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ABSTRACT. In this paper, we study the concept of statistical convergence with respect to the power
series method in measure, which is a new modification of the power series method. Also, using this
convergence, we obtain the Lebesgue bounded convergence theorem and the fundamental theorems of
measure theory. Finally, we prove Korovkin’s theorem as an application using this notion of convergence.
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1. INTRODUCTION

Fast and Steinhauss independently introduced the concept of statistical convergence for sequences of
real numbers [8,/15]. The concept of statistical convergence has always been a popular topic and there are
many studies in the literature. Recently, a new variant of statistical convergence, statistical convergence
with power series method, was introduced by Unver and Orhan [16]. Since this new convergence cannot be
compared with statistical convergence, it has become the subject of study in many fields [2,/4,/5,/7,/17,/18].

The convergence theorems in its simplest form states that integrability is preserved under taking limits.
These theorems can be used to construct an integrable function. It also has an important place in measure
theory. An essential and well-known one is the Lebesgue bounded convergence theorem. Recently, Kisi
and Giiler presented a statistical version of this theorem [10].

The aim of this paper is to construct convergence theorems using the concept of statistical convergence
with respect to power series method in measure. We also analyse the fundamental theorems of measure
theory according to this notion of convergence. In the last part, we aim to present a different perspective
by proving Korovkin’s theorem as an application.

Let us now give the basic definitions and notations necessary for our study.

Let E be a subset of N, the set natural numbers. Then the natural density of E, denoted by ¢ (E), is
given by:

1
J(E) ::limﬁ|{k§n: k € E}|

whenever this limit exists, where |.| denotes the cardinality of the set [13].
A sequence x = {z}} of real numbers is statistically convergent to L provided that, for every & > 0,

1
lim—|{k<n:|lzy—L| >e}|=0
n
that is,
E:=E,(e):={k<n: |zx—L| >¢}
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has natural density zero. This is denoted by st — limz, = L [8}/15]. It is clear from the definition that
every convergent sequence (in the usual sense) is statistically convergent to the same number. However,
statistically convergent sequence need not to be convergent.

We now start with some definitions and notations that are essential for power series methods.

Let {pr} be a non-negative real sequence such that py > 0 and the corresponding power series

o0
= Zpktk
k=0

has radius of convergence R with 0 < R < oo. Consider a sequence of real numbers = {zj}. Then
x = {xy} is convergent to L in the sense of power series method if

Z;Dkt TE =
0<t~>R p

This is denoted by P, — lima, = L [12,|14]. For this study it should be noted that the power series

method is regular if and only if
im 2 g
o<t—R- p(t)

for every k € Ny [14].
_ Let us now give the concept of P—statistical convergence and some of its properties expressed by
Unver and Orhan [16].

Definition 1. [16] Let E C Ny. If the limit

op (E) := Zpk

O<t~>R p keE

exists, then 0, (E) is called the P—density of E. Note that from the definition of the power series method
and P—density it is obvious that 0 < §, (E) < 1 whenever it exists.

Let us now state below some properties of the concept of P—density:
i) 5, (N) = 1,

ii) if E C F then 6, (E) <6, (F),

iii) if £ has P—density then d, (N/E)=1-6, (E),

iv) if E, F have P—density then ¢, (EUF) <46, (E) + 6, (F).

Definition 2. [16] Let x = {x}} be a sequence. Then x is said to be statistically convergent with respect
to power series method (P— statistically con’uergent} to L if for any e > 0,

Z prt" =
0<t4R p keE
where B, = {k € Ny : |z — L| > €} . This is denoted by stp — limxz, = L.

Let us show with the following example that the concepts of statistical convergence and P—statistical
convergence are not comparable.

Example 1. Let {p;} be defined as follows

|1, k=m? m—1.92
Pr = 0, otherwise '~ 77

and take the sequence {xy} defined by

1L, k= m? 19
T =k, otherwise * T o

We calculate that, since for any € > 0 we have,

1
lim —— pktk =
o<t—Rr- p(t) k:zkz_:l>s
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that is stp — limx,, = 1. However, the sequence {xy} is not statistically convergent to 1. If we consider
the following sequence {si} defined by

SE = k, k=m’ m=1,2
7\ 1, otherwise X T

then st —lim s, = 1, but {sx} is not P—statistically convergent to 1.

Definition 3. [6/ A sequence of real numbers x = {xy} is said to be P—statistically bounded if for some
M>0,06,({k:|xx] >M})=0.

Theorem 1. [1]] Let x = {1} be a sequence. Then, the following expressions are equivalent:

(i) stp —limzy = L,

(i) There it exists a subset F' of Ng such that §, (F)) =1 and limger x5 = L,

(iii) There exist two sequences y = {yr} and z = {zr} such that x = y + z and limy, = L and
stp —lim z = 0.

Throughout this paper (X, A, u) will denote a measure space, f,, f : X — R, n € N | measurable
functions. Let us recall the following theorem and give the definitions and notations related to our work.

Theorem 2. [9] Let a sequence of measurable functions {fi} converge in measure to f. Then one can
select from {fi} a subsequence { [y, } which converges to f almost everywhere.

Definition 4. Let fi, f be measurable functions (k = 1,2,...) on X. Then, {fx} is P—statistically
convergent in measure to f if for each e > 0, r] >0,

;2 mtt=
0<t%R p keE ©)

where By, () :={keNo:p({x € X : |fx (x) — f (z)| > €}) > n }. Then we write fj stegh f.

2. MAIN RESULTS

In this section, we first construct the convergence theorem using the concept of statistical convergence
with respect to the power series method in measure. Then, the theorems that are important in measure
theory will be analyzed with this type of convergence.

Theorem 3. Let (X, A, ) be a finite measure space with p(X) < oo and fi, F are bounded measurable
functions. Assume that

Tk et R
If there exists a constant M such that for almost all x,

op({k€No: |[fi| > M}) =0, (1)

stp —lim/fkdx = /Fdx.
X X

Proof. Let f; PSP In this case, for every € > 0,
o (0, 2 P
<= p keE

where By, () :={keNog:p({x € X : |fx — F| > ¢}) Zn}.
According to Theorem [} if K = {ky : kn < kny1, n € N}, with 6, (K) =1, then

limp(xe X |fy, —F|>¢).

then

In this case, f, A F
According to Theorem [2| we can write

|fk, — F| <e
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for almost all x € X. From the above inequality and since the power series method is regular, we can

write the following
dp(n€Ng:|fy, —Fl<e)=1
and
op(neNg:|fe, | <M)=1.
Since, for each n € Ny,
|F| < |F = fi, | + | fr,

<e+ M,

we have |F| < e+ M.
Hence, we get |F| < M.
Now let A > 0 be a positive number. Set

AN ={z e X |fi—F|> A}, Bu(\) = {z € X : |fr — F| < \}.

Then

keNg: /fkd:c—/Fda: >\
X

X

- kENo:/|fkfF|dx2)\
X

= {keNy: / |fx — F|dx >

A
2

Ak (N)

N > N —

U< ke Ng: / |fx — F|dx >
B ()
for almost all z € X. Then it follows from that
{kEN02|fk—F|ZQM}C{]?ENQZUHZM},
which gives that for almost all x € Ay ()
5P(k€N0 : |fk*F‘ ZQM) Sép(kGNo : |fk| ZM)
Using 7 we immediately get that
(SP(/{/’GNQZ |f]€—F| Z2M):O.
We can state the following
[ U= Flas <204 ).
Ar(N)
Also it is easy to verify

| >

ke N / i — Flde >
Ar(N)

for almost all z € X and A > 0. Since

ap{k € No: i (Ar (V) >

I
=[>
H/_/
[l
JO

then, we have

SplkeN: / |fx — F|dz > =0.

Ak ()

A
2

C {kzeNo:M(Ak(A)) > 4;\\/‘,}
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On the other hand, observe the following for almost all x € By, (\)
/ |fe — F|dx < Ap(Br (M) < Ap(X).

By (X)

Again it is easy to verify

ke N : / \fx — Fldz > Ap(X) y € {k€No:p (B (\) > p(X)}
By (N)

for almost all x € X and A > 0. Since

5pdkeN,: / o — Flde > A (X) S < 8p{keNo: u(Be(\) = i (X)) =0,
B (X\)

then, we have

dp keN :/ |fi — Fldx > Au(X)p =0. (4)
B (M)
Given 7 we can consider the following sets for A > 0,

R : =<keNp: /fkdxf/Fdw >y,
X X
R =<keNg: / ‘fk—F|d.’E27 s
Ar(N)
A
Ro =<ckeNy: ‘f}c—F|d$2§
B (M)
Then, it follows from that
R CRiURy
which gives that
Zpk < Z Prt + — Z prt”. (5)
keR keR keR

Now letting 0 < ¢t < R~ in the both sides of (5 1ID and usmg and . we immediately get that
lim t* +  lim
O<tﬂR p(t Zpk ~o<t—R-p(t Z Pk 0<t—R- p( Z Pt

kGR kGR kER2

In this case we obtain the following

opekeNy: /fkdl'—/FdLL' >e =0,
X
which proves the theorem. O

Theorem 4. If a sequence of functions { fr} converges P—statistically in measure to the functions f and
g, then these limit functions are equal.
Proof. Suppose f stk f and fy stesk g. Then for every € > 0, we have
sto—limp(z: [fe—f|>e) = 0, (6)
stp—limp(x: |fr —g|>¢e) = 0.
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To show that f and g are equal a.e., on X, let us assume the contrary, that is u(x: f # ¢g) > 0. Then
since f # g if and only if |f — g| > 0, we have

preX:| f—gl >0 >0.

Now, since

{zeX:|f—g|>0}cg{x:|f—gz;}, ¢
we have
u({xeX:|f—g|>0}>siu({x:|f—g|z,1}). 5)

By , the left side of is positive. Then not all of terms on the right side are equal to 0. Thus there
exists some kg € Ny such that
1
p({xGX:|fg|2 }) > 0.
ko
For every k € Ny we have
1 1
X : —g| > — < X : — > —
w({eexsir-azg}) < w(feexir-nzg})
1

We can consider the following sets for n > 0:

Vo {keNO:u<{$i|fg|Zl}>Z77},
ko
Vi {k€N03M<{$f|f—fk221}
0
1

s fren{fenoned oo}

Then it follows from that

YV ViUV,
which gives that
Zpk < Zpk + —( ) > pit". (9)
kev k:ev kEVs

Now letting 0 < ¢ < R~ in the both sides of @ and using (@ we immediately get that

Jdm st < lim s Sopt 4 I S it =0
<t=R- p(t) = <t=R-p(t kev <t=R-p(t keVz

We obtain the following

oo ({remn(foexiir-az g })2a ) =0

which proves the theorem. O

Theorem 5. Let the sequence of functions { fr} converge P—statistically in measure to f on X. Assume
that ¥ is a real function that satisfies Lipschitz condition on R. If under these conditions, for each k € Ny,
the sequence {U o fi} is given on X then, {¥ o fi} converges P—statistically in measure to the functions
Uo f.

Proof. Let ¢ > 0 and the sequence of functions {f;} converge P— statistically in measure to the function
f, then

stp—limp({z e X: |fx—fl>e})=0
and also let ¥ : R — R satisfies Lipschitz condition. Hence there is L > 0 such that
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W (z) =¥ (y)| < Lz -y
for each x,y € R. Observe this
{reX: |\I/ofk—\I/of|>e}C{x€X: |fk—f\>%}.
We can consider the following sets for n > 0
Ey = {keNo: p({reX: [Wofp—Tofl>e})>n},
By, — {keNo:,u({:ceX:|fk—f|>%})zn}.

Since
FE| C Ey

and also, the sequence of functions {f} converges P—statistically in measure to the function f, then it

holds that
5p({k€N0:,u({x:|fk—f|>%}) >0 }) =0.

By monotonicity of the measure,
op({heNo:p({z: [Wofy—Wof|>e})>n}) =0.

Hence the sequence of functions {¥ o fi} converges P—statistically in measure to the function o f. O

3. FURTHER RESULTS

In this section, the concept of convergence of the power series method in measure will be introduced.
Also, the relationship between it and the convergence we have examined in the previous section will be
discussed. A version of the theorems given in the main results section will be stated.

Similar to Definition [4] let the concept of the power series method in measure be presented as follows:

Let fi, f/ be measurable functions (k = 1,2,...) on X. Then, fi is convergent in the sense of power
series method in measure to f if for each £ > 0,

1 oo
lim  —— the, =0,
0<tlglR );pk c
Po—
where e, := p({x € X : |fx — f| > }) . This is denoted by fi L
The following theorem shows the relation between these two convergences.
P,— stp—
Theorem 6. If fi, 5" f, then fi, """ f.

Proof. Let fy o f- Then for € > 0, we have

O<t—>R p

where e, :=p({x € X 1 |fx (z) — f (z)| > €}).
Now, Er () i={keNg:p({z e X : |fx (x) — f(z)| >e}) =>n }.
This implies

Using , we get

and hence, the result. O

Now, the following results are stated. Their proofs are obtained using a technique similar to the
theorems in the main results section.
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Corollary 1. Let (X, A, u) be a finite measure space with u(X) < oo and f, f are bounded measurable
functions. Assume that

P, —
o Bt
If there exists a constant M such that for almost all x,

op({k€No: |[fi ()] = M}) =0,

Pp—lim/fde::/Fdz.
X

X

then

Corollary 2. If a sequence of functions {fr} converges the in the sense of power series method in measure
to the functions f and g, then these limit functions are equal.

Corollary 3. Let the sequence of functions { fr} converge in the sense of power series method in measure
to f on X. Assume that VU is a real function that satisfies Lipschitz condition on R. If under these
conditions, for each k € Ny, the sequence {U o fi.} is given on X then, {¥ o fr} converges in the sense
of power series method in measure to the function W o f.

4. AN APPLICATION

In this section, we will prove the classical Korovkin theorem [11], which has an important place in
approximation theory, using the statistical convergence with the power series method in measure. Let K
be a compact subset of the real numbers and C (K) be the space of all real-valued continuous functions
on K. Then C (K) is a Banach space with the norm defined by ||f|| = sup |f (¢)|, f € C(K).

t€la,b]

Theorem 7. Let P, be a regular power series method and let {Ly} be a sequence of positive linear
operators from C (K) into C (K). If

Lifi "5 foon K (11)
where f; (x) = z* for each i = 0,1,2, then
Lof 5" f on K, for all f € C (K). (12)

Proof. Let f € C(K) and ¢t € K. Then there exists M > 0 such that |f (¢)] < M for all t € K. Also,
for every € > 0 there exists § > 0 such that |f (z) — f (t)] < € whenever |z —t| < ¢ for all ,t € K. Let
K5 := ([t — 6,t + d]) N K. Therefore

|f () = [ (®)]

[f (@) = F () xre,; (@) + [f (@) = F (Ol xae\ i () (13)
< e+ 2Mx g\ K, ()
where x 4 is the characteristic function of the set A. We have
(z —t)’
5

XK\K;s (r) <
From and (14), we get
@ - FOlse+ 2 @0, (15)
By using monotonicity and linearity of Ly, (f;t), we get
L (f:0) = O] < L (1 ) = £ O30+ 1 O] 1L (o 0) — fo (0)]. (16)
Using in (6], we obtain

Ly (f;1) = f (2)]

IN

Ly ((+ ?f(z—t)z) ;t) 1S O oit) — fo (8

IN

(e M) (o) — fo (0] + 2 L (0 = 0)%31). a7)
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So we get

Lo (F:t)— F ()] < 5+(€+M+ ||f2||)|Lk(fo;t)—f0(t)|

AM | f]l

52 |Lr (f1;t) — f1(1)]
2M

JFCT2|L;c (fast) = f2 (1)1,

+

which implies that
|Le (f3t) = f (O] < e+ H{[Li (fo;t) = fo ()] + [Li (fr58) = fr (O + | Li (fos ) — f2 (D)} (18)
where H = max<e+ M + QMHf2H, 41\/[5H2f1|‘, %TIZI
Now, for a r > 0, there exists J,& > 0 such that € < . Then let

Te ={k € No: p({z:[Lr (f;t) = f ()] = r}) = 6}

Tos = {kENo » ({x ALk (i) — i (0] > ngj}) > a}.

From (8], we obtain

and for ¢+ = 0,1, 2,

2
T € T
i=0

and so we get

Zpk < Z ;2 mitt

kGT i= 0 kGT
Hence, using , we get

Lof "'55" f on K, for all feC(K). (19)

This completes the proof. O

Now the following theorem follows immediately from Theorem [6]

Theorem 8. Let P, be a regular power series method and let {Ly} be a sequence of positive linear
operators from C (K) into C (K). If

kaz PP—_>H fz on K (20)
where f; (x) = 2 for each i = 0,1,2, then
Lif 75" Fon K, forall f € C(K). (21)
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