

has natural density zero. This is denoted by st − limxk = L [8, 15]. It is clear from the definition that
every convergent sequence (in the usual sense) is statistically convergent to the same number. However,
statistically convergent sequence need not to be convergent.

We now start with some definitions and notations that are essential for power series methods.
Let {pk} be a non-negative real sequence such that p0 > 0 and the corresponding power series

p (t) :=

∞∑
k=0

pkt
k

has radius of convergence R with 0 < R ≤ ∞. Consider a sequence of real numbers x = {xk} . Then
x = {xk} is convergent to L in the sense of power series method if

lim
0<t→R−

1

p (t)

∞∑
k=0

pkt
kxk = L.

This is denoted by Pp − limxk = L [12, 14]. For this study it should be noted that the power series
method is regular if and only if

lim
0<t→R−

pkt
k

p (t)
= 0

for every k ∈ N0 [14].
Let us now give the concept of P−statistical convergence and some of its properties expressed by

Ünver and Orhan [16].

Definition 1. [16] Let E ⊂ N0. If the limit

δp (E) := lim
0<t→R−

1

p (t)

∑
k∈E

pkt
k

exists, then δp (E) is called the P−density of E. Note that from the definition of the power series method
and P−density it is obvious that 0 ≤ δp (E) ≤ 1 whenever it exists.

Let us now state below some properties of the concept of P−density:
i) δp (N) = 1,
ii) if E ⊂ F then δp (E) ≤ δp (F ) ,
iii) if E has P−density then δp (N/E) = 1− δp (E) ,
iv) if E,F have P−density then δp (E ∪ F ) ≤ δp (E) + δp (F ) .

Definition 2. [16] Let x = {xk} be a sequence. Then x is said to be statistically convergent with respect
to power series method (P−statistically convergent) to L if for any ε > 0,

lim
0<t→R−

1

p (t)

∑
k∈Eε

pkt
k = 0

where Eε = {k ∈ N0 : |xk − L| ≥ ε} . This is denoted by stP − limxk = L.

Let us show with the following example that the concepts of statistical convergence and P−statistical
convergence are not comparable.

Example 1. Let {pk} be defined as follows

pk =

{
1, k = m2

0, otherwise
, m = 1, 2, ...

and take the sequence {xk} defined by

xk =

{
1, k = m2

k, otherwise
, m = 1, 2, ....

We calculate that, since for any ε > 0 we have,

lim
0<t→R−

1

p (t)

∑
k:|xk−1|≥ε

pkt
k = 0,
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that is stP − limxk = 1. However, the sequence {xk} is not statistically convergent to 1. If we consider
the following sequence {sk} defined by

sk =

{
k, k = m2

1, otherwise
, m = 1, 2, ...,

then st− lim sk = 1, but {sk} is not P−statistically convergent to 1.

Definition 3. [6] A sequence of real numbers x = {xk} is said to be P−statistically bounded if for some
M > 0 , δp ({k : |xk| > M}) = 0.

Theorem 1. [1] Let x = {xk} be a sequence. Then, the following expressions are equivalent:
(i) stP − limxk = L,
(ii) There it exists a subset F of N0 such that δp (F ) = 1 and limk∈F xk = L,
(iii) There exist two sequences y = {yk} and z = {zk} such that x = y + z and lim yk = L and

stP − lim zk = 0.

Throughout this paper (X,A, µ) will denote a measure space, fn, f : X → R, n ∈ N , measurable
functions. Let us recall the following theorem and give the definitions and notations related to our work.

Theorem 2. [9] Let a sequence of measurable functions {fk} converge in measure to f. Then one can
select from {fk} a subsequence {fkn

} which converges to f almost everywhere.

Definition 4. Let fk, f be measurable functions (k = 1, 2, ...) on X. Then, {fk} is P−statistically
convergent in measure to f if for each ε > 0, η > 0,

lim
0<t→R−

1

p (t)

∑
k∈Ek(ε)

pkt
k = 0,

where Ek (ε) := {k ∈ N0 : µ ({x ∈ X : |fk (x)− f (x)| ≥ ε}) ≥ η } . Then we write fk
stP−µ→ f.

2. Main Results

In this section, we first construct the convergence theorem using the concept of statistical convergence
with respect to the power series method in measure. Then, the theorems that are important in measure
theory will be analyzed with this type of convergence.

Theorem 3. Let (X,A, µ) be a finite measure space with µ (X) < ∞ and fk, F are bounded measurable
functions. Assume that

fk
stP−µ→ F.

If there exists a constant M such that for almost all x,

δP ({k ∈ N0 : |fk| ≥ M}) = 0, (1)

then

stP − lim

∫
X

fkdx =

∫
X

Fdx.

Proof. Let fk
stP−µ→ F. In this case, for every ε > 0,

lim
0<t→R−

1

p (t)

∑
k∈Ek(ε)

pkt
k = 0,

where Ek (ε) := {k ∈ N0 : µ ({x ∈ X : |fk − F | ≥ ε}) ≥ η } .
According to Theorem 1, if K = {kn : kn ≤ kn+1, n ∈ N} , with δp (K) = 1, then

limµ (x ∈ X : |fkn
− F | ≥ ε) .

In this case, fkn

µ→ F.
According to Theorem 2, we can write

|fkn
− F | < ε
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for almost all x ∈ X. From the above inequality and since the power series method is regular, we can
write the following

δP (n ∈ N0 : |fkn
− F | < ε) = 1

and

δP (n ∈ N0 : |fkn | < M) = 1.

Since, for each n ∈ N0,

|F | ≤ |F − fkn
|+ |fkn

| < ε+M,

we have |F | ≤ ε+M.
Hence, we get |F | ≤ M.
Now let λ > 0 be a positive number. Set

Ak (λ) = {x ∈ X : |fk − F | ≥ λ} , Bk (λ) = {x ∈ X : |fk − F | < λ} .

Then k ∈ N0 :

∣∣∣∣∣∣
∫
X

fkdx−
∫
X

Fdx

∣∣∣∣∣∣ ≥ λ

 (2)

⊂

k ∈ N0 :

∫
X

|fk − F | dx ≥ λ


=

k ∈ N0 :

∫
Ak(λ)

|fk − F | dx ≥ λ

2


∪

k ∈ N0 :

∫
Bk(λ)

|fk − F | dx ≥ λ

2

 .

for almost all x ∈ X. Then it follows from that

{k ∈ N0 : |fk − F | ≥ 2M} ⊂ {k ∈ N0 : |fk| ≥ M} ,

which gives that for almost all x ∈ Ak (λ)

δP (k ∈ N0 : |fk − F | ≥ 2M) ≤ δP (k ∈ N0 : |fk| ≥ M) .

Using (1), we immediately get that

δP (k ∈ N0 : |fk − F | ≥ 2M) = 0.

We can state the following ∫
Ak(λ)

|fk − F | dx ≤ 2M.µ (Ak (λ)) .

Also it is easy to verifyk ∈ N0 :

∫
Ak(λ)

|fk − F | dx ≥ λ

2

 ⊂
{
k ∈ N0 : µ (Ak (λ)) ≥

λ

4M

}
for almost all x ∈ X and λ > 0. Since

δP

{
k ∈ N0 : µ (Ak (λ)) ≥

λ

4M

}
= 0,

then, we have

δP

k ∈ N0 :

∫
Ak(λ)

|fk − F | dx ≥ λ

2

 = 0. (3)
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On the other hand, observe the following for almost all x ∈ Bk (λ)∫
Bk(λ)

|fk − F | dx ≤ λ.µ (Bk (λ)) ≤ λ.µ (X) .

Again it is easy to verifyk ∈ N0 :

∫
Bk(λ)

|fk − F | dx ≥ λ.µ (X)

 ⊂ {k ∈ N0 : µ (Bk (λ)) ≥ µ (X)}

for almost all x ∈ X and λ > 0. Since

δP

k ∈ N0 :

∫
Bk(λ)

|fk − F | dx ≥ λ.µ (X)

 ≤ δP {k ∈ N0 : µ (Bk (λ)) ≥ µ (X)} = 0,

then, we have

δP

k ∈ N0 :

∫
Bk(λ)

|fk − F | dx ≥ λ.µ (X)

 = 0. (4)

Given (2), we can consider the following sets for λ > 0,

R : =

k ∈ N0 :

∣∣∣∣∣∣
∫
X

fkdx−
∫
X

Fdx

∣∣∣∣∣∣ ≥ λ

 ,

R1 : =

k ∈ N0 :

∫
Ak(λ)

|fk − F | dx ≥ λ

2

 ,

R2 : =

k ∈ N0 :

∫
Bk(λ)

|fk − F | dx ≥ λ

2

 .

Then, it follows from that

R ⊂ R1 ∪R2

which gives that
1

p (t)

∑
k∈R

pkt
k ≤ 1

p (t)

∑
k∈R1

pkt
k +

1

p (t)

∑
k∈R2

pkt
k. (5)

Now letting 0 < t < R− in the both sides of (5) and using (3) and (4), we immediately get that

lim
0<t→R−

1

p (t)

∑
k∈R

pkt
k ≤ lim

0<t→R−

1

p (t)

∑
k∈R1

pkt
k + lim

0<t→R−

1

p (t)

∑
k∈R2

pkt
k.

In this case we obtain the following

δP

k ∈ N0 :

∣∣∣∣∣∣
∫
X

fkdx−
∫
X

Fdx

∣∣∣∣∣∣ ≥ ε

 = 0,

which proves the theorem. □

Theorem 4. If a sequence of functions {fk} converges P−statistically in measure to the functions f and
g, then these limit functions are equal.

Proof. Suppose fk
stP−µ→ f and fk

stP−µ→ g. Then for every ε > 0, we have

stP − limµ (x : |fk − f | > ε) = 0, (6)

stP − limµ (x : |fk − g| > ε) = 0.
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To show that f and g are equal a.e., on X, let us assume the contrary, that is µ (x : f ̸= g) > 0. Then
since f ̸= g if and only if |f − g| > 0, we have

µ (x ∈ X : | f − g| > 0) > 0.

Now, since

{x ∈ X : | f − g| > 0 } ⊂
∞⋃
k=1

{
x : | f − g| ≥ 1

k

}
, (7)

we have

µ ({x ∈ X : | f − g| > 0 }) ≤
∞∑
k=1

µ

({
x : | f − g| ≥ 1

k

})
. (8)

By (7), the left side of (8) is positive. Then not all of terms on the right side are equal to 0. Thus there
exists some k0 ∈ N0 such that

µ

({
x ∈ X : | f − g| ≥ 1

k0

})
> 0.

For every k ∈ N0 we have

µ

({
x ∈ X : | f − g| ≥ 1

k0

})
≤ µ

({
x ∈ X : | f − fk| ≥

1

2k0

})
+µ

({
x ∈ X : |fk − g| ≥ 1

2k0

})
.

We can consider the following sets for η > 0:

V : =

{
k ∈ N0 : µ

({
x : | f − g| ≥ 1

k0

})
≥ η

}
,

V1 : =

{
k ∈ N0 : µ

({
x : | f − fk| ≥

1

2k0

})
≥ η

}
,

V2 : =

{
k ∈ N0 : µ

({
x : |fk − g| ≥ 1

2k0

})
≥ η

}
.

Then it follows from that

V ⊂ V1 ∪ V2

which gives that
1

p (t)

∑
k∈V

pkt
k ≤ 1

p (t)

∑
k∈V1

pkt
k +

1

p (t)

∑
k∈V2

pkt
k. (9)

Now letting 0 < t < R− in the both sides of (9) and using (6), we immediately get that

lim
0<t→R−

1

p (t)

∑
k∈V

pkt
k ≤ lim

0<t→R−

1

p (t)

∑
k∈V1

pkt
k + lim

0<t→R−

1

p (t)

∑
k∈V2

pkt
k = 0.

We obtain the following

δP

({
k ∈ N0 : µ

({
x ∈ X : | f − g| ≥ 1

k0

})
≥ η

})
= 0

which proves the theorem. □

Theorem 5. Let the sequence of functions {fk} converge P−statistically in measure to f on X. Assume
that Ψ is a real function that satisfies Lipschitz condition on R. If under these conditions, for each k ∈ N0,
the sequence {Ψ ◦ fk} is given on X then, {Ψ ◦ fk} converges P−statistically in measure to the functions
Ψ ◦ f.

Proof. Let ε > 0 and the sequence of functions {fk} converge P− statistically in measure to the function
f, then

stP − limµ ({x ∈ X : |fk − f | > ε}) = 0

and also let Ψ : R → R satisfies Lipschitz condition. Hence there is L > 0 such that
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|Ψ(x)−Ψ(y)| ≤ L |x− y|

for each x, y ∈ R. Observe this

{x ∈ X : |Ψ ◦ fk −Ψ ◦ f | > ε} ⊂
{
x ∈ X : |fk − f | > ε

L

}
.

We can consider the following sets for η > 0

E1 = {k ∈ N0 : µ ({x ∈ X : |Ψ ◦ fk −Ψ ◦ f | > ε}) ≥ η} ,

E2 =
{
k ∈ N0 : µ

({
x ∈ X : |fk − f | > ε

L

})
≥ η

}
.

Since

E1 ⊂ E2

and also, the sequence of functions {fk} converges P−statistically in measure to the function f, then it
holds that

δP

({
k ∈ N0 : µ

({
x : |fk − f | > ε

L

})
≥ η

})
= 0.

By monotonicity of the measure,

δP ({k ∈ N0 : µ ({x : |Ψ ◦ fk −Ψ ◦ f | > ε}) ≥ η }) = 0.

Hence the sequence of functions {Ψ ◦ fk} converges P−statistically in measure to the function Ψ ◦ f. □

3. Further Results

In this section, the concept of convergence of the power series method in measure will be introduced.
Also, the relationship between it and the convergence we have examined in the previous section will be
discussed. A version of the theorems given in the main results section will be stated.

Similar to Definition 4, let the concept of the power series method in measure be presented as follows:
Let fk, f be measurable functions (k = 1, 2, ...) on X. Then, fk is convergent in the sense of power

series method in measure to f if for each ε > 0,

lim
0<t→R−

1

p (t)

∞∑
k=0

pkt
kek = 0,

where ek := µ ({x ∈ X : |fk − f | ≥ ε}) . This is denoted by fk
Pp−µ→ f.

The following theorem shows the relation between these two convergences.

Theorem 6. If fk
Pp−µ→ f, then fk

stP−µ→ f.

Proof. Let fk
Pp−µ→ f. Then for ε > 0, we have

lim
0<t→R−

1

p (t)

∞∑
k=0

pkt
kek = 0, (10)

where ek := µ ({x ∈ X : |fk (x)− f (x)| ≥ ε}) .
Now, Ek (ε) := {k ∈ N0 : µ ({x ∈ X : |fk (x)− f (x)| ≥ ε}) ≥ η } .
This implies

1

p (t)

∑
k∈Ek(ε)

pkt
k ≤ 1

p (t)

∞∑
k=0

pkt
kek.

Using (10), we get

lim
0<t→R−

1

p (t)

∑
k∈Ek(ε)

pkt
k = 0

and hence, the result. □

Now, the following results are stated. Their proofs are obtained using a technique similar to the
theorems in the main results section.
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Corollary 1. Let (X,A, µ) be a finite measure space with µ (X) < ∞ and fk, f are bounded measurable
functions. Assume that

fk
Pp−µ→ F.

If there exists a constant M such that for almost all x,

δP ({k ∈ N0 : |fk (x)| ≥ M}) = 0,

then

Pp − lim

∫
X

fkdx =

∫
X

Fdx.

Corollary 2. If a sequence of functions {fk} converges the in the sense of power series method in measure
to the functions f and g, then these limit functions are equal.

Corollary 3. Let the sequence of functions {fk} converge in the sense of power series method in measure
to f on X. Assume that Ψ is a real function that satisfies Lipschitz condition on R. If under these
conditions, for each k ∈ N0, the sequence {Ψ ◦ fk} is given on X then, {Ψ ◦ fk} converges in the sense
of power series method in measure to the function Ψ ◦ f.

4. An Application

In this section, we will prove the classical Korovkin theorem [11], which has an important place in
approximation theory, using the statistical convergence with the power series method in measure. Let K
be a compact subset of the real numbers and C (K) be the space of all real-valued continuous functions
on K. Then C (K) is a Banach space with the norm defined by ∥f∥ = sup

t∈[a,b]

|f (t)| , f ∈ C (K) .

Theorem 7. Let Pp be a regular power series method and let {Lk} be a sequence of positive linear
operators from C (K) into C (K) . If

Lkfi
stP−µ→ fi on K (11)

where fi (x) = xi for each i = 0, 1, 2, then

Lkf
stP−µ→ f on K, for all f ∈ C (K) . (12)

Proof. Let f ∈ C (K) and t ∈ K. Then there exists M > 0 such that |f (t)| ≤ M for all t ∈ K. Also,
for every ε > 0 there exists δ > 0 such that |f (x)− f (t)| < ε whenever |x− t| < δ for all x, t ∈ K. Let
Kδ := ([t− δ, t+ δ]) ∩K. Therefore

|f (x)− f (t)| = |f (x)− f (t)|χKδ
(x) + |f (x)− f (t)|χK\Kδ

(x) (13)

≤ ε+ 2MχK\Kδ
(x)

where χA is the characteristic function of the set A. We have

χK\Kδ
(x) ≤ (x− t)

2

δ2
. (14)

From (13) and (14), we get

|f (x)− f (t)| ≤ ε+
2M

δ2
(x− t)

2
. (15)

By using monotonicity and linearity of Lk (f ; t) , we get

|Lk (f ; t)− f (t)| ≤ Lk (|f (x)− f (t)| ; t) + |f (t)| |Lk (f0; t)− f0 (t)| . (16)

Using (15) in (16), we obtain

|Lk (f ; t)− f (t)| ≤ Lk

((
ε+

2M

δ2
(x− t)

2

)
; t

)
+ |f (t)| |Lk (f0; t)− f0 (t)|

≤ ε+ (ε+M) |Lk (f0; t)− f0 (t)|+
2M

δ2
Lk

(
(x− t)

2
; t
)
. (17)
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So we get

|Lk (f ; t)− f (t)| ≤ ε+

(
ε+M +

2M ∥f2∥
δ2

)
|Lk (f0; t)− f0 (t)|

+
4M ∥f1∥

δ2
|Lk (f1; t)− f1 (t)|

+
2M

δ2
|Lk (f2; t)− f2 (t)| ,

which implies that

|Lk (f ; t)− f (t)| ≤ ε+H {|Lk (f0; t)− f0 (t)|+ |Lk (f1; t)− f1 (t)|+ |Lk (f2; t)− f2 (t)|} (18)

where H = max
{
ε+M + 2M∥f2∥

δ2
, 4M∥f1∥

δ2
, 2M

δ2

}
.

Now, for a r > 0, there exists δ, ε > 0 such that ε < r. Then let

Tk = {k ∈ N0 : µ ({x : |Lk (f ; t)− f (t)| ≥ r}) ≥ δ}
and for i = 0, 1, 2,

Tk,i =
{
k ∈ N0 : µ

({
x : |Lk (fi; t)− fi (t)| ≥

r − ε

3H

})
≥ δ

}
.

From (18), we obtain

Tk ⊂
2⋃

i=0

Tk,i

and so we get

1

p (t)

∑
k∈Tk

pkt
k ≤

2∑
i=0

1

p (t)

∑
k∈Tk,i

pkt
k.

Hence, using (11), we get

Lkf
stP−µ→ f on K, for all f ∈ C (K) . (19)

This completes the proof. □

Now the following theorem follows immediately from Theorem 6.

Theorem 8. Let Pp be a regular power series method and let {Lk} be a sequence of positive linear
operators from C (K) into C (K) . If

Lkfi
Pp−µ→ fi on K (20)

where fi (x) = xi for each i = 0, 1, 2, then

Lkf
Pp−µ→ f on K, for all f ∈ C (K) . (21)
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