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1. Introduction and main results
Let T be the classical singular integral operator, the commutator [b, T ] generated by T

and a suitable function b is given as

[b, T ]f(x) = bTf(x) − T (bf)(x).

A significant conclusion of Coifman, Rochberg and Weiss[5] showed that b ∈ BMO(Rn)
if and only if the commutator [b, T ] is bounded on Lp(Rn) for 1 < p < ∞. In 1978,
Janson[16] gave some characterizations of the Lipschitz space Λ̇β (Rn) via the commutator
[b, T ] and proved that b ∈ Λ̇β (Rn) (0 < β < 1) if and only if [b, T ] is bounded from Lp (Rn)
to Lq (Rn), where 1 < p < q < ∞ and 1

p − 1
q = β

n . Recently, many authors have conducted
extensive studies on the theory of commutators, as it plays a important role in harmonic
analysis and partial differential equations, see for example [6, 8, 19,20,23].

As usual, let B := B(x, r) denote the ball centered at x ∈ Rn with radius r > 0. We
define |B| as the Lebesgue measure of the ball B and let χB represent the characteristic
function of the ball B. Define L1

loc (Rn) as the set of all locally integrable functions on Rn.
For 1 ≤ p < ∞, we define the conjugate index of p as p′ = p

p−1 . We will use the symbol
C to refer to a positive constant that is independent of the main parameters, but it may
vary from line to line. The notation f ≲ g indicates that f ≤ Cg. If f ≲ g and g ≲ f we
write f ≈ g.
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Let 0 ≤ α < n and f ∈ L1
loc (Rn), the fractional maximal function Mα(f) is defined as

follows:
Mα(f)(x) = sup

B∋x

1
|B|1− α

n

∫
B

|f(y)|dy,

where the supremum is taken over all balls B ⊂ Rn containing x.
When α = 0, M0(f) corresponds to the classical Hardy-Littlewood maximal function.

For 0 < α < n, Mα(f) represents the classical fractional maximal function.
The sharp maximal function M ♯(f) was introduced by Fefferman and Stein [9] and is

defined as follows:
M ♯(f)(x) = sup

B∋x

1
|B|

∫
B

|f(y) − fB|dy,

where the supremum is taken over all balls B ⊂ Rn containing x and fB := 1
|B|

∫
B f(x)dx.

Let b ∈ L1
loc (Rn), the maximal commutator of the fractional maximal function Mα(f)

is defined by
Mα,b(f)(x) = sup

B∋x

1
|B|1− α

n

∫
B

|b(x) − b(y)||f(y)|dy,

where the supremum is taken over all balls B ⊂ Rn containing x.
The nonlinear commutator of fractional maximal function Mα(f) is given as

[b, Mα] (f)(x) = b(x)Mα(f)(x) − Mα(bf)(x).
For α = 0, we simply write by Mb = M0,b and [b, M ] = [b, M0].
For a function b defined on Rn, we denote

b−(x) :=
{

0, if b(x) ≥ 0.

|b(x)|, if b(x) < 0.

and b+(x) := |b(x)| − b−(x). Clearly, b(x) = b+(x) − b−(x).
Let b ≥ 0 and b ∈ L1

loc (Rn). For x ∈ Rn and f ∈ L1
loc (Rn),

|[b, Mα] f(x)| = |b(x)Mαf(x) − Mα(bf)(x)|

=
∣∣∣b(x) sup

B∋x

1
|B|1− α

n

∫
B

|f(y)|dy − sup
B∋x

1
|B|1− α

n

∫
B

|b(y)f(y)|dy
∣∣∣

≤ sup
B∋x

1
|B|1− α

n

∫
B

|b(x) − b(y)||f(y)|dy

= Mb,α(f)(x).

Let b ∈ L1
loc (Rn). Then, for x ∈ Rn and f ∈ L1

loc (Rn),

|[b, Mα] f(x)| ≤ Mb,α(f)(x) + 2b−(x)Mαf(x) (1.1)
holds (see, for example, [28]). Indeed, the commutators Mα,b and [b, Mα] evidently differ
from each other. The maximal commutator Mα,b is both positive and sublinear, while
the nonlinear commutator [b, Mα] does not possess either property. Many authors have
intensively studied the mapping properties of commutators of maximal functions, we refer
the readers to see [1–4,11–14,22,24,25] and therein references.

For a given ball B and 0 ≤ α < n, the fractional maximal function with respect to B
of a function f is defined as follows:

Mα,B(f)(x) = sup
B⊇B0∋x

1
|B0|1− α

n

∫
B0

|f(y)|dy,

where the supremum is taken over all balls B0 with B0 ⊆ B and B0 ∋ x. Also, we define
MB = M0,B for α = 0.

The space of functions with bounded mean oscillation, denoted as BMO(Rn), was
introduced by John and Nirenberg [17].
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Definition 1.1. The space BMO(Rn) consists of all functions f ∈ L1
loc (Rn) such that

∥f∥BMO(Rn) := sup
B

1
|B|

∫
B

|f(x) − fB|dx < ∞,

where the supremum is taken over all balls in Rn.

Let 0 < p < ∞, the Lebesgue space Lp(Rn) consists of all functions f ∈ L1
loc (Rn) that

satisfy the following condition:

∥f∥Lp(Rn) :=
(∫

Rn
|f(x)|p dx

) 1
p

< ∞.

We also need to review the decreasing rearrangement of a real function f . For s > 0
and t > 0, we define the distribution function df and the rearrangement function f∗ as
follows:

df (s) = |{x ∈ Rn : |f(x)| > s}|, f∗(t) = inf {s > 0 : df (s) ≤ t} .

We will now revisit the definition of Lorentz spaces.

Definition 1.2 ([18]). Given a measurable function f on Rn and 0 < q, r ≤ ∞, we define

∥f∥Lq,r(Rn) :=


(∫ ∞

0

(
t

1
q f∗(t)

)r
dt
t

) 1
r

, if r < ∞,

supt>0 t
1
q f∗(t), if r = ∞.

Thus, the Lorentz space Lq,r(Rn) consists of all functions f for which ∥f∥Lq,r(Rn) < ∞.

Remark 1.3. If we set r = q, then the Lorentz space Lq,r(Rn) corresponds to the Lebesgue
space Lq(Rn). For a ball B, we define ∥f∥Lq,r(B) = ∥fχB∥Lq,r(Rn).

The Morrey-Lorentz spaces are defined as follows.

Definition 1.4 ([21]). Let 1 < q < ∞, 1 ≤ r ≤ ∞ and 0 < λ ≤ n
q . For any measurable

function f , we define the Morrey-Lorentz space Lq,r
λ (Rn) as follows:

Lq,r
λ (Rn) =

{
f : ∥f∥Lq,r

λ
(Rn) = sup

B
|B|

λ
n

− 1
q ∥f∥Lq,r(B) < ∞

}
.

where the supremum is taken over all balls B in Rn.

Remark 1.5. If we set r = q, then the Morrey-Lorentz Lq,r
λ (Rn) becomes the Morrey space

Lq
λ(Rn). When λ = n

q , then the Morrey-Lorentz Lq,r
λ (Rn) corresponds to the Lorentz space

Lq,r(Rn).

We can express our first result as follows.

Theorem 1.6. Let 0 ≤ α < n and b ∈ L1
loc (Rn). If 1 < q, t < ∞, 0 < λ ≤ n

q , 0 < µ ≤ n
t ,

0 < r, u ≤ ∞, λ−α = µ and q
t = r

u = µ
λ , then the subsequent statements hold equivalently:

(T1) b ∈ BMO(Rn).
(T2) Mα,b is bounded from Lq,r

λ (Rn) to Lt,u
µ (Rn).

(T3) There is a constant C > 0 such that

sup
B

∥(b − bB)χB∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C. (1.2)

(T4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − bB|dx ≤ C. (1.3)

If we choose r = q, then the following corollary can be derived.
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Corollary 1.7. Let 0 ≤ α < n and b ∈ L1
loc (Rn). If 1 < q, t < ∞, 0 < λ ≤ n

q , 0 < µ ≤ n
t ,

λ − α = µ and q
t = µ

λ , then the subsequent statements hold equivalently:
(C1) b ∈ BMO(Rn).
(C2) Mα,b is bounded from Lq

λ(Rn) to Lt
µ(Rn).

(C3) There is a constant C > 0 such that

sup
B

∥(b − bB)χB∥Lt
µ(Rn)

∥χB∥Lt
µ(Rn)

≤ C.

(C4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − bB|dx ≤ C.

If we set λ = n
q , then we arrive at the following conclusion.

Corollary 1.8. Let 0 ≤ α < n and b ∈ L1
loc (Rn). If 1 < q, t < ∞, 0 < r, u ≤ ∞,

1
q − 1

t = α
n and q

t = r
u , then the subsequent statements hold equivalently:

(C1) b ∈ BMO(Rn).
(C2) Mα,b is bounded from Lq,r(Rn) to Lt,u(Rn).
(C3) There is a constant C > 0 such that

sup
B

∥(b − bB)χB∥Lt,u(Rn)
∥χB∥Lt,u(Rn)

≤ C.

(C4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − bB|dx ≤ C.

Here, we present our second result.

Theorem 1.9. Let 0 ≤ α < n and b ∈ L1
loc (Rn). If 1 < q, t < ∞, 0 < λ ≤ n

q , 0 < µ ≤ n
t ,

0 < r, u ≤ ∞, λ−α = µ and q
t = r

u = µ
λ , then the subsequent statements hold equivalently:

(T1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(T2) [b, Mα] is bounded from Lq,r

λ (Rn) to Lt,u
µ (Rn).

(T3) There is a constant C > 0 such that

sup
B

∥ (b − MB(b)) χB∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C. (1.4)

(T4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − MB(b)(x)|dx ≤ C. (1.5)

If we take r = q, then we can get the following conclusion.

Corollary 1.10. Let 0 ≤ α < n and b ∈ L1
loc (Rn). If 1 < q, t < ∞, 0 < λ ≤ n

q , 0 < µ ≤ n
t ,

λ − α = µ and q
t = µ

λ , then the subsequent statements hold equivalently:
(C1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(C2) [b, Mα] is bounded from Lq

λ(Rn) to Lt
µ(Rn).

(C3) There is a constant C > 0 such that

sup
B

∥ (b − MB(b)) χB∥Lt
µ(Rn)

∥χB∥Lt
µ(Rn)

≤ C.

(C4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − MB(b)(x)|dx ≤ C.
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If we take λ = n
q , then the following result holds.

Corollary 1.11. Let 0 ≤ α < n and b ∈ L1
loc (Rn). If 1 < q, t < ∞, 0 < r, u ≤ ∞,

1
q − 1

t = α
n and q

t = r
u , then the subsequent statements hold equivalently:

(C1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(C2) [b, Mα] is bounded from Lq,r(Rn) to Lt,u(Rn).
(C3) There is a constant C > 0 such that

sup
B

∥ (b − MB(b)) χB∥Lt,u(Rn)
∥χB∥Lt,u(Rn)

≤ C.

(C4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − MB(b)(x)|dx ≤ C.

Next, our third result is as follows.
Theorem 1.12. Let b ∈ L1

loc (Rn). If 0 < u ≤ ∞, 1 < t < ∞ and 0 < µ ≤ n
t , then the

subsequent statements hold equivalently:
(T1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(T2) [b, M ♯] is bounded on Lt,u

µ (Rn).
(T3) There is a constant C > 0 such that

sup
B

∥(b − 2M ♯(bχB))χB∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C. (1.6)

(T4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − 2M ♯(bχB)(x)|dx ≤ C. (1.7)

If we take r = q, then the following conclusion holds.
Corollary 1.13. Let b ∈ L1

loc (Rn). If 1 < t < ∞, 0 < µ ≤ n
t , then the subsequent

statements hold equivalently:
(C1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(C2) [b, M ♯] is bounded on Lt

µ(Rn).
(C3) There is a constant C > 0 such that

sup
B

∥(b − 2M ♯(bχB))χB∥Lt
µ(Rn)

∥χB∥Lt
µ(Rn)

≤ C.

(C4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − 2M ♯(bχB)(x)|dx ≤ C.

If we take λ = n
q , then the following result can be obtained.

Corollary 1.14. Let b ∈ L1
loc (Rn). If 1 < t < ∞, 0 < u ≤ ∞, then the subsequent

statements hold equivalently:
(C1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(C2) [b, M ♯] is bounded on Lt,u(Rn).
(C3) There is a constant C > 0 such that

sup
B

∥(b − 2M ♯(bχB))χB∥Lt,u(Rn)
∥χB∥Lt,u(Rn)

≤ C.

(C4) There is a constant C > 0 such that

sup
B

1
|B|

∫
B

|b(x) − 2M ♯(bχB)(x)|dx ≤ C.
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2. Preliminaries
To demonstrate our main results, we will present several important notions and known

results in the section.
First, we must introduce the predual spaces of Morrey-Lorentz spaces.

Definition 2.1 ([7]). Let 1 < q < ∞, 1 ≤ r ≤ ∞ and β > 0. A function b(x) is called a
(q, r, β)-block, if there exists a ball B in Rn, such that

supp(b) ⊂ B(x0, r), ∥b∥Lq,r(B) ≤ |B|
1
q

− β
n

Next, we define the space Bq,r
β (Rn) using (q, r, β)-blocks.

Definition 2.2 ([7]). Let 1 < q < ∞, 1 ≤ r ≤ ∞ and n
q ≤ β < n. The space Bq,r

β (Rn) is
defined as follows:

Bq,r
β (Rn) =

g ∈ L1
loc (Rn) : g =

∞∑
j=1

mjbj , {bj}j≥1 are (q, r, β)-blocks and
∞∑

j=1
|mj | < ∞

 .

Lemma 2.3 ([7]). Let 1 < q < ∞, 1 ≤ r ≤ ∞, and 0 < λ ≤ n
q . Then

Lq,r
λ (Rn) =

(
Bq′,r′

n−λ(Rn)
)′

and Lq,r
λ (Rn)′ = Bq′,r′

n−λ(Rn)

Lemma 2.4 ([7]). Let 1 < q < ∞, 1 ≤ r ≤ ∞, 0 < λ ≤ n
q and n

q ≤ β < n. Then

∥χB∥Lq,r
λ

(Rn) ≈ |B|
λ
n and ∥χB∥Bq,r

β
(Rn) ≈ |B|

β
n .

Lemma 2.5 ([7]). Let 1 < q, q′, r, r′ < ∞ and 0 < λ ≤ n
q . Assume that f ∈ Lq,r

λ (Rn) and
g ∈ Bq′,r′

n−λ(Rn). Then the following statement is true:∫
Rn

|f(x)g(x)|dx ≲ ∥f∥Lq,r
λ

(Rn)∥g∥
Bq′,r′

n−λ
(Rn)

Similarly to [15, Proposition 3], we obtain the following conclusion, the proof of which
requires only slight modifications; thus, we omit the details.

Lemma 2.6. Let 0 ≤ α < n, 0 < r, u ≤ ∞, 1 < q, t < ∞, 0 < λ ≤ n
q and 0 < µ ≤ n

t .
Suppose that λ − α = µ and q

t = r
u = µ

λ . Then for f ∈ Lq,r
λ (Rn),

∥Mαf∥Lt,u
µ (Rn) ≲ ∥f∥Lq,r

λ
(Rn).

Lemma 2.7 ([10]). Let 0 ≤ α < n and b ∈ BMO(Rn). Then, for f ∈ L1
loc (Rn) and

x ∈ Rn, there is a constant C such that
Mb,αf(x) ≤ C∥b∥BMO(Rn)(M(Mαf)(x) + Mα(Mf)(x)).

Lemma 2.8 ([26]). Let 0 ≤ α < n, B be a ball in Rn and f ∈ L1
loc (Rn). Then, for any

x ∈ B, it holds that:
Mα (fχB) (x) = Mα,B(f)(x).

3. Proofs of main results
Proof of Theorem 1.6. (T1) ⇒ (T2): Suppose that b ∈ BMO(Rn). Combining Lemma
2.6 with Lemma 2.7 deduces that

∥Mα,b(f)∥Lt,u
µ (Rn) ≤ C∥b∥BMO(Rn)∥(M(Mαf)(x) + Mα(Mf)(x))∥Lt,u

µ (Rn)

≤ C∥b∥BMO(Rn)(∥Mαf∥Lt,u
µ (Rn) + ∥Mf∥Lq,r

λ
(Rn))

≤ C∥b∥BMO(Rn)∥f∥Lq,r
λ

(Rn).
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Thus, we conclude that Mα,b is bounded from Lq,r
λ (Rn) to Lt,u

µ (Rn).
(T2) ⇒ (T3): For a given ball B ⊂ Rn and x ∈ B, we obtain

|b(x) − bB| ≤ 1
|B|

∫
B

|b(x) − b(y)|dy

= 1
|B|

α
n

1
|B|1− α

n

∫
B

|b(x) − b(y)|χB(y)dy

≤ |B|−
α
n Mα,b(χB)(x).

Since Mα,b is bounded from Lq,r
λ (Rn) to Lt,u

µ (Rn), then using Lemma 2.4 and the condition
λ − α = µ, we conclude that

∥(b − bB)χB∥Lt,u
µ (Rn))

∥χB∥Lt,u
µ (Rn)

≤ 1
|B|

α
n

∥Mα,b(χB)∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C
1

|B|
α
n

∥χB∥Lq,r
λ

(Rn))

∥χB∥Lt,u
µ (Rn)

≤ C,

which deduces that (1.2) holds since the ball B ⊂ Rn is arbitrary.
(T3) ⇒ (T4): Assume that (1.2) is true, we will show (1.3). For a given ball B, by

applying Lemma 2.4 and Lemma 2.5, we can derive
1

|B|

∫
B

|b(x) − bB|dx ≤ C
1

|B|
∥(b − bB)χB∥Lt,u

µ (Rn)∥χB∥
Bt′,u′

n−µ(Rn)

≤ C
∥(b − bB)χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C.

(T4) ⇒ (T1): It follows from Definition 1.1 directly, thus we omit the details.
This finishes the proof of Theorem 1.6. □

Proof of Theorem 1.9. (T1) ⇒ (T2): Suppose that b ∈ BMO(Rn) and b− ∈ L∞(Rn).
By (1.1), Lemma 2.6 and Lemma 2.7, we have

∥[b, Mα](f)∥Lt,u
µ (Rn) ≤ ∥Mb,α(f) + 2b−Mα(f)∥Lt,u

µ (Rn)

≤ ∥Mb,α(f)∥Lt,u
µ (Rn) + ∥2b−Mα(f)∥Lt,u

µ (Rn)

≲ ∥b∥BMO(Rn)∥f∥Lq,r
λ

(Rn) + ∥b−∥L∞(Rn)∥f∥Lq,r
λ

(Rn)

≲ ∥f∥Lq,r
λ

(Rn).

Thus, we show that [b, Mα] is bounded from Lq,r
λ (Rn) to Lt,u

µ (Rn).
(T2) ⇒ (T3): We will divide the proof into two cases depending on the value of α.
Case 1. Let 0 < α < n. For a given ball B,

∥(b − MB(b))χB∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤
∥(b − |B|−

α
n Mα,B(b) )χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

+
∥(|B|−

α
n Mα,B(b) − MB(b))χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

:= I + II.

For I. For any x ∈ B, the definition of Mα,B implies that

Mα,B(χB)(x) = |B|
α
n . (3.1)
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For any x ∈ B, Lemma 2.8 indicates that,
Mα(χB)(x) = Mα,B(χB)(x) = |B|

α
n and Mα(bχB)(x) = Mα,B(b)(x).

Therefore, we have
b(x) − |B|−

α
n Mα,B(b)(x) = |B|−

α
n (b(x)|B|

α
n − Mα,B(b)(x))

= |B|−
α
n (b(x)Mα(χB)(x) − Mα(bχB)(x))

= |B|−
α
n [b, Mα](χB)(x).

Since [b, Mα] is bounded from Lq,r
λ (Rn) to Lt,u

µ (Rn), then combining Lemma 2.4 with the
condition λ − α = µ deduces that

I =
∥(b − |B|−

α
n Mα,B(b))χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

= 1
|B|

α
n

∥[b, Mα](χB)∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C
1

|B|
α
n

∥χB∥Lq,r
λ

(Rn)

∥χB∥Lt,u
µ (Rn)

≤ C.

For II. Similar to (3.1), by using Lemma 2.8 and for any x ∈ B,
MB (χB) (x) = χB(x),

we deduce that
M (χB) (x) = χB(x) and M (bχB) (x) = MB(b)(x). (3.2)

Thus, Combining (3.1) with (3.2) implies that∣∣∣|B|−
α
n Mα,B(b)(x) − MB(b)(x)

∣∣∣ ≤ |B|−
α
n |Mα(bχB)(x) − |b(x)|Mα(χB)(x)|

+ |B|−
α
n ||b(x)|Mα(χB)(x) − Mα(χB)(x)M(bχB)(x)|

= |B|−
α
n |Mα(|b|χB)(x) − |b(x)|Mα(χB)(x)|

+ |B|−
α
n Mα (χB) (x) ||b(x)|M (χB) (x) − M (bχB) (x)|

= |B|−
α
n |[|b|, Mα](χB)(x)| + |[|b|, M ](χB)(x)| .

Since [b, Mα] is bounded from Lq,r
λ (Rn) to Lt,u

µ (Rn). Then, by applying Lemma 2.4, we
get

II ≤
∥(|B|−

α
n |[|b|, Mα](χB)| + |[|b|, M ](χB)|)χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≲ 1
|B|

α
n

∥χB∥Lq,r
λ

(Rn)

∥χB∥Lt,u
µ (Rn)

+
∥χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C.

This deduces that the desired estimate
∥ (b − MB(b)) χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C,

which concludes that (1.4) holds.
Case 2. Let α = 0. For a given ball B and x ∈ B, using (3.2), we obtain

b(x) − MB(b)(x) = b(x)M(χB)(x) − M(bχB)(x) = [b, M ](χB)(x).
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Suppose that [b, M ] is bounded from Lq,r
λ (Rn) to Lt,u

µ (Rn), then by applying Lemma 2.4,
we have

∥(b − MB(b))χB∥Lt,u
µ (Rn)

∥χB∥Lt,u
µ (Rn)

=
∥[b, M ](χB)∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C
∥χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C,

which implies that (1.4).
(T3) ⇒ (T4): Assume that (1.4) holds, then for a given ball B, by Lemma 2.5, we have

1
|B|

∫
B

|b(x) − MB(b)(x)| dx ≤ C
1

|B|
∥(b − MB(b))χB∥Lt,u

µ (Rn) ∥χB∥
Bt′,u′

n−µ(Rn)

≤ C
1

|B|
∥(b − MB(b))χB∥Lt,u

µ (Rn)

∥χB∥Lt,u
µ (Rn)

≤ C,

where the constant C does not depend on B. This deduces that (1.5).
(T4) ⇒ (T1): To prove b ∈ BMO(Rn), we only need to demonstrate that there exists

a constant C > 0 such that, for a given ball B,
1

|B|

∫
B

|b(x) − bB|dx ≤ C.

For a given ball B, let E = {x ∈ B : b(x) ≤ bB} and F = {x ∈ B : b(x) > bB}, then we
get ∫

E
|b(x) − bB|dx =

∫
F

|b(x) − bB|dx. (3.3)

As b(x) ≤ bB ≤ MB(b)(x) for any x ∈ E, we obtain

|b(x) − bB| ≤ |b(x) − MB(b)(x)|. (3.4)

Combining (3.3) with (3.4) deduces that
1

|B|

∫
B

|b(x) − bB|dx = 2
|B|

∫
E

|b(x) − bB|dx

≤ 2
|B|

∫
E

|b(x) − MB(b)(x)|dx

≤ 2
|B|

∫
B

|b(x) − MB(b)(x)|dx

≤ C.

Thus, we deduce that b ∈ BMO(Rn).
Next, we aim to prove that b− ∈ L∞(Rn). Note that for any y ∈ B, we have 0 ≤

b+(y) ≤ |b(y)| ≤ MB(b)(y), then

0 ≤ b−(y) ≤ MB(b)(y) − b+(y) + b−(y) = MB(b)(y) − b(y).

Furthermore, for a given ball B, we get
1

|B|

∫
B

b−(y)dy ≤ 1
|B|

∫
B

(MB(b)(y) − b(y)) dy

= 1
|B|

∫
B

|b(y) − MB(b)(y)| dy

≤ C.



10 H. Yang, J. Zhou

Let |B| → 0 with x ∈ B. By applying Lebesgue’s differentiation theorem, we deduce that

0 ≤ b−(x) = lim
|B|→0

1
|B|

∫
B

b−(y)dy ≤ C.

Hence, we establish that b− ∈ L∞(Rn).
We have now completed the proof of Theorem 1.9. □

Proof of Theorem 1.12. (T1) ⇒ (T2): Suppose that b ∈ BMO(Rn) and b− ∈ L∞(Rn),
for a given ball B ⊂ Rn, the estimate below was established in [27]:

|[|b|, M ♯]f(x)| ≤ 2M|b|f(x).

Noting that |b| − b = 2b−, it follows from the definition of [b, M ♯] that,

|[b, M ♯]f(x) − [|b|, M ♯]f(x)|

≤ |M ♯(bf)(x) − M ♯(|b|f)(x)| + ||b(x)|M ♯(f)(x) − b(x)M ♯f(x)|

≤ |M ♯((b − |b|)f
)
(x)| + 2b−(x)M ♯f(x)

≤ M ♯(2b−f)(x) + 2b−(x)M ♯f(x).

Combined with previous estimates and M ♯(f) ≤ 2M(f), for any x ∈ Rn, we obtain

|[b, M ♯](f)(x)| ≤ |[b, M ♯]f(x) − [|b|, M ♯]f(x)| + |[|b|, M ♯]f(x)|

≤ M ♯(2b−f)(x) + 2b−(x)M ♯(f)(x) + |[|b|, M ♯]f(x)|,
≤ 2M(2b−f)(x) + 4b−(x)M(f)(x) + 2M|b|f(x).

Since b ∈ BMO(Rn), then |b| ∈ BMO(Rn). Based on Lemma 2.6 and Theorem 1.6, we
find that

∥[b, M ♯](f)∥Lt,u
µ (Rn) ≤ C∥b∥BMO(Rn)∥f∥Lt,u

µ (Rn),

which implies that [b, M ♯] is bounded on Lt,u
µ (Rn).

(T2) ⇒ (T3): Take B as a fixed ball and B1 as a different ball. By the inequality
4ac ≤ (a + c)2, we can see that

1
|B1|

∫
B1

|χB(x) − (χB)B1 |dx

= 1
|B1|

{∫
B1\B

|χB(x) − (χB)B1 |dx +
∫

B1∩B
|χB(x) − (χB)B1 |dx

}
= 1

|B1|

{∫
B1\B

|(χB)B1 |dx +
∫

B1∩B
|1 − (χB)B1 |dx

}

= 1
|B1|

{ ∫
B1\B

∣∣∣∣∣ 1
|B1|

∫
B1∩B

χB(y)dy

∣∣∣∣∣dx

+
∫

B1∩B

∣∣∣∣ 1
|B1|

∫
B1

χB1(y)dy − 1
|B1|

∫
B1

χB(y) · χB1(y)dy

∣∣∣∣ dx

}
= 1

|B1|

{ |B1 ∩ B||B1 \ B|
|B1|

+ 1
|B1|

∫
B1∩B

∣∣∣∣∫
B1

χB1(y)
(
1 − χB(y)

)
dy

∣∣∣∣ dx

}
= 1

|B1|2
{

|B1 ∩ B||B1 \ B| + |B1 ∩ B||B1 \ B|
}

= 2|B1 ∩ B||B1 \ B|
(|B1 ∩ B| + |B1 \ B|)2 ≤ 1

2
.

(3.5)
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Moreover, for x ∈ B, we can find a ball B0 that contains B and satisfies |B0| = 2|B|.
Then, using (3.5) and |B0 \ B| = |B0 ∩ B| = |B|, we conclude that

1
|B0|

∫
B0

|χB(x) − (χB)B0 |dx = 2|B0 ∩ B||B0 \ B|
(|B0 ∩ B| + |B0 \ B|)2 = 1

2
.

Furthermore, we have

(M ♯(χB)χB)(x) = sup
B1∋x

1
|B1|

∫
B1

|χB(y) − (χB)B1 |dy = 1
2

= 1
2

χB(x).

Then, we can get

∥(b − 2M ♯(bχB))χB∥Lt,u
µ (Rn) =

∥∥∥2
(1

2
bχB − M ♯(bχB)

)
χB

∥∥∥
Lt,u

µ (Rn)

= ∥2(bM ♯(χB)χB − M ♯(bχB))χB∥Lt,u
µ (Rn)

= ∥2(bM ♯(χB) − M ♯(bχB))χB∥Lt,u
µ (Rn)

≤ ∥2[b, M ♯](χB)∥Lt,u
µ (Rn)

≤ C∥χB∥Lt,u
µ (Rn),

where the constant C does not depend on B. This deduces that (1.6).
(T3) ⇒ (T4): For a ball B ⊂ Rn and x ∈ B, we will show that |bB| ≤ 2M ♯(bχB)(x).

Take x ∈ B and select a ball B1 that includes B with the property that |B1| = 2|B|. Thus,

1
2|B|

∫
B

|b(y) − 1
2

bB|dy + 1
4

|bB| = 1
2|B|

(∫
B

|b(y) − 1
2

bB|dy + 1
2

|B1 \ B||bB|
)

= 1
|B1|

∫
B1

|bχB(y) − (bχB)B1 |dy

≤ M ♯(bχB)(x).

Moreover,

|bB| ≤ 1
|B|

∫
B

|b(y) − 1
2

bB|dy + 1
|B|

∫
B

|1
2

bB|dy

= 1
|B|

∫
B

|b(y) − 1
2

bB|dy + 1
2

|bB|.

Thus, for x ∈ B, we obtain

|bB| ≤ 2M ♯(bχB)(x). (3.6)

Next, we will show that b ∈ BMO(Rn). To do this, let E = {x ∈ B : b(x) ≤ bB} and
F = {x ∈ B : b(x) > bB}, we then obtain∫

E
|b(x) − bB|dx =

∫
F

|b(x) − bB|dx.

Since b(x) ≤ bB ≤ |bB| ≤ 2M ♯(bχB)(x) for any x ∈ E, then

|b(x) − bB| ≤ |b(x) − 2M ♯(bχB)(x)|.
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Using Lemma 2.4 and Lemma 2.5, we get
1

|B|

∫
B

|b(x) − bB|dx = 1
|B|

∫
E∪F

|b(x) − bB|dx

= 2
|B|

∫
E

|b(x) − bB|dx

≤ 2
|B|

∫
E

|b(x) − 2M ♯(bχB)(x)|dx

≤ 2
|B|

∫
B

|b(x) − 2M ♯(bχB)(x)|dx

≤ C

|B|
∥(b − 2M ♯(bχB))χB∥Lt,u

µ (Rn)∥χB∥
Bt′,u′

n−µ(Rn)

≤ C

|B|
∥χB∥Lt,u

µ (Rn)∥χB∥
Bt′,u′

n−µ(Rn)

≤ C,

which deduces that b ∈ BMO(Rn). We shall now prove that b− is in L∞(Rn). By (3.6),
for x ∈ B, we have

|bB| − b+(x) + b−(x) = |bB| − b(x) ≤ 2M ♯(bχB)(x) − b(x).

Therefore,

|bB| − 1
|B|

∫
B

b+(x)dx + 1
|B|

∫
B

b−(x)dx = 1
|B|

∫
B

(|bB| − b+(x) + b−(x))dx

≤ 1
|B|

∫
B

(2M ♯(bχB)(x) − b(x))dx

≤ 1
|B|

∫
B

|b(x) − 2M ♯(bχB)(x)|dx.

(3.7)

Besides, combining Lemma 2.4 with Lemma 2.5, we can get

1
|B|

∫
B

|b(x) − 2M ♯(bχB)(x)|dx

≤ C

|B|
∥(b − 2M ♯(bχB))χB∥Lt,u

µ (Rn)∥χB∥
Bt′,u′

n−µ(Rn)

≤ C

|B|
∥χB∥Lt,u

µ (Rn)∥χB∥
Bt′,u′

n−µ(Rn)

≤ C.

Combining this inequality with (3.7), we deduce that

|bB| − 1
|B|

∫
B

b+(x)dx + 1
|B|

∫
B

b−(x)dx ≤ C.

Let |B| tend to 0 with x ∈ B, it follows from Lebesgue’s differentiation theorem that,

2|b−(x)| = 2b−(x) = |b(x)| − b+(x) + b−(x) ≤ C.

This implies that b− ∈ L∞(Rn).
Therefore, we complete the proof of Theorem 1.12. □
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