
Proceedings of InternationalMathematical Sciences
ISSN: 2717-6355, URL: https://dergipark.org.tr/tr/pub/pims
Volume 6 Issue 2 (2024), Pages 77-99.
Doi: https://doi.org/ 10.47086/pims.1579364

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN
NEURAL OPERATORS

VU ANH LE*, AND MEHMET DIK**
*BELOIT COLLEGE, USA. ORCID: 0009-0000-1904-5186

**ROCKFORD UNIVERSITY, USA. ORCID: 0000-0003-0643-2771.

Abstract. This paper presents a mathematics-informed approach to neural operator de-
sign, building upon the theoretical framework established in our prior work [1]. By inte-
grating rigorous mathematical analysis with practical design strategies, we aim to enhance
the stability, convergence, generalization, and computational efficiency of neural operators.
We revisit key theoretical insights, including stability in high dimensions, exponential con-
vergence, and universality of neural operators. Based on these insights, we provide detailed
design recommendations, each supported by mathematical proofs and citations. Our con-
tributions offer a systematic methodology for developing next-gen neural operators with
improved performance and reliability.

1. Introduction

Neural operators have changed the way we approach problems involving mappings
between infinite-dimensional function spaces, particularly in solving partial differential
equations (PDEs) [2, 3, 4]. By extending the capabilities of neural networks from finite-
dimensional data to function spaces, architectures such as the Fourier Neural Operator
(FNO) and Deep Operator Network (DeepONet) have demonstrated significant success in
approximating solution operators with significantly reduced computational costs.

In our prior work [1], we developed a mathematical framework for analyzing neural op-
erators, proving their stability, convergence properties, and capacity for universal approxi-
mation between function spaces. We also established probabilistic bounds on generaliza-
tion error, linking it to sample size and network capacity. Building upon this foundation,
the primary objective of this paper is to translate these theoretical insights into actionable
design recommendations for neural operators. By doing so, we aim to bridge the gap be-
tween theory and practice, suggesting better neural operator architectures and saving time
in design.

The remainder of the paper is organized as follows. In Section 2, we reinstate the
theoretical results from the prior paper [1], including the definitions of neural operators and
the key theorems related to the behaviors of neural operators. In Section 3, we present our
detailed design recommendations, illustrating how each recommendation enhances neural

2020 Mathematics Subject Classification. Primary: 65N12; 68T05.
Key words and phrases. Neural operators, functional analysis, convergence, stability, generalization.
©2024 Proceedings of International Mathematical Sciences.
Submitted on 04.11.2024, Accepted on 12.11.2024.
Communicated by Huseyin Cakalli.

77

78 VU ANH LE, AND MEHMET DIK

operator performance. Finally, Appendix A contains the full proofs of all the theorems,
lemmas, and propositions presented in this paper.

2. Theoretical Framework Reminder

In this section, we provide a concise summary of the key theoretical results established
in our previous work [1]. These results form the foundation upon which we build our
design recommendations for neural operators.

2.1. Stability in High-Dimensional PDEs.

Theorem 2.1 (Stability of Neural Operators in High-Dimensional PDEs). LetGθ : Hs(D)→
Ht(D) be a neural operator parameterized by θ, mapping between Sobolev spaces over a
domain D ⊂ Rd. Suppose Gθ satisfies a Lipschitz continuity condition:

∥Gθ(u) − Gθ(v)∥Ht(D) ≤ L∥u − v∥Hs(D)

for all u, v ∈ Hs(D) and some Lipschitz constant L > 0. Then, for any u ∈ Hs(D), the
neural operator produces stable approximations in high-dimensional D:

∥Gθ(u)∥Ht(D) ≤ L∥u∥Hs(D) +C,

where C = ∥Gθ(0)∥Ht(D) is a constant depending on θ and the domain D.

2.2. Exponential Convergence.

Theorem 2.2 (Exponential Convergence of Neural Operator Approximations). Let Gθ be
a contraction mapping on Ht(D) with contraction constant 0 < q < 1. Then, for any
u ∈ Ht(D), the iterated application Gn

θ(u) converges exponentially to the fixed point u∗ of
Gθ:

∥Gn
θ(u) − u∗∥Ht(D) ≤ qn∥u − u∗∥Ht(D).

2.3. Universality and Generalization.

Theorem 2.3 (Universality of Neural Operators for PDE Solvers). Let T : Hs(D) →
Ht(D) be a continuous operator. Then, for any ϵ > 0, there exists a neural operator Gθ
such that:

∥Gθ(u) − T (u)∥Ht(D) ≤ ϵ,

for all u in a compact subset of Hs(D).

Theorem 2.4 (Generalization Error of Neural Operators). Let Gθ be a neural operator
trained on N samples {(ui,T (ui))} drawn i.i.d. from a distribution D. Suppose Gθ has
Lipschitz constant L with respect to θ, and the loss function ℓ is Lipschitz and bounded.
Then, with probability at least 1 − δ, the generalization error satisfies:

Eu∼D[ℓ(Gθ(u),T (u))] ≤
1
N

N∑
i=1

ℓ(Gθ(ui),T (ui)) + L

√
ln(1/δ)

2N
.

3. Design Recommendations for Neural Operators

Based on the theoretical insights from the previous section, we propose several design
recommendations to enhance neural operator performance. Each recommendation is sup-
ported by detailed theorems, lemmas, and proofs, either directly or in Appendix A, to
examine their impacts.

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 79

3.1. Design Neural Operators as Contraction Mappings. Ensuring that the neural oper-
ator Gθ satisfies the contraction property guarantees stability and exponential convergence.
By designing Gθ as a contraction mapping, we leverage the Banach Fixed Point Theorem
[5] to ensure the existence and uniqueness of a fixed point, as well as exponential conver-
gence to that fixed point. This approach enhances both the stability and efficiency of the
neural operator when approximating solutions to partial differential equations (PDEs).

To ensure that Gθ is a contraction mapping, we must design the neural network compo-
nents to satisfy certain Lipschitz conditions. Specifically, we have the following theorem:

Theorem 3.1 (Lipschitz Condition for Neural Networks). Suppose each layer of the neural
operator Gθ is Lipschitz continuous with Lipschitz constant Li, and the activation functions
are Lipschitz continuous with Lipschitz constant Lσ. Then the overall Lipschitz constant L
of Gθ satisfies:

L ≤

 N∏
i=1

Li

 LN
σ ,

where N is the number of layers.

Proof. See Appendix A.1. □

By constraining the spectral norm of each weight matrix Wi to be less than or equal to
q1/N , where q ∈ (0, 1) is the desired contraction constant, and choosing activation functions
with Lipschitz constant Lσ ≤ 1, we can ensure thatGθ becomes a contraction mapping with
contraction constant L ≤ q. This is formalized in the following corollary:

Corollary 3.2 (Ensuring Contraction via Spectral Normalization). By constraining ∥Wi∥ ≤

q1/N and choosing Lσ ≤ 1, the overall Lipschitz constant satisfies L ≤ q, ensuring that Gθ
is a contraction mapping with contraction constant q.

Proof. See Appendix A.1. □

Designing Gθ as a contraction mapping enhances stability by ensuring that small per-
turbations in the input lead to proportionally smaller changes in the output. Specifically,
we have:

Lemma 3.3 (Stability of Contraction Mappings). A contraction mapping Gθ on a metric
space (X, ∥ · ∥) satisfies:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥δu∥,
where δu is a small perturbation in the input.

Proof. We aim to show that if Gθ is a contraction mapping on a metric space (X, ∥ · ∥)
with contraction constant q ∈ [0, 1), then for any u ∈ X and any perturbation δu ∈ X, the
following inequality holds:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥δu∥.

We start by defining the contraction mapping. A mapping Gθ : X → X is called a
contraction mapping if there exists a constant q ∈ [0, 1) such that for all x, y ∈ X,

∥Gθ(x) − Gθ(y)∥ ≤ q∥x − y∥.

Let u ∈ X be any point in the metric space, and let δu ∈ X be a perturbation. We
consider the images of u and u + δu under the mapping Gθ.

Applying the contraction property to x = u + δu and y = u, we have:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥(u + δu) − u∥ = q∥δu∥.

80 VU ANH LE, AND MEHMET DIK

This inequality directly shows that the change in the output ofGθ due to the perturbation
δu is at most q times the magnitude of the perturbation. Since q < 1, the mapping Gθ
attenuates the effect of the perturbation.

So far, the lemma demonstrates that Gθ is Lipschitz continuous with Lipschitz constant
q:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥δu∥.

This property implies stability with respect to input perturbations, meaning that small
changes in the input u result in proportionally smaller changes in the output Gθ(u). This
is crucial for ensuring that errors or uncertainties in the input do not amplify through the
mapping, which is particularly important in iterative methods and numerical computations.

□

Moreover, the exponential convergence to the fixed point reduces computational effort
by potentially decreasing the number of iterations or layers required to achieve a desired
level of accuracy.

Theorem 3.4 (Reduction in Iterations Needed for Convergence). Let ϵ > 0 be the desired
accuracy. The number of iterations n required to achieve ∥Gn

θ(u) − u∗∥ ≤ ϵ is bounded by:

n ≥
ln

(
∥u−u∗∥
ϵ

)
ln

(
1
q

) .

Proof. We aim to determine a bound on the number of iterations n required for the iterated
mapping Gn

θ(u) to approximate the fixed point u∗ within a desired accuracy ϵ > 0, i.e.,

∥Gn
θ(u) − u∗∥ ≤ ϵ.

Recall that a contraction mapping Gθ on a complete metric space (X, ∥ · ∥) has a unique
fixed point u∗ ∈ X satisfying Gθ(u∗) = u∗. Moreover, the sequence {Gn

θ(u)}∞n=0, where Gn
θ

denotes the n-fold composition of Gθ, converges to u∗ for any initial point u ∈ X.
The contraction property ensures that:

∥Gθ(u) − Gθ(v)∥ ≤ q∥u − v∥, for all u, v ∈ X,

where q ∈ [0, 1) is the contraction constant.
We first establish the rate at which the iterates Gn

θ(u) converge to u∗. Using the contrac-
tion property repeatedly, we have:

∥Gn
θ(u) − u∗∥ = ∥Gn

θ(u) − Gn
θ(u
∗)∥

≤ q∥Gn−1
θ (u) − u∗∥

≤ q2∥Gn−2
θ (u) − u∗∥

...

≤ qn∥u − u∗∥.

To achieve the desired accuracy ϵ, we require:

∥Gn
θ(u) − u∗∥ ≤ qn∥u − u∗∥ ≤ ϵ.

Rewriting the inequality:

qn ≤
ϵ

∥u − u∗∥
.

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 81

Taking the natural logarithm on both sides:

ln qn ≤ ln
(

ϵ

∥u − u∗∥

)
.

Simplifying:
n ln q ≤ ln ϵ − ln ∥u − u∗∥.

Since ln q < 0 (because 0 ≤ q < 1), we multiply both sides by −1 (which reverses the
inequality direction):

−n ln q ≥ ln ∥u − u∗∥ − ln ϵ.

Recognizing that − ln q = ln
(

1
q

)
, we have:

n ln
(

1
q

)
≥ ln

(
∥u − u∗∥

ϵ

)
.

Solving for n, we obtain:

n ≥
ln

(
∥u−u∗∥
ϵ

)
ln

(
1
q

) .

Generally, this inequality provides a lower bound on the number of iterations n required
to achieve an approximation error less than or equal to ϵ. The bound depends logarithmi-
cally on the ratio ∥u−u∗∥

ϵ
and inversely on ln

(
1
q

)
. A smaller contraction constant q (i.e., closer

to zero) results in a larger denominator, thus reducing the required number of iterations n.
□

This shows that a smaller contraction constant q leads to fewer iterations needed for
convergence.

3.2. Integrate Multi-Scale Representations. Combining global (Fourier) and local (wavelet)
representations allows the neural operator to capture features at multiple scales, enhancing
its ability to approximate complex functions with varying spatial frequencies.

Employing both Fourier and wavelet transforms enables efficient representation of func-
tions with features spanning various spatial frequencies [6]. This multi-scale approach
aligns with the clustering behavior in function space and enhances the operator’s capacity
to approximate complex solution mappings.

We formalize this with the following theorem:

Theorem 3.5 (Approximation Using Combined Bases). Any function f ∈ L2(D) can be
approximated arbitrarily well using a finite combination of Fourier and wavelet basis func-
tions.

Proof. See Appendix A.2. □

Implementing spectral convolution layers utilizing the Fast Fourier Transform (FFT) for
global feature extraction [3], and incorporating wavelet transform layers to capture local
irregularities and singularities [7], allows for efficient computation.

Lemma 3.6 (Efficient Computation with Multi-Scale Layers). The integration of Fourier
and wavelet layers allows for efficient computation by leveraging the FFT and Discrete
Wavelet Transform (DWT), both of which have computational complexity O(N log N).

Proof. See Appendix A.2. □

82 VU ANH LE, AND MEHMET DIK

Integrating multi-scale representations enhances the neural operator’s ability to model
functions with sharp transitions or localized features, leading to improved approximation
accuracy.

Theorem 3.7 (Improved Approximation Error with Multi-Scale Representations). Let f ∈
L2(D) be a function with both smooth and localized features. A neural operator employing
multi-scale representations can approximate f with an error ϵ that decreases exponentially
with the number of basis functions used.

Proof. See Appendix A.2. □

This demonstrates that multi-scale representations can achieve lower approximation er-
rors more efficiently than single-scale methods.

3.3. Ensure Universal Approximation Capability. Increasing the network capacity ap-
propriately ensures sufficient depth and width for approximating complex operators. The
Universal Approximation Theorem for operators indicates that a neural operator with suffi-
cient capacity can approximate any continuous operator to arbitrary precision on compact
subsets of the input space [8, 4].

By increasing the depth and width of the neural network, we enhance its capacity to
approximate complex functions. Specifically, we have:

Theorem 3.8 (Capacity Growth with Network Size). The expressive capacity of a neural
network grows exponentially with depth and polynomially with width [9].

Proof. See Appendix A.3. □

Using activation functions capable of representing complex mappings, such as ReLU or
Tanh, facilitates universal approximation [10].

Enhancing the network’s capacity allows the neural operator to approximate more com-
plex solution mappings with higher precision. However, increasing capacity improves ap-
proximation accuracy but also increases the risk of overfitting. Regularization techniques
must be employed to mitigate this risk.

Lemma 3.9 (Trade-off Between Capacity and Overfitting). While increasing capacity im-
proves approximation accuracy, it also increases the risk of overfitting. Regularization
techniques must be employed to mitigate this risk.

Proof. See Appendix A.3. □

Balancing network capacity with appropriate regularization leads to better performance.

3.4. Enhance Generalization through Regularization. Applying regularization tech-
niques such as weight decay, dropout, or spectral normalization controls the complexity
of the neural operator and prevents overfitting.

Regularization techniques constrain the effective capacity of the neural operator, miti-
gating overfitting and improving generalization to unseen data [11].

Implement weight decay by adding a penalty term to the loss function:

Ltotal = Ldata + λ
∑

i

∥Wi∥
2
F , (3.1)

where Ldata is the original loss, λ is the regularization parameter, and ∥Wi∥F is the Frobe-
nius norm of weight matrix Wi.

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 83

Theorem 3.10 (Effectiveness of Weight Decay). Weight decay reduces the effective ca-
pacity of the neural network by penalizing large weights, which helps prevent overfitting
[12].

Proof. See Appendix A.4. □

Apply dropout by randomly setting a fraction of the neurons’ outputs to zero during
training [13].

Lemma 3.11 (Dropout Prevents Co-adaptation). Dropout reduces overfitting by preventing
neurons from co-adapting on training data, leading to more robust features.

Proof. See Appendix A.4. □

Additionally, apply spectral normalization to limit the spectral norm of weight matrices,
ensuring controlled Lipschitz constants [14].

Regularization techniques lead to reduced overfitting, enhancing the neural operator’s
performance on unseen data.

Theorem 3.12 (Improved Generalization with Regularization). Regularized neural oper-
ators exhibit lower generalization error bounds compared to unregularized models.

Proof. Follows from standard results in statistical learning theory [15]. □

Controlling the Lipschitz constant via spectral normalization also contributes to stabil-
ity.

3.5. Optimize Computational Efficiency. Implementing spectral methods and paralleliza-
tion reduces computational complexity and exploits hardware capabilities. Efficient com-
putational methods allow the neural operator to handle larger problem sizes and higher-
dimensional PDEs without incurring prohibitive computational costs.

Ensure that the neural operator architecture is compatible with GPU acceleration and
distributed computing frameworks. Under ideal conditions, parallel computing can achieve
a speedup proportional to the number of processing units, up to the limits imposed by
Amdahl’s Law.

Theorem 3.13 (Speedup with Parallel Computing). Under ideal conditions, the speedup
S achievable by parallel computing is:

S = N,

where N is the number of processors, assuming perfect parallelization.

Proof. See Appendix A.5. □

However, Amdahl’s Law imposes a limit due to the serial portion of the code.

Lemma 3.14 (Amdahl’s Law). The maximum speedup S achievable by parallelization is:

S =
1

(1 − P) + P
N

,

where P is the fraction of the program that can be parallelized, and N is the number of
processors.

Proof. See Appendix A.5. □

84 VU ANH LE, AND MEHMET DIK

Implement spectral convolution layers using FFT algorithms, which are highly opti-
mized for parallel execution [17].

Optimizing computational efficiency enables the neural operator to scale to larger datasets,
higher resolutions, and more complex PDEs.

Theorem 3.15 (Feasibility of High-Dimensional Problems). Efficient computational im-
plementations make it feasible to apply neural operators to high-dimensional problems
that were previously intractable due to computational limitations.

Proof. See Appendix A.5. □

4. Conclusion

So far, we have translated theoretical insights into practical design recommendations for
neural operators, each supported by rigorous mathematical proofs and relevant citations.
By using contraction mappings, multi-scale representations, sufficient network capacity,
regularization, and computational optimizations, we enhance the stability, convergence,
generalization, and efficiency of neural operators.

Looking forward, future work should include exploring adaptive architectures that dy-
namically adjust their structure based on input complexity, incorporating probabilistic
methods to quantify prediction uncertainty, and integrating neural operators with classi-
cal numerical methods to achieve enhanced performance.

Acknowledgments. We want to thank Google Research for providing support and men-
torships for student Vu-Anh Le, as well as the Mathematics and Computer Science Depart-
ment at Beloit College.

Appendix A: Proofs of Theorems and Lemmas

In this appendix, we provide detailed proofs of the theorems and lemmas referenced in
the main text.

Appendix A.1. Proofs for Section 3.1: Design Neural Operators as Contraction
Mappings

A.1.1. Proof of Theorem 3.1 (Lipschitz Condition for Neural Networks).

Proof. We aim to show that the overall Lipschitz constant L of the neural operator Gθ,
composed of N layers and activation functions, satisfies:

L ≤

 N∏
i=1

Li

 LN
σ ,

where each layer fi has a Lipschitz constant Li, and the activation functionσ has a Lipschitz
constant Lσ.

We begin by representing the neural operator Gθ as a composition of affine transforma-
tions (layers) and activation functions. Specifically, for an input u, we have:

Gθ(u) = fN ◦ σ ◦ fN−1 ◦ σ ◦ · · · ◦ σ ◦ f1(u).

Each layer fi is defined as an affine transformation:

fi(x) = Wix + bi,

where Wi is the weight matrix and bi is the bias vector for layer i.

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 85

An affine transformation fi is Lipschitz continuous with Lipschitz constant Li = ∥Wi∥,
where ∥Wi∥ denotes the induced matrix norm (operator norm) of Wi. For any x, y ∈ Rn, we
have:

∥ fi(x) − fi(y)∥ = ∥Wix + bi − (Wiy + bi)∥ = ∥Wi(x − y)∥ ≤ ∥Wi∥ · ∥x − y∥.

This inequality shows that the Lipschitz constant of fi is ∥Wi∥. The operator norm ∥Wi∥

can be explicitly calculated or bounded. For example, if Wi is a matrix, its operator norm
induced by the Euclidean norm is the largest singular value of Wi.

In addition, the activation function σ : R → R is assumed to be Lipschitz continuous
with Lipschitz constant Lσ. Common activation functions satisfy this property. For exam-
ple, the ReLU activation function (σ(x) = max(0, x)) has Lσ = 1; the Sigmoid function

(σ(x) =
1

1 + e−x) has Lσ =
1
4

; and the Tanh function (σ(x) = tanh(x)) has Lσ = 1.
For any x, y ∈ R, we have:

|σ(x) − σ(y)| ≤ Lσ|x − y|.

When extending to vector inputs, since activation functions are applied element-wise, the
Lipschitz constant remains the same:

∥σ(x) − σ(y)∥ ≤ Lσ∥x − y∥.

It is a fundamental property that the composition of two Lipschitz continuous functions
is Lipschitz continuous, with the Lipschitz constant of the composition being at most the
product of the individual Lipschitz constants. Specifically, let f : X → Y and g : Y →
Z be Lipschitz continuous functions with constants L f and Lg, respectively. Then, the
composition h = g ◦ f is Lipschitz continuous with Lipschitz constant Lh ≤ LgL f . For a
proof of this property, see standard analysis texts such as Rudin [18].

We now apply this property recursively to the layers and activation functions of the
neural operator.

Starting with x0 = u, the output after the first layer and activation function is:

x1 = σ(f1(x0)).

By applying the composition property, the Lipschitz constant from x0 to x1 is:

L(1)
1 = LσL1.

Similarly, for the subsequent layers (i = 2 to N), we have:

xi = σ(fi(xi−1)),

with Lipschitz constant from xi−1 to xi given by:

L(i)
i = LσLi.

The Lipschitz constant from the input u to the output xN is then the product of the
individual Lipschitz constants:

Ltotal =

N∏
i=1

L(i)
i =

 N∏
i=1

LσLi

 = LN
σ

 N∏
i=1

Li

 .
Therefore, the overall Lipschitz constant L of the neural operator Gθ satisfies:

L ≤ LN
σ

 N∏
i=1

Li

 .

86 VU ANH LE, AND MEHMET DIK

This result shows that the neural operator is Lipschitz continuous, and its Lipschitz constant
depends on the product of the Lipschitz constants of the layers and activation functions.

To control the Lipschitz constant of the layers, one can apply spectral normalization
[14], which scales the weight matrices so that their spectral norms are bounded. This helps
in ensuring that the neural operator is a contraction mapping if desired. The choice of
activation function also affects the overall Lipschitz constant. Using activation functions
with smaller Lipschitz constants can aid in controlling the Lipschitz constant of the entire
network.

Moreover, increasing the depth N of the network can lead to an exponential increase in
the Lipschitz constant due to the term LN

σ . Care must be taken to balance depth with the
desired Lipschitz properties. For discussions on the impact of depth on Lipschitz constants,
see Bartlett et al. (2017) [19].

Thus, we have shown that the neural operator Gθ is Lipschitz continuous with Lipschitz
constant bounded by L ≤

(∏N
i=1 Li

)
LN
σ . □

A.1.2. Proof of Corollary 3.2 (Ensuring Contraction via Spectral Normalization).

Proof. We aim to show that by constraining the spectral norm of each weight matrix Wi

such that ∥Wi∥ ≤ q1/N and choosing the activation function σ with Lipschitz constant
Lσ ≤ 1, the overall Lipschitz constant L of the neural operator Gθ satisfies L ≤ q. This
ensures that Gθ is a contraction mapping with contraction constant q.

From Theorem 3.1, we know that the overall Lipschitz constant of the neural operator
is bounded by:

L ≤ LN
σ

 N∏
i=1

Li

 ,
where Li = ∥Wi∥ is the Lipschitz constant of layer i. By constraining the spectral norm of
each weight matrix to ∥Wi∥ ≤ q1/N , it follows that:

Li ≤ q1/N .

Substituting this into the expression for L, we obtain:

L ≤ LN
σ

 N∏
i=1

q1/N

 = LN
σ

(
q1/N

)N
= LN

σq.

Since we have chosen Lσ ≤ 1, it follows that LN
σ ≤ 1. Therefore:

L ≤ q.

This result shows that the neural operator Gθ has a Lipschitz constant bounded by q, en-
suring it is a contraction mapping.

By ensuring the spectral norms of the weight matrices are appropriately bounded, we
control the Lipschitz constants of the layers. Spectral normalization [14] is a technique
that rescales the weight matrices to have a desired spectral norm, effectively controlling the
Lipschitz constant of each layer. This is crucial for ensuring the overall network satisfies
the contraction condition.

Choosing an activation function with Lipschitz constant Lσ ≤ 1 is also essential. Com-
mon activation functions like ReLU (Lσ = 1) and Tanh (Lσ = 1) satisfy this condition.
Functions like the Sigmoid have Lσ = 1

4 , which also meets the requirement.
Ensuring that the neural operator is a contraction mapping allows us to invoke the Ba-

nach Fixed Point Theorem [5], guaranteeing the existence and uniqueness of fixed points

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 87

and the convergence of iterative processes. This is particularly important in the context of
solving equations and iterative methods within neural networks.

Thus, by constraining the spectral norms of the weight matrices and choosing suitable
activation functions, we ensure that Gθ is a contraction mapping with contraction constant
q.

□

Appendix A.2. Proofs for Section 3.2: IntegrateMulti-Scale Representations

A.2.1. Proof of Theorem 3.5 (Approximation Using Combined Bases).

Proof. We aim to demonstrate that any function f ∈ L2(D) can be approximated arbitrarily
well using a finite combination of Fourier and wavelet basis functions.

Firstly, recall that the set of complex exponentials {eikx}k∈Z forms an orthonormal basis
for L2 functions defined on a compact domain with periodic boundary conditions. This is
the foundation of Fourier series, which effectively capture the global behavior of functions
[20].

Wavelet bases, constructed from dilations and translations of a mother wavelet ψ(x),
provide an orthonormal basis for L2(R) and are adept at representing local features due to
their time-frequency localization [6]. They allow for multiresolution analysis, capturing
both coarse and fine details of a function.

By combining these bases, we leverage the strengths of both global and local represen-
tations. Specifically, for a function f ∈ L2(D), we can express it as:

f (x) =
∑
k∈Z

ckeikx +
∑
j∈Z

∑
m∈Z

d j,mψ j,m(x),

where ψ j,m(x) = 2 j/2ψ(2 jx −m) are the wavelet functions at scale j and position m, and ck,
d j,m are the Fourier and wavelet coefficients, respectively.

In practice, we approximate f (x) using finite sums:

fN(x) =
K∑

k=−K

ckeikx +

J∑
j=J0

M j∑
m=0

d j,mψ j,m(x),

where K, J, and M j are finite truncation limits.
The approximation error is given by:

∥ f − fN∥L2(D) =

∥∥∥∥∥∥∥∥
∑
|k|>K

ckeikx +
∑
j>J

∑
m

d j,mψ j,m(x)

∥∥∥∥∥∥∥∥
L2(D)

.

As both the Fourier series and wavelet series converge in L2(D), increasing K and J allows
the approximation error to be made arbitrarily small.

For functions with smooth global behavior and localized irregularities, the Fourier basis
efficiently captures the global smooth components, while the wavelet basis captures local
features and discontinuities [21]. This combined approach often leads to faster conver-
gence and better approximation with fewer terms than using either basis alone.

Therefore, any function f ∈ L2(D) can be approximated arbitrarily well by a finite
combination of Fourier and wavelet basis functions, as the sum of two complete bases is
still complete in L2(D).

□

88 VU ANH LE, AND MEHMET DIK

A.2.2. Proof of Lemma 3.6 (Efficient Computation with Multi-Scale Layers).

Proof. We aim to show that integrating Fourier and wavelet transforms into neural network
layers allows for efficient computation with computational complexity O(N log N), where
N is the number of data points.

Consider a discrete signal x = [x0, x1, . . . , xN−1] ∈ RN . The Discrete Fourier Transform
(DFT) of x is defined as:

Xk =

N−1∑
n=0

xne−i2πkn/N , k = 0, 1, . . . ,N − 1.

Computing the DFT directly requires O(N2) operations due to the nested summations.
The Fast Fourier Transform (FFT) algorithm reduces this complexity to O(N log N) by

recursively decomposing the DFT into smaller DFTs and exploiting symmetries in the
complex exponentials [17].

In neural networks, convolution operations are essential. The convolution of two dis-
crete signals x and h is defined as:

(y)n = (x ∗ h)n =

N−1∑
m=0

xmh(n−m) mod N .

Computing this convolution directly has a complexity of O(N2).
However, the Convolution Theorem states that convolution in the time domain corre-

sponds to pointwise multiplication in the frequency domain:

F {x ∗ h} = F {x} · F {h},

where F {·} denotes the Fourier Transform, and · represents element-wise multiplication.
Therefore, we can compute the convolution efficiently by:

(1) Computing F {x} and F {h} using the FFT, each requiring O(N log N) operations.
(2) Performing element-wise multiplication: Yk = Xk · Hk, which requires O(N) oper-

ations.
(3) Computing the inverse FFT of Yk to obtain yn, requiring O(N log N) operations.

The total computational complexity is O(N log N).
In neural networks, spectral convolution layers utilize this approach to perform convolu-

tion operations efficiently [3]. By transforming inputs and filters to the frequency domain,
convolutions become element-wise multiplications, significantly reducing computational
cost.

The Discrete Wavelet Transform (DWT) also provides a time-frequency representation
of a signal, capturing both location and scale information. For a signal x, the DWT de-
composes it into approximation coefficients a j[n] and detail coefficients d j[n] at different
scales j.

At each level j, the approximation coefficients are computed by convolution with a
scaling filter (low-pass filter) h[n], followed by downsampling:

a j[n] =
∑

k

a j−1[k] h[2n − k].

The detail coefficients are computed using a wavelet filter (high-pass filter) g[n]:

d j[n] =
∑

k

a j−1[k] g[2n − k].

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 89

Here, a j−1[k] are the approximation coefficients from the previous level, and the downsam-
pling by 2 reduces the number of samples by half at each level.

The overall computational complexity for computing all levels of the DWT is O(N), as
the amount of computation halves at each subsequent level [22].

In neural networks, wavelet transform layers can be integrated to capture features at
multiple scales efficiently. By applying the DWT within the network, we can extract local-
ized features with reduced computational cost.

By integrating both the FFT and DWT into neural network layers, we achieve efficient
computation for both global and local feature extraction.

• FFT-based Convolution: Allows for efficient computation of convolutional lay-
ers with complexity O(N log N).
• DWT-based Feature Extraction: Provides multiresolution analysis with com-

plexity O(N).
When combined, the overall computational complexity remains O(N log N), dominated

by the FFT operations.
In general, integrating these efficient algorithms enables neural operators to handle high-

dimensional inputs and large datasets without prohibitive computational costs. This is es-
sential for practical applications involving partial differential equations and other complex
systems where computational efficiency is critical.

Therefore, by utilizing the computational efficiencies of the FFT and DWT within neural
network architectures, we can perform the necessary operations in neural operators with
O(N log N) complexity or better, enabling scalable and efficient computation.

□

A.2.3. Proof of Theorem 3.7 (Improved Approximation Error with Multi-Scale Rep-
resentations).

Proof. We aim to demonstrate that for a function f ∈ L2(D) with both smooth and localized
features, a neural operator employing multi-scale representations can approximate f with
an error ϵ that decreases exponentially with the number of basis functions used.

Consider approximating f using a finite combination of Fourier and wavelet basis func-
tions:

fN(x) =
K∑

k=−K

ckeikx +

J∑
j=J0

M j∑
m=0

d j,mψ j,m(x),

where:
• ck are the Fourier coefficients given by ck =

1
2π

∫
D f (x)e−ikx dx.

• ψ j,m(x) are wavelet basis functions at scale j and translation m.
• d j,m are the wavelet coefficients given by d j,m =

∫
D f (x)ψ j,m(x) dx.

The approximation error in the L2 norm is given as:

ϵ2 = ∥ f − fN∥
2
L2(D) =

∫
D
| f (x) − fN(x)|2 dx.

Expanding this, we have:

ϵ2 =

∥∥∥∥∥∥∥∥
∑
|k|>K

ckeikx +
∑
j>J

∑
m

d j,mψ j,m(x)

∥∥∥∥∥∥∥∥
2

L2(D)

.

90 VU ANH LE, AND MEHMET DIK

By Parseval’s identity, the squared L2 norm of a function equals the sum of the squares of
its coefficients:

ϵ2 =
∑
|k|>K

|ck |
2 +

∑
j>J

∑
m

|d j,m|
2.

Now, the decay of the Fourier coefficients |ck | is directly related to the smoothness of
f . If f is s times continuously differentiable over D, then by standard results in Fourier
analysis [23]:

|ck | ≤
C
|k|s

,

for some constant C > 0. This implies that the tail of the Fourier series (coefficients with
|k| > K) decreases rapidly with K, and the error from truncating the Fourier series decreases
as: ∑

|k|>K

|ck |
2 ≤ C′K−(2s−1),

where C′ is another constant depending on f .
Similarly, the decay of wavelet coefficients |d j,m| depends on the regularity of f . For

functions in the Besov space Bs
p,q, wavelet coefficients satisfy [6, 24]:

|d j,m| ≤ C2− j(s+ 1
2−

1
p),

where s is the smoothness parameter, and p, q relate to the integrability and summability
of the coefficients.

The sum of the squared wavelet coefficients for scales j > J is then bounded by:∑
j>J

∑
m

|d j,m|
2 ≤ C′′2−2J(s− 1

2),

with C′′ depending on f and the wavelet basis.
Combining these decay estimates, the total approximation error is bounded by:

ϵ2 ≤ C′K−(2s−1) +C′′2−2J(s− 1
2).

By selecting K and J such that:

K = K0Nα, 2J = J0Nβ,

for some α, β > 0, and constants K0, J0, we can make ϵ decrease exponentially with N, the
total number of basis functions used.

To optimize the approximation, we balance the contributions of the Fourier and wavelet
terms. For functions that are smooth overall but have localized irregularities, the Fourier
coefficients decay rapidly except near discontinuities, where wavelet coefficients capture
the localized features efficiently.

By choosing α and β appropriately, we ensure that both terms in the error bound de-
crease at similar rates, minimizing the total error. This balancing act leverages the strengths
of both bases.

In the context of neural operators, incorporating multi-scale representations allows
the network to approximate functions with both global smoothness and local irregulari-
ties effectively. The neural network learns to represent f using a combination of global
(Fourier) and local (wavelet) features.

The exponential decay in approximation error implies that the number of neurons (or
parameters) required to achieve a desired accuracy ϵ grows only logarithmically with 1/ϵ.
This is a significant improvement over methods that do not exploit multi-scale structures.

Conclusion

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 91

Therefore, the multi-scale representation enhances the approximation capabilities of
the neural operator, achieving an approximation error ϵ that decreases exponentially with
the number of basis functions used. This approach aligns with the principles of sparse
representation and compressed sensing [25], where functions are represented using a small
number of significant coefficients.

□

Appendix A.3. Proofs for Section 3.3: Ensure Universal Approximation Capability

A.3.1. Proof of Theorem 3.8 (Capacity Growth with Network Size).

Proof. We aim to demonstrate that for a feedforward neural network using ReLU activation
functions, the number of linear regions represented by the network grows exponentially
with the depth of the network and polynomially with its width.

A ReLU activation function σ(x) = max(0, x) introduces piecewise linearity into the
network. Each neuron with a ReLU activation divides its input space into two regions: one
where the neuron is active (x > 0) and one where it is inactive (x ≤ 0). The combination
of these regions across all neurons leads to a partitioning of the input space into linear
regions, within which the neural network behaves as a linear function.

Consider a feedforward ReLU network with L layers. Let nl denote the number of
neurons in layer l, for l = 1, 2, . . . , L. The input dimension is n0. The total number of
neurons is N =

∑L
l=1 nl.

Montúfar et al. [26] have shown that the maximal number of linear regions R that such
a network can represent satisfies:

R ≥
L∏

l=1

(
nl

nl − nl−1

)nl−1

.

When all layers have the same width n (i.e., nl = n for all l) and n ≥ n0, this simplifies to:

R ≥
(

n
n − n0

)n0 (n
n − n

)(L−1)n
.

Since n − n = 0, the expression becomes undefined. To address this, we consider the more
accurate lower bound provided by Serra et al. [27], which refines the estimate of linear
regions:

R ≥ 2
∑L

l=1 nl .

This indicates that the number of linear regions grows exponentially with the total number
of neurons in the network.

Alternatively, Montúfar et al. [26] provide a simpler lower bound for fully connected
networks with ReLU activations:

R ≥
(

n
n0

)n0

n(L−1)n0 .

This expression shows that R grows exponentially with the depth L and polynomially with
the width n.

Let’s take an example calculation. For a network where n = n0 (constant width equal to
input dimension), the lower bound simplifies to:

R ≥ n(L−1)n0 .

Since n = n0, we have:
R ≥ n(L−1)n0

0 =
(
nn0

0

)L−1
.

92 VU ANH LE, AND MEHMET DIK

This clearly demonstrates exponential growth with respect to the depth L.
With regard to the implications for expressive capacity, The exponential growth of the

number of linear regions with depth implies that deeper networks can represent more com-
plex functions by partitioning the input space into a greater number of linear regions. Each
region corresponds to a different linear function, and the network’s overall function is
piecewise linear.

Raghu et al. [9] analyzed the trajectory length through the network as a measure of
expressivity and found that depth contributes exponentially to expressivity measures, while
width contributes polynomially.

Therefore, we conclude that the expressive capacity of ReLU neural networks grows
exponentially with the network’s depth and polynomially with its width, as evidenced by
the number of linear regions they can represent. This result supports the assertion that
deeper networks have greater expressive power.

□

A.3.2. Proof of Lemma 3.9 (Trade-off Between Capacity and Overfitting).

Proof. We aim to demonstrate that increasing the capacity of a neural network can lead to
overfitting, highlighting the trade-off between model complexity and generalization ability.

Let H denote the hypothesis space of functions that the neural network can represent.
Increasing the network’s capacity expands H , allowing the model to approximate more
complex functions. Specifically, a higher-capacity network can achieve a smaller empirical
risk (training error) Remp by fitting the training data more precisely.

However, the true risk (generalization error) R depends on how well the model per-
forms on unseen data. According to the bias-variance decomposition [28], the expected
generalization error can be expressed as:

ED[R] = Bias2 + Variance + σ2,

where:
• Bias measures the error due to simplifying assumptions made by the model;
• Variance measures the sensitivity of the model to fluctuations in the training set;
• σ2 is the irreducible error inherent in the data.

As the capacity of the network increases, the bias tends to decrease because the model
can fit the training data more closely. However, the variance tends to increase because
the model becomes more sensitive to small fluctuations or noise in the training data. This
increased variance can lead to overfitting, where the model captures noise and irrelevant
patterns, resulting in a decrease in generalization performance.

Overfitting is characterized by a situation where:

Remp ↓, R ↑,

meaning that while the training error decreases, the validation or test error increases.
To prevent overfitting, regularization techniques are employed to constrain the com-

plexity of the hypothesis space H . Regularization can be introduced by adding a penalty
term Ω(θ) to the loss function L(θ), leading to the regularized loss:

Lreg(θ) = L(θ) + λΩ(θ),

where θ represents the network parameters, and λ > 0 controls the strength of the regular-
ization.

Common regularization methods include:

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 93

(1) Weight Decay (L2 Regularization): Penalizes large weights by setting Ω(θ) =
1
2 ∥θ∥

2
2.

(2) L1 Regularization: Encourages sparsity by setting Ω(θ) = ∥θ∥1.
(3) Dropout: Randomly sets a fraction of activations to zero during training to prevent

co-adaptation [13].
By constraining H , regularization reduces variance at the expense of a slight increase

in bias, ultimately improving the generalization error R.
Therefore, there exists a trade-off between model capacity and overfitting: increasing

capacity enhances the ability to fit complex functions but may lead to overfitting if not
properly regularized. Effective regularization techniques are essential to balance this trade-
off and achieve optimal generalization performance [11].

□

Appendix A.4. Proofs for Section 3.4: Enhance Generalization through Regularization

A.4.1. Proof of Theorem 3.10 (Effectiveness of Weight Decay).

Proof. We aim to show that weight decay (L2 regularization) effectively reduces overfitting
by penalizing large weights, thereby constraining the model complexity and improving
generalization.

Consider a neural network with parameters (weights) θ. The standard loss function L(θ)
measures the discrepancy between the network’s predictions and the training data. Weight
decay modifies the loss function by adding a regularization term:

Lreg(θ) = L(θ) + λ
1
2
∥θ∥22,

where ∥θ∥22 =
∑

i θ
2
i is the squared L2 norm of the weights, and λ > 0 is the regularization

coefficient.
The gradient of the regularized loss with respect to the weights is:

∇θLreg(θ) = ∇θL(θ) + λθ.

During training with gradient descent, the weight update rule becomes:

θ(t+1) = θ(t) − η
(
∇θL(θ(t)) + λθ(t)

)
,

where η is the learning rate.
The term λθ(t) acts as a force that drives the weights toward zero. This discourages the

model from assigning excessive importance to any particular feature, effectively reducing
the complexity of the model.

By penalizing large weights, weight decay reduces the variance component of the gener-
alization error. According to the bias-variance decomposition, the expected generalization
error can be written as:

ED[R] = Bias2 + Variance + σ2.

Weight decay increases the bias slightly due to the added constraint but decreases the vari-
ance more significantly, leading to a net reduction in generalization error.

Moreover, in linear models, weight decay corresponds to Ridge Regression [29], where
the regularization term stabilizes the inversion of ill-conditioned matrices, leading to more
robust solutions.

Therefore, weight decay effectively prevents overfitting by constraining the magnitude
of the weights, promoting simpler models that generalize better to unseen data [12].

□

94 VU ANH LE, AND MEHMET DIK

A.4.2. Proof of Lemma 3.11 (Dropout Prevents Co-adaptation).

Proof. We aim to demonstrate that dropout regularization reduces overfitting by preventing
co-adaptation of neurons and encouraging the network to learn robust feature representa-
tions.

During training, dropout randomly deactivates a fraction p of the neurons in each layer.
For a neuron with activation hi, the modified activation h̃i during training is:

h̃i = hi · ζi,

where ζi is a Bernoulli random variable:

ζi =

1, with probability q = 1 − p,
0, with probability p.

This random deactivation forces the network to learn redundancies because any neuron
could be dropped out at any time. As a result, neurons cannot rely on specific other neurons
being present and must learn features that are useful in conjunction with many different
subsets of other neurons.

By preventing co-adaptation, where neurons adjust to rely on outputs from specific other
neurons, dropout reduces the risk of overfitting. The network becomes less sensitive to the
noise and variations in the training data, improving generalization to unseen data [13].

At test time, to compensate for the dropped activations during training, the weights are
scaled by a factor of q (or equivalently, activations are multiplied by q):

htest
i = qhi.

This ensures that the expected output of each neuron remains the same between training
and testing:

E[h̃i] = qhi.

Therefore, dropout effectively prevents co-adaptation by encouraging neurons to learn
individually useful features, reducing overfitting and enhancing the robustness of the net-
work’s predictions.

□

Appendix A.5. Proofs for Section 3.5: Optimize Computational Efficiency

A.5.1. Proof of Theorem 3.13 (Speedup with Parallel Computing).

Proof. We aim to show that parallel computing can provide a speedup in computation time
for parallelizable tasks but that the overall speedup is limited by the serial portion of the
computation, as described by Amdahl’s Law.

Let:
• T1 be the total execution time on a single processor;
• TN be the total execution time using N processors;
• P be the fraction of the program that can be parallelized (0 ≤ P ≤ 1);

• S be the speedup achieved: S =
T1

TN
.

The single-processor execution time is:

T1 = Tserial + Tparallel,

where Tserial and Tparallel are the times spent on serial and parallelizable portions, respec-
tively.

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 95

When using N processors, the parallel portion ideally scales perfectly, so its execution
time becomes Tparallel/N. The total execution time on N processors is:

TN = Tserial +
Tparallel

N
.

Substituting Tserial = (1 − P)T1 and Tparallel = PT1, we have:

TN = (1 − P)T1 +
PT1

N
.

Therefore, the speedup S is:

S =
T1

TN
=

T1

(1 − P)T1 +
PT1

N

=
1

(1 − P) +
P
N

.

As N → ∞, the speedup approaches its theoretical maximum:

S max = lim
N→∞

S =
1

1 − P
.

This demonstrates that the speedup is limited by the serial portion of the code. Even with
an infinite number of processors, the execution time cannot be reduced below (1 − P)T1.

Thus, while parallel computing significantly reduces computation time for paralleliz-
able tasks, Amdahl’s Law shows that the overall speedup is constrained by the fraction of
the code that must be executed serially [30].

□

A.5.2. Proof of Lemma 3.14 (Amdahl’s Law).

Proof. We aim to derive Amdahl’s Law, which quantifies the theoretical speedup in latency
of the execution of a task when a portion of it is parallelized.

Let:
• T1 be the execution time on a single processor;
• TN be the execution time on N processors;
• P be the fraction of the execution time that is parallelizable.

The execution time on N processors is:

TN = Tserial + T ′parallel,

where:
Tserial = (1 − P)T1,

T ′parallel =
PT1

N
.

Therefore:
TN = (1 − P)T1 +

PT1

N
.

The speedup S is given by:

S =
T1

TN
=

T1

(1 − P)T1 +
PT1

N

=
1

(1 − P) +
P
N

.

This equation represents Amdahl’s Law, showing how the speedup S depends on the
number of processors N and the parallelizable fraction P. It illustrates that as N increases,
the speedup asymptotically approaches 1/(1−P), emphasizing the diminishing returns due
to the serial portion of the computation.

96 VU ANH LE, AND MEHMET DIK

Therefore, Amdahl’s Law captures the fundamental limitation of parallel computing:
the speedup is constrained by the serial fraction of the task, regardless of the number of
processors [30].

□

A.5.3. Proof of Theorem 3.15 (Feasibility of High-Dimensional Problems).

Proof. We aim to demonstrate that optimizing computational efficiency through spec-
tral methods and parallel computing enables neural operators to effectively handle high-
dimensional problems.

Let Ω ⊂ Rd be a d-dimensional domain, and let u : Ω → R be a function of interest.
Traditional numerical methods for solving partial differential equations (PDEs), such as fi-
nite difference or finite element methods, require discretizing each dimension into n points.
This results in a total of N = nd grid points. Operations like matrix-vector multiplication
or convolution over this grid have computational complexities that scale at least linearly
with N, and often worse, leading to O(N2) operations for certain tasks.

The exponential growth of N with respect to the dimension d is known as the ”curse of
dimensionality.” It renders computations infeasible for large d using traditional methods.

Spectral methods, such as the Fourier Transform, provide an alternative by transforming
differential operators into algebraic ones in the frequency domain. The d-dimensional
Discrete Fourier Transform (DFT) of a function u sampled on a regular grid is defined as:

ûk =
∑
n∈Zd

n

une−i2π k·n
n , k ∈ Zd

n,

where Zn = {0, 1, . . . , n − 1}, and n and k are d-dimensional index vectors.
Computing the DFT directly requires O(N2) operations. However, the Fast Fourier

Transform (FFT) algorithm reduces this to O(N log N) by exploiting symmetries and re-
dundancies in the computation [17].

In neural operators, convolution operations are essential. Consider the convolution of
two functions u, v : Ω→ R:

(w)(x) = (u ∗ v)(x) =
∫
Ω

u(y)v(x − y) dy.

Computing this convolution directly requires O(N2) operations due to the nested summa-
tions over all grid points.

Applying the Convolution Theorem, the Fourier Transform converts convolution into
pointwise multiplication:

ŵk = ûk · v̂k.

This reduces the convolution computation to:
(1) Compute ûk and v̂k using the FFT: O(N log N) operations each;
(2) Perform pointwise multiplication: O(N) operations;
(3) Compute the inverse FFT to obtain w(x): O(N log N) operations.

The total computational complexity becomes O(N log N), a significant reduction from
O(N2).

In high-dimensional problems, many functions of interest exhibit sparsity or low-rank
structures in the spectral domain. If ûk is sparse, meaning that significant energy is con-
centrated in a subset K ⊂ Zd

n with |K| = s ≪ N, we can approximate u using:

u(x) ≈
∑
k∈K

ûkei2π k·x
n .

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 97

Computations then involve s significant coefficients instead of N, reducing complexity to
O(s log N).

We now consider the FFT algorithm. We regard that this algorithm is highly paral-
lelizable. In a parallel computing environment with P processors, we can divide the data
equally among processors. Each processor performs FFT computations on its subset of
data:

Tcompute = O

(
N log(N/P)

P

)
.

Communication between processors is required to combine results, but for large N, the
computation time dominates, and communication overhead can be minimized with efficient
algorithms and network architectures [31].

Assuming ideal parallel efficiency, the total computational complexity per processor is
reduced to approximately O

(
N log N

P

)
.

We now consider the behaviors of neural Operators in High Dimensions. Neural op-
erators, such as the Fourier Neural Operator [3], leverage spectral convolutions to learn
mappings between function spaces. By representing integral kernel operations in the fre-
quency domain, neural operators can efficiently handle high-dimensional inputs.

Consider a neural operator layer defined as:

(unext)(x) = σ
(
Wu(x) + F −1 (R · F [u]) (x)

)
,

where:
• W is a linear transformation;
• σ is a nonlinear activation function;
• F and F −1 denote the Fourier and inverse Fourier transforms, respectively;
• R is a learned filter in the frequency domain.

Computing this layer involves FFTs and pointwise operations, all of which have computa-
tional complexities that scale as O(N log N) and are amenable to parallelization.

By combining spectral methods that reduce per-processor computational complexity to
O(N log N) and parallel computing that reduces wall-clock time by distributing computa-
tions across P processors, the overall computational effort becomes manageable even in
high-dimensional settings.

Therefore, optimizing computational efficiency through spectral methods and parallel
computing enables neural operators to handle high-dimensional problems effectively, mit-
igating the curse of dimensionality and making practical solutions feasible for complex,
real-world applications.

□

98 VU ANH LE, AND MEHMET DIK

References

[1] V.-A. Le and M. Dik, ”A mathematical analysis of neural operator behaviors,” arXiv preprint
arXiv:2410.21481, 2024.

[2] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar, ”Neural
operator: Learning maps between function spaces,” SIAM J. Sci. Comput. 435 (2021), A3172–A3192.

[3] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, ”Fourier
neural operator for parametric partial differential equations,” in Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2021. Available at https://openreview.net/forum?id=
c8P9NQVtmnO.

[4] L. Lu, P. Jin, and G. E. Karniadakis, ”DeepONet: Learning nonlinear operators for identifying differential
equations based on the universal approximation theorem of operators,” arXiv preprint arXiv:1910.03193,
2019.

[5] S. Banach, ”Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,”
Fund. Math. 3 (1922), 133–181.

[6] I. Daubechies, ”Ten Lectures on Wavelets,” SIAM, Philadelphia, PA, 1992.
[7] Y. Zhao and S. Sun, ”Wavelet neural operator: A neural operator based on the wavelet transform,” arXiv

preprint arXiv:2201.12086, 2022.
[8] T.-S. Chen and H.-Y. Chen, ”Universal approximation to nonlinear operators by neural networks with

arbitrary activation functions and its application to dynamical systems,” IEEE Trans. Neural Networks,
6(4) (1995), 911–917.

[9] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, ”On the expressive power of deep
neural networks,” in Proceedings of the 34th International Conference on Machine Learning, 70, PMLR,
2017, pp. 2847–2854.

[10] K. Hornik, M. Stinchcombe, and H. White, ”Multilayer feedforward networks are universal approxima-
tors,” Neural Networks 2(5) (1989), 359–366.

[11] I. Goodfellow, Y. Bengio, and A. Courville, ”Deep Learning,” MIT Press, 2016. Available at http://
www.deeplearningbook.org.

[12] A. Krogh and J. A. Hertz, ”A simple weight decay can improve generalization,” in Advances in Neural
Information Processing Systems 4, Morgan-Kaufmann, 1992, pp. 950–957.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, ”Dropout: A simple way to
prevent neural networks from overfitting,” J. Mach. Learn. Res., 15 (2014), 1929–1958.

[14] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, ”Spectral normalization for generative adversarial
networks,” arXiv preprint arXiv:1802.05957, 2018.

[15] M. Mohri, A. Rostamizadeh, and A. Talwalkar, ”Foundations of Machine Learning,” MIT Press, 2018.
[16] N. Cohen, O. Sharir, and A. Shashua, ”On the expressive power of deep learning: A tensor analysis,” in

Proceedings of the 29th Annual Conference on Learning Theory, 49, PMLR, 2016, pp. 698–728.
[17] J. W. Cooley and J. W. Tukey, ”An algorithm for the machine calculation of complex Fourier series,” Math.

Comp. 19(90) (1965), 297–301.
[18] W. Rudin, ”Principles of Mathematical Analysis,” 3rd ed., McGraw-Hill, New York, 1976.
[19] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, ”Spectrally-normalized margin bounds for neural networks,”

arXiv preprint arXiv:1706.08498, 2017.
[20] D. Jackson, ”The Theory of Approximation,” American Mathematical Society, Providence, RI, 1930.
[21] S. Mallat, ”A Wavelet Tour of Signal Processing,” 2nd ed., Academic Press, San Diego, CA, 1999.
[22] S. G. Mallat, ”A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans.

Pattern Anal. Mach. Intell., 11(7) (1989), 674–693.
[23] E. C. Titchmarsh, ”Introduction to the Theory of Fourier Integrals,” Oxford University Press, Oxford, 1948.
[24] A. Cohen, ”Numerical Analysis of Wavelet Methods,” Elsevier, 2003.
[25] D. L. Donoho, ”Compressed sensing,” IEEE Trans. Inform. Theory, 52(4) (2006), 1289–1306.
[26] G. F. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, ”On the number of linear regions of deep neural

networks,” in Advances in Neural Information Processing Systems 27, Curran Associates, Inc., 2014, pp.
2924–2932.

[27] T. Serra, C. Tjandraatmadja, and S. Ramalingam, ”Bounding and counting linear regions of deep neu-
ral networks,” in Proceedings of the 35th International Conference on Machine Learning, 2018, pp.
4558–4566.

[28] S. Geman, E. Bienenstock, and R. Doursat, ”Neural networks and the bias/variance dilemma,” Neural
Comput., 4(1) (1992), 1–58.

https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
http://www.deeplearningbook.org
http://www.deeplearningbook.org

HOW ANALYSIS CAN TEACH US THE OPTIMAL WAY TO DESIGN NEURAL OPERATORS 99

[29] A. E. Hoerl and R. W. Kennard, ”Ridge regression: Biased estimation for nonorthogonal problems,” Tech-
nometrics, 12(1) (1970), 55–67.

[30] G. M. Amdahl, ”Validity of the single processor approach to achieving large scale computing capabilities,”
in Proceedings of the Spring Joint Computer Conference, ACM, 1967, pp. 483–485.

[31] M. Frigo and S. G. Johnson, ”FFTW: An adaptive software architecture for the FFT,” in Proceedings of the
1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 3, 1998, pp. 1381–1384.

Vu Anh Le,
Department ofMathematics and Computer Science, Beloit College, USA

Email address: csplevuanh@gmail.com

Mehmet Dik,
Department ofMathematics, Computer Science & Physics, Rockford University, USA

Email address: mdik@rockford.edu

	1. Introduction
	2. Theoretical Framework Reminder
	2.1. Stability in High-Dimensional PDEs
	2.2. Exponential Convergence
	2.3. Universality and Generalization

	3. Design Recommendations for Neural Operators
	3.1. Design Neural Operators as Contraction Mappings
	3.2. Integrate Multi-Scale Representations
	3.3. Ensure Universal Approximation Capability
	3.4. Enhance Generalization through Regularization
	3.5. Optimize Computational Efficiency

	4. Conclusion
	Acknowledgments

	Appendix A: Proofs of Theorems and Lemmas
	Appendix A: Proofs of Theorems and Lemmas
	Appendix A.1. Proofs for Section 3.1: Design Neural Operators as Contraction Mappings
	A.1.1. Proof of Theorem 3.1 (Lipschitz Condition for Neural Networks)
	A.1.2. Proof of Corollary 3.2 (Ensuring Contraction via Spectral Normalization)

	Appendix A.2. Proofs for Section 3.2: Integrate Multi-Scale Representations
	A.2.1. Proof of Theorem 3.5 (Approximation Using Combined Bases)
	A.2.2. Proof of Lemma 3.6 (Efficient Computation with Multi-Scale Layers)
	A.2.3. Proof of Theorem 3.7 (Improved Approximation Error with Multi-Scale Representations)

	Appendix A.3. Proofs for Section 3.3: Ensure Universal Approximation Capability
	A.3.1. Proof of Theorem 3.8 (Capacity Growth with Network Size)
	A.3.2. Proof of Lemma 3.9 (Trade-off Between Capacity and Overfitting)

	Appendix A.4. Proofs for Section 3.4: Enhance Generalization through Regularization
	A.4.1. Proof of Theorem 3.10 (Effectiveness of Weight Decay)
	A.4.2. Proof of Lemma 3.11 (Dropout Prevents Co-adaptation)

	Appendix A.5. Proofs for Section 3.5: Optimize Computational Efficiency
	A.5.1. Proof of Theorem 3.13 (Speedup with Parallel Computing)
	A.5.2. Proof of Lemma 3.14 (Amdahl's Law)
	A.5.3. Proof of Theorem 3.15 (Feasibility of High-Dimensional Problems)

	References

