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Ö Z

Küresel gıda endüstrisinin hızlı büyümesi, gıda atıklarının değerlendirilmesini zorunlu hale getirmiştir. Bu çalışmada, atık 
balık kemiklerinden kolajen ekstraksiyonu 0.5 M asetik asit kullanılarak gerçekleştirilmiştir. Elde edilen kolajenin fiziko-

kimyasal özellikleri, Ultraviyole ve Görünür Bölge Spektroskopisi (UV-Vis), Fourier Transfer Infrared Spektroskopisi (FTIR), 
X-ışını Kırınımı (XRD) ve Diferansiyel Tarama Kalorimetrisi (DSC) ile belirlenmiştir. Kolajenin UV-Vis Spektrumu sonuçları, 
maksimum emilimin 238 nm’de olduğunu göstermiştir. UV-Vis ve FTIR analizleri, ekstrakte edilen kolajenin üçlü sarmal 
yapıya sahip olduğunu ortaya koymuştur. XRD kırınım desenine göre kolajenin yarı kristalin olduğu belirlenmiştir. Termal 
denatürasyon sıcaklığı 129 ºC ile 141 ºC arasında olup, akış hızı -4.881 mW (141 ºC) ve entalpi değişimi (ΔH) 39.2 mJ/mg 
olarak ölçülmüştür. Çalışma, balık atıklarından yeterli miktarda kolajenin basit ve ekonomik bir şekilde izole edilebileceğini 
göstermiştir. Ayrıca, bu çalışmada balık işleme atıklarından elde edilen kolajenin, kozmetik ve farmasötik endüstriler gibi 
çeşitli endüstriyel amaçlar için yüksek katma değerli bir malzeme olarak kullanılabileceği belirlenmiştir. En önemlisi, işleme 
atıkları değerlendirilebilir ve çevre kirliliği önlenebilir.

Anahtar Kelimeler
Kolajen, ekstraksiyon, balık atığı, sürdürülebilirlik.

A B S T R A C T

The global food industry's exponential growth has made it crucial to assess food waste. In this study, collagen extraction 
from waste fish bones was carried out in the presence of 0.5 M acetic acid. The physicochemical properties of the suc-

cessfully obtained collagen were determined by Ultraviolet and Visible Spectroscopy (UV-Vis), Fourier Transform Infrared 
Spectroscopy (FTIR), X-ray diffraction (XRD), and Differential Scanning Calorimetry (DSC). The results of UV-Vis Spectra 
of collagen showed maximum absorption at 238 nm. The extracted collagen was found to have a triple helix structure by 
UV-Vis and FTIR analysis. It was determined that it was semi-crystalline with the XRD diffraction pattern. The thermal de-
naturation temperature was between 129 ºC and 141 ºC with a flow rate of -4.881 mW (141 ºC) and the enthalpy change 
(ΔH) was 39.2 mJ/mg. The study has shown that sufficient collagen can be isolated from fish waste simply and inexpensively. 
Moreover, the present study found that collagen obtained from fish processing waste can be used as a high-value-added 
material in many areas for various industrial purposes, such as the cosmetics and pharmaceutical industries. Most impor-
tantly, processing waste can be utilized, and environmental pollution can be prevented.
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INTRODUCTION

Fishing and seafood play a crucial role globally, with ne-
arly 70% of the Earth’s surface covered by water, thus 
providing a significant source of nutrition and livelihood 
for many communities worldwide [1-2]. Over recent ye-
ars, the consumption of fish and seafood products has 
notably increased, largely because these foods are con-
sidered essential components of a balanced diet and a 
healthy lifestyle [3-5]. Seafood is an excellent source of 
high-quality protein [2], vitamin D [6], iodine [7], and 
long-chain unsaturated fatty acids such as docosahe-
xaenoic acid (DHA) [8]. These nutrients are critical for 
human health, highlighting the importance of regularly 
incorporating seafood into our diets.

Despite the nutritional value of fish, more than half 
of the fish tissues—including viscera, skin, heads, and 
fins—are discarded as “waste” by the fish processing 
industry at various stages [9]. This practice results in 
the production of vast amounts of fish waste, not only 
in Turkey but across the globe [10-11]. Such waste po-
ses serious environmental concerns; when disposed of 
improperly, it damages terrestrial and aquatic ecosy-
stems, leading to a decrease in oxygen levels in marine 
environments and contributing to the spread of vario-
us pathogenic microorganisms [1,12]. Addressing this 
issue, the European Commission’s Blue Growth Plan 
emphasizes the efficient use of biomass waste by pro-
moting its recycling and repurposing as a valuable input 
in chemical production, thereby aligning with a circular 
economy model [13].

Fish biomass presents a valuable source of collagen, the 
most abundant structural protein in the extracellular 
matrix of connective tissues, including skin, bones, li-
gaments, tendons, and cartilage [14,15]. Collagen has 
extensive applications in biomedical fields due to its 
versatility as a biopolymer, making it particularly useful 
in cosmetics and tissue engineering for human health 
applications [16–18]. Traditionally, collagen has been 
derived from terrestrial sources such as cattle [19], frog 
skin [20], chicken, and pig [21]; however, with increa-
sing demand, there is a need for more sustainable, cost-
effective sources that reduce reliance on land animals. 
In biomedical applications, collagen is widely utilized in 
drug and gene delivery systems, tissue engineering, ab-
sorbable surgical sutures, bone regeneration materials, 
and wound care dressings [3–8]. Its role in wound hea-
ling is especially critical, where it functions as a natural 

scaffold that supports new tissue growth and plays an 
essential role across all stages of healing, from hemos-
tasis and inflammation to proliferation and tissue remo-
deling.

In this context, marine biomass has emerged as a promi-
sing and increasingly attractive source of collagen [23]. 
Fish skin, scales, fins, and bones are particularly rich in col-
lagen [24]. Marine-derived collagen is gaining attention for 
several unique qualities: it has a lower molecular weight, is 
more readily absorbed by the human body, and possesses 
high biocompatibility. Additionally, marine collagen carries 
a lower risk of transmitting animal diseases or pathogens, 
is more environmentally friendly, and faces fewer religious 
and ethical restrictions [26]. Nevertheless, marine colla-
gen does have certain limitations. Its relatively low melting 
and denaturation temperatures limit its range of applicati-
ons [23-27]. Thus, optimizing the extraction and purificati-
on methods for marine collagen is essential for enhancing 
its physicochemical and biological properties, ultimately 
expanding its potential uses in various fields.

In this study, collagen extraction from fish waste was targe-
ted using an acetic acid-assisted method, and comprehen-
sive analyses were conducted to characterize the obtained 
collagen. The extracted collagen’s physicochemical pro-
perties, including its structural integrity, thermal stability, 
and purity, were determined using UV-Vis spectroscopy, 
FTIR, XRD, and DSC techniques. A diagram summarizing 
the process steps is presented below (Figure 1). This app-
roach aims to provide a sustainable solution for utilizing 
fish processing waste, potentially reducing environmental 
impact and promoting the application of collagen in vario-
us industrial fields such as cosmetics and pharmaceuticals.

MATERIALS and METHODS

Materials
Fish waste samples were gathered from a local fisherman 
and the Adem Doruk Trout Facilities located in Etimesgut, 
Ankara. These samples were transported to the laboratory 
in a cold chain bag to maintain their integrity and were 
subsequently stored at -20ºC until use. Chemicals used in 
the study, including sodium hydroxide (NaOH), acetic acid, 
and sodium chloride (NaCl), were sourced from Merck 
KGaA in Darmstadt, Germany. Additionally, butyl alcohol 
and dialysis tubing made from a cellulose membrane were 
purchased from Sigma Aldrich Supelco, based in Massac-
husetts, United States.
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Pre-Treatment Procedure
The collected bone and skin materials were carefully se-
parated under a cold chain. The bones were finely chop-
ped into small pieces using a blender and washed with 
pure water. All preparations were meticulously carried 
out around a low-temperature ice bath to ensure preci-
sion. A specific quantity of bone samples was placed in 
a 0.1 M NaOH solution (1:30 w/v) at +4°C for 3 days to 
remove non-collagenous proteins, with the solution be-
ing renewed every 24 hours to maintain effectiveness. 
On the final day, the samples were washed with distil-
led water repeatedly until a neutral pH was achieved. 
Following this, the samples were submerged in a 10% 
butyl alcohol solution at a 1:10 ratio (bone/ml soluti-
on) for 3 days at +4°C to remove oils, with the solution 
refreshed daily (Figure 2). After obtaining the oil-free 
residue, the samples were thoroughly washed with cold 
distilled water to prepare them for the next processing 
stage [28-29].

Extraction Procedure
Following the pre-treatment process, the prepared 
samples were transferred into a 0.5 M acetic acid so-
lution and maintained at 4°C for three days, with the 
solution replaced every 24 hours to ensure consistency. 
After this extraction period, the solutions were care-
fully filtered to remove any solid residues, and each filt-
rate was collected into a separate container. Once all 
extracts were combined, 2.5 M NaCl was added to the 
pooled solution to initiate collagen precipitation. The 

resulting precipitated collagens were then subjected to 
centrifugation at 9,000 rpm for one hour at 4°C to sepa-
rate them from the supernatant. The collagen precipita-
te obtained was subsequently dissolved in 0.5 M acetic 
acid. To further purify the collagen, the solution under-
went dialysis, initially against 0.1 M acetic acid and then 
against distilled water, allowing for the gradual removal 
of residual salts and other small molecules. (Figure 3)
Finally, the purified collagen gels were freeze-dried to 
obtain a stable, dry collagen powder, completing the 
extraction process [28-29].

Characterization of Collagens
To characterize the extracted collagens, multiple analy-
ses were performed to assess their structural, chemical, 
and thermal properties:

Ultraviolet and Visible Light (UV-Vis) Absorption 
Spectroscopy Analysis: UV-Vis absorption spectros-
copy was conducted using the Thermo Scientific Ge-
nesys 150 UV-Vis Spectrophotometer. A standard colla-
gen solution, prepared in 0.5 M acetic acid at a 0.2 mg/
mL concentration, was scanned over a wavelength ran-
ge of 200–1100 nm. This analysis provided insight into 
the absorption characteristics of collagen, useful for un-
derstanding molecular interactions within the sample.

Fourier-Transform Infrared (FTIR) Spectroscopy: FTIR 
spectroscopy was employed to investigate functional 
groups, adsorption peaks, fingerprint regions, and the 

Figure 1. Schematic representation of the processes of collagen extraction.
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secondary structure of collagen molecules. This analy-
sis used the JASCO FT/IR-6X FTIR spectrophotometer, 
covering a wavenumber range of 400-4000 cm⁻¹ with 
a resolution of 2 cm⁻¹. By examining the vibrations and 
movements within the collagen molecule, FTIR provi-
ded detailed information about chemical bonding and 
the overall structure.

X-ray Diffraction (XRD) Analysis: XRD analysis was con-
ducted to examine the crystalline structure of the col-
lagen samples. Using an APD 2000 PRO XRD instrument 
equipped with a Cu beam tube (Co, voltage: 40 kV, cur-
rent: 30 mA, wavelength: (CoKa) 1.54 Å), XRD patterns 
were recorded at a scanning speed of 0.01°/min across 
a range of 10° to 90°. This technique allowed for the 
identification of crystalline phases and provided insight 
into the alignment and packing of collagen fibers within 
the sample.

Differential Scanning Calorimetry (DSC): To assess the 
thermal properties of collagen, DSC analysis was per-
formed using a Hitachi DSC 7020 Differential Scanning 
Calorimeter. The analysis was conducted under a nitro-
gen atmosphere with a heating rate of 10 °C/min across 
a temperature range of 50 to 400 °C, with an empty 
pan serving as the reference. DSC analysis allowed for 
the observation of thermal transitions, including dena-
turation temperatures, offering insight into the thermal 
stability and behavior of the collagen polymer.

These analyses collectively provided comprehensive in-

formation on the structural integrity, chemical proper-
ties, and thermal stability of the collagen samples. 

RESULTS and DISCUSSION

Absorption Spectra
The UV-Vis absorption spectra of collagen isolated from 
fish wastes, presented in Figure 4, show characteristic 
absorption peaks at 238 nm and 280 nm wavelengths. 
Pure type I collagen typically displays a strong absorp-
tion peak within the wavelength range of 220–240 nm, 
which is associated with the n→π* transition of the 
C=O group in peptide bonds, as well as the -COOH and 

-CONH₂ groups in the triple-helical polypeptide chains 
[30-31]. In this study, a prominent peak was observed 
at 238 nm, consistent with the findings in prior collagen 
research.

For example, Bhuimbar et al. [24] reported an absorp-
tion peak at 232 nm in collagen extracted from Cent-
rolophus niger fish waste using an acidic extraction 
method, a result that aligns well with the absorption 
range observed here. Similarly, an acidic extraction of 
collagen from Mustelus mustelus produced a maximum 
absorption peak at 235 nm [31]. Research on collagen 
isolated from bluefin tuna showed an absorption peak 
at 238 nm [32], matching the main peak observed in this 
study. These findings are consistent across various stu-
dies, supporting the absorption characteristics of the 
collagen extracted in this research.

Figure 2. Pre-treatment procedure for collagen extraction from fish bones.
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Collagen’s amino acid composition includes small amo-
unts of tyrosine and phenylalanine, with no tryptophan, 
as previously noted [33, 34]. The low-intensity peak at 
280 nm corresponds to the presence of these aromatic 
amino acids, found in limited quantities within the col-
lagen structure. This lower peak intensity serves as an 
additional indicator of the collagen extract’s purity, as 
it reflects the minimal presence of aromatic residues. 
This observation aligns with other studies that associate 
the 280 nm peak with a low content of aromatic ami-

no acids, further confirming the purity of the extracted 
collagen [24, 35-38].

FTIR Spectroscopy Analysis
The FTIR spectrum of collagen is illustrated in Figure 5. 
According to Doyle [39], the amide A band is associa-
ted with the N-H stretching frequency. Previous studi-
es by Duan et al. [40], Li et al. [41], and Yan et al. [42] 
have identified the N-H stretching vibration at 3313.85 
cm⁻¹, 3335 cm⁻¹, and 3328.57 cm⁻¹, respectively. Yan et 

Figure 3. Extraction procedure for collagen isolation from fish bones.

Figure 4. The UV absorption spectrum of collagen from fish wastes. 
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al. noted that when the NH group of a peptide forms 
a hydrogen bond, the corresponding absorption band 
shifts to a lower frequency [42]. In our study, the N-H 
stretching vibrations of collagen were observed to shift 
to 3290 cm⁻¹, which is likely attributable to the presen-
ce of hydrogen bonds in the N-H groups of the collagen 
structure.

The FTIR spectrum also revealed CH₂ asymmetric and 
symmetric stretching vibrations at 2923 cm⁻¹ and 2853 
cm⁻¹, respectively [43-44]. The characteristic lipid C=O 
stretching was detected at 1744 cm⁻¹, aligning with fin-
dings by Wei et al., who reported similar results [45]. 
Additionally, the distinctive peaks associated with colla-
gen were identified as follows: Amide I (C=O stretching 
mode) at 1646 cm⁻¹, Amide II (N-H bending mode) at 
1546 cm⁻¹, symmetric CH₃ bending mode of the protein 
at 1452 cm⁻¹, and Amide III (asymmetric C-N stretching 
mode) at 1237 cm⁻¹, which were also noted in various 
studies referenced in [1, 41-46].

Furthermore, the absorption peak corresponding to C–
OH stretching vibrations of carbohydrate moieties was 
observed at 1040 cm⁻¹. In their FTIR analysis, Riaz et al. 
suggested that collagens may contain carbohydrates 
linked to hydroxylysine residues within the polypeptide 
chain via O-glycosidic bonds [47]. Lastly, C-S stretching 
vibrations were noted with slight shifts at a wavelength 
of 546 cm⁻¹ [48].

Overall, these spectral characteristics provide valuable 

insight into the molecular structure and functional gro-
ups present in the collagen extracted from fish waste, 
confirming the presence of various structural compo-
nents essential for its biological function.

XRD Analysis
The X-ray diffraction (XRD) pattern serves as a valuab-
le tool for elucidating the fibrillar structure of collagen. 
The XRD pattern of collagen extracted from fish waste 
materials is depicted in Figures 6-7. Upon close exami-
nation of this figure, it is clear that the pattern exhibits 
multiple distinct and sharp crystallization peaks cha-
racteristic of collagen. Notably, sharp peaks observed 
at approximately 31.74°, 45.46°, 56.48°, and 75.28° in-
dicate a robust crystalline structure within the collagen 
matrix.

In addition to the prominent peaks, weaker diffraction 
peaks were identified at around 27.38°, 53.86°, 66.21°, 
73.09°, and 83.98°, which are consistent with findings 
reported by Wang et al. [49], Usha et al. [50], and Takal-
lu [51]. These weaker peaks suggest additional structu-
ral features within the collagen sample, supporting the 
complexity of its crystalline arrangement.

The second diffraction peak is particularly significant as 
it provides insight into the intermolecular spacing bet-
ween collagen fibrils [52-53]. To calculate the minimum 
distance between the collagen skeletons, the Bragg 
equation was applied (d (Å) = λ/2sinθ, where λ = 1.54 Å) 
[54]. The calculated minimum distance value was found 

Figure 5. Fourier transform infrared spectrum of fish collagen. 
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to be 3.26 Å, which aligns closely with the findings re-
ported by Ampitiya et al. [39].

Additionally, the 2θ and ‘d’ spacing values of collagen 
are summarized in Figure 5, further illustrating the 
crystalline characteristics of the collagen extracted 
from fish waste. This analysis underscores the structu-
ral integrity of the collagen, confirming its potential for 
various applications in biomedical and industrial fields.

DSC Analysis
The differential scanning calorimetry (DSC) thermog-
rams for collagen extracted from fish waste are presen-

ted in Figure 8. The first endothermic peak is observed 
at approximately 68°C, with a corresponding heat flow 
of approximately -2.209 mW. This initial endothermic 
process may indicate moisture loss, as well as the rele-
ase of free and bound water from the collagen matrix.

The second significant endothermic peak occurs bet-
ween 129°C and 141°C, with a peak heat flow of -4.881 
mW recorded at 141°C. The enthalpy change (ΔH) for 
this peak is measured at 39.2 mJ/mg. This pronounced 
endothermic peak is indicative of thermal denaturati-
on processes occurring within the collagen structure. 
Thermal denaturation (Td) is a critical factor influencing 

Figure 6. XRD pattern of collagen.

Figure 7. The 2θ and distance (Å) values of collagen.
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the thermal stability of proteins, including collagen [55, 
56]. During this process, the disruption of the triple he-
lical structure of collagen leads to a subsequent loss of 
its structural properties [57].

The literature suggests that variations in the Td of colla-
gen sourced from different fish species can be attribu-
ted to factors such as habitat, body temperature, and 
amino acid composition [38, 55]. Elevated heat transfer 
can significantly alter several physical properties of col-
lagen, including light scattering, optical activity, visco-
sity, sedimentation, and diffusion. These changes may 
ultimately cause the breakdown of the collagen’s triple 
helical structure [55, 58].

A third endothermic peak is noted at 239.3°C, with a 
heat flow of around -2.508 mW. This peak corresponds 
to the pyrolysis process, indicating the temperature at 
which chemical decomposition begins, resulting in the 
irreversible degradation of the amino acids and the 
protein backbone. In the study conducted by Gauza-
Włodarczyk et al., the thermal denaturation tempera-
ture of collagen obtained from fish skin was reported to 
range between 380-420 K, while the thermal decompo-
sition temperature was found to be around 510 K [33].

Overall, the DSC analysis highlights the thermal beha-
vior of collagen extracted from fish waste, providing 
insights into its stability and structural integrity under 
varying thermal conditions.

Conclusions
This study aims to contribute to sustainable resource 
use and waste reduction by targeting collagen extracti-
on from fish waste using an acetic acid-assisted method. 
Through comprehensive analysis, the extracted colla-
gen was characterized in terms of physicochemical and 
structural properties, confirming its triple helix structu-
re and semi-crystalline structure. UV-Vis analysis sho-
wed strong absorption at 238 nm, consistent with the 
triple helix polypeptide structure of collagen, and FTIR 
analysis identified functional groups and bonds impor-
tant for maintaining the structural integrity of collagen. 
XRD analysis confirmed the semi-crystalline fibrillary 
structure, while DSC analysis highlighted the thermal 
stability of collagen with a denaturation temperature 
(Td) range of 129–141 °C. This indicates that it has a high 
resistance to thermal degradation.

The findings indicate that fish waste is applicable as a 

Figure 8. DSC Thermogram of collagen. 
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valuable source of collagen, with promising applicati-
ons in various industries, particularly in pharmaceu-
ticals, cosmetics, and tissue engineering. This study is 
compatible with environmental goals by proposing a 
sustainable approach to recycle fish processing waste 
and thus reduce the ecological impact. Future research 
aims to optimize the extraction efficiency and examine 
potential modifications to expand the application range 
of marine-derived collagen in various industrial appli-
cations.
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