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 Human Action Recognition (HAR) plays a crucial role in understanding and categorizing 
human activities from visual data, with applications ranging from surveillance, healthcare to 
human-computer interaction. However, accurately recognizing a diverse range of actions 
remains challenging due to variations in appearance, occlusions, and complex motion 
patterns. This study investigates the effectiveness of various deep learning model 
architectures on HAR performance across a dataset encompassing 15 distinct action classes. 
Our evaluation examines three primary architectural approaches: baseline EfficientNet 
models, EfficientNet models augmented with Squeeze-and-Excitation (SE) blocks, and models 
combining SE blocks with Residual Networks. Our findings demonstrate that incorporating SE 
blocks consistently enhances classification accuracy across all tested models, underscoring 
the utility of channel attention mechanisms in refining feature representation for HAR tasks. 
Notably, the model architecture combining SE blocks with Residual Networks achieved the 
highest accuracy, increasing performance from 69.68% in baseline EfficientNet to 76.75%, 
marking a significant improvement. Additionally, alternative models, such as EfficientNet 
integrated with Support Vector Machines (EfficientNet-SVM) and ZeroShot Learning models, 
exhibit promising results, highlighting the adaptability and potential of diverse 
methodological approaches for addressing the complexities of HAR. These findings provide a 
foundation for future research in optimizing HAR systems, with implications for enhancing 
robustness and accuracy in action recognition applications. 
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1. Introduction  
 

Recognizing and interpreting human actions, known 
as Human Action Recognition (HAR), is crucial for a range 
of practical applications. HAR can enhance autonomous 
navigation systems by identifying human behaviors to 
ensure safe operation [1] and can be applied in 
surveillance to detect potentially dangerous activities 
[2]. Additionally, HAR plays a significant role in human-
robot interaction [3], health monitoring, sports analytics, 
home automation, fitness tracking, traffic management, 
augmented reality, and more [4].  

Accurately identifying human actions from visual 
data is challenging due to factors like changing lighting 
conditions, background clutter, occlusions, and the wide 
range of human movements. Traditional methods largely 
relied on handcrafted features and shallow learning 
algorithms, which often failed to capture the complex 
patterns and subtleties of human actions.  

Deep learning techniques, specifically Convolutional 
Neural Networks (CNNs) and Deep Belief Networks 
(DBNs), have revolutionized action recognition in 
computer vision by effectively reducing data 

dimensionality and improving classification accuracy [5-
7]. Nevertheless, the traditional strategy of training deep 
learning models from scratch poses challenges due to its 
high need for labeled data, computational resources, and 
time. Researchers have increasingly shifted to transfer 
learning — transferring knowledge from pre-trained 
models to new tasks or domains. This approach 
capitalizes on learned representations to enhance model 
performance without requiring vast new data or 
resources.  

Traditional handcrafted methods such as extended 
SURF [8], HOG-3D [9], etc., have shown notable 
effectiveness in HAR but are constrained by their 
dependence on manually created feature detectors and 
descriptors. In contrast, deep learning methods have 
gained prominence across diverse fields, including 
recognizing human activities. Recent emphasis has also 
moved towards deep learning approaches for action 
recognition, acquiring high accuracies on datasets like 
KTH and UCF sports [10, 11]. Despite the benefits of deep 
learning, such as improved discriminative ability and 
efficiency in capturing motion, these models necessitate 
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substantial amounts of domain-specific data for training, 
which can be expensive and time-consuming. To mitigate 
this challenge, transfer learning has arisen as a practical 
solution, leveraging pre-trained networks from datasets 
like ImageNet (e.g., AlexNet [12], GoogleNet [13], ResNet 
[14]). This strategy involves adjusting pre-trained 
models as feature extractors and incorporating deep 
representations with traditional classifiers to improve 
action recognition performance.  

In HAR, CNNs have shown superiority over traditional 
methods like MLP, Naive Bayes, and SVM in 
differentiating between locomotion activities [15]. 
Studies have studied CNN architectures to analyze sensor 
locations’ impact on activity recognition [16], and 
combinations of handcrafted and CNN-generated 
features have improved classification performance [17]. 
Significant advancements include 3D ConvNets [18], 
Convolutional RBMs [19], spatiotemporal learning using 
3D ConvNets [20], Deep ConvNets and Two-stream 
ConvNets [21], which have showcased impressive 
performance.  

Researchers have also designed several RNN-based 
(Recurrent Neural Networks) models to enhance HAR 
performance. Unlike earlier models that solely 
considered single-dimensional time-series inputs, a CNN 
+ RNN model in [22] utilizes stacked multisensor data 
from each channel for fusion. Ketyk´o et al. [23] address 
domain adaptation problems using RNNs, while residual 
networks (ResNets) are favored for more accessible 
training due to efficient gradient flow through residual 
connections. RNNs are widely used in HAR as 
discriminative models, trained to minimize a cost 
function related to network outputs and labels. DRNNs, 
such as those in [24], have effectively recognized actions 
from various datasets. 

Recent advancements in HAR have explored the use 
of Generative Adversarial Networks (GANs) and their 
variations to address the challenges of obtaining labeled 
data, which is both difficult and costly [25]. In HAR, GANs 
have been utilized to create synthetic sensor data that 
closely mimics real-world data, helping to alleviate issues 
like imbalanced training sets [26]. Wang et al. [26] 
demonstrated the effectiveness of GANs by generating 
artificial data from existing HAR datasets, thereby 
enhancing model robustness and performance. Their 
approach involved oversampling and incorporating 
synthetic sensor data into training sets, which helped 
balance the dataset and improve model accuracy [27, 28]. 
Moreover, GANs have been instrumental in transfer 
learning for HAR, enabling models to generalize better to 
unseen data from new users without extensive data 
collection efforts [29]. This process enables cross-subject 
transfer learning, where knowledge gained from one 
user can be applied to others. 

This study comprehensively compares incorporating 
advanced methods in the HAR task. Leveraging the 
EfficientNetV2B3 model [30] pre-trained on the 

ImageNet dataset as our foundational backbone, we part 
from classic transfer learning and fine-tuning 
approaches by incorporating innovative techniques. We 
incorporate Squeeze-andExcitation (SE) and residual 
blocks employing transfer learning and fine-tuning 
strategies on EfficientNetV2B3. Moreover, this study 
introduces a hybrid model that extracts features from 
three pre-trained models and incorporates SE and 
residual blocks. This study also examines the feature 
extraction approach with EfficientNetV2B3 and SVM 
(Support Vector Machines) and Random Forest (RF) as 
classifiers and zero-shot learning techniques. We 
extensively assess HAR using these techniques.  

This paper is structured as follows: In Section 2, we 
explain the methods utilized in this study. Our 
experimental findings are discussed in Section 3 and 
Section 4 includes discussion of the experimental results. 
Finally, Section 5 is the conclusion.  

 

2. Method 
 

2.1. Squeeze and Excitation (SE) Block 
 

Squeeze and Excitation (SE) blocks enhance the 
power of a network by adaptively recalibrating channel-
wise feature responses [31] (Figure 1a). The SE block 
contains three primary operations:  

• Squeeze Operation: The squeeze operation 
aggregates global spatial information into a channel 
descriptor using global average pooling. For a feature 
map, this operation computes the average value of each 
channel across all spatial dimensions.  

• Excitation Operation: The excitation operation 
finds a set of weights that emphasize the essential 
channels via a two-layer fully connected network with 
ReLU and sigmoid activations. This process generates a 
vector of weights that show each channel’s significance.  

• Scaling Operation: The final operation in the SE 
block is scaling the original feature map with the weights 
generated by the excitation module. This step effectively 
underscores the most important features while reducing 
the less important ones, thereby improving the 
network’s capability. 

 

2.2. The Residual and SE Blocks 
 

Residual blocks, introduced in ResNet (Residual 
Networks) [14], help train deep networks by handling 
the vanishing gradient problem. A residual block consists 
of: 

 • A series of convolutional layers followed by batch 
normalization and ReLU activation. 

• A shortcut (skip connection) that adds the input of 
the block to the output of the series of convolutional 
layers.  
The addition of the shortcut helps the network to learn 
identity mappings, which makes it easier to optimize. 

 
 
 
 
 
 
 



Turkish Journal of Engineering – 2025, 9(2), 281-289 

 

  283  

 

 
 
 

 
Figure 1. Proposed models with SE Block and Residual Block with SE Block 
 

 

Figure 1b shows the SE block used to enhance the 
representational power of a neural network by 
recalibrating channel-wise feature responses. Beginning 
with the output from a Residual Block, the features 
passed to Global Average Pooling, which summarizes 
each feature map into a single value. This pooled output 
is then passed through two fully connected layers. The 
first layer, followed by a ReLU activation, decreases the 
dimensionality, while the second layer, followed by a 
Sigmoid activation, restores it, producing scaling factors 
in the range [0, 1]. These factors are used to scale the 
original feature maps, highlighting essential features and 
hiding the less important ones. 
 

 
The block architecture above is designed to improve 

gradient propagation. Beginning with a 1x1 
convolutional layer featuring 256 filters, stride 1, and 
’same’ padding, followed by batch normalization and 
ReLU activation, the block then includes a 3x3 
convolutional layer with 256 filters and ’same’ padding. 
Subsequently, another 1x1 convolutional layer with 
1024 filters and ’same’ padding is employed. 
Simultaneously, a shortcut is created with its own 1x1 
convolutional layer to match the dimensions of the main 

path. Both paths undergo batch normalization, with the 
shortcut’s output being element-wise added to the main 
path’s output. This residual connection allows the 
network to learn residuals, thereby mitigating the 
vanishing gradient issue and promoting effective feature 
learning. The block concludes with a ReLU activation to 
introduce non-linearity. This structured approach 
effectively enhances the capability of CNNs to learn 
intricate features, thereby boosting performance across 
various tasks such as image classification and object 
detection. 
 
2.3. Transfer Learning with EfficientNetV2B3 
 

EfficientNetV2B3 is a CNN architecture known for 
its efficiency and robust performance across various 
computer vision tasks. It has been pre-trained on large-
scale image datasets like ImageNet, where it learned to 
extract general features from images. EfficientNetV2B3 
stands out in deep learning architectures for its efficient 
scaling and developed block designs. Created upon the 
principles of compound scaling, it uniformly adapts 
network depth, width, and resolution, optimizing 
computational resources while improving accuracy. The 
model incorporates inverted bottleneck blocks, which 
decompose convolutions into depthwise and pointwise 
operations, effectively lowering computational load. 

 
2.3.1. Transfer Learning 

 
Transfer learning is a technique where a model 

trained on one task is reused or transferred as a starting 
point for another task. It’s advantageous when there is a 
limited amount of data. Therefore, rather than training 
an image classification model from scratch for HAR, we 
can leverage the pre-trained EfficientNetV2B3 model. 
This allows us to benefit from the learned 
representations of lower-level features (edges and 
textures) and higher-level features (shapes and patterns) 
that distinguish between different classes of human 
actions. 

Residual Block 
Input: base  
1. Conv2D (256 filters, 1x1, stride 1, padding=’same’)  
2. BatchNormalization  
3. ReLU Activation  
4. Conv2D (256 filters, 3x3, stride 1, padding=’same’)  
5. BatchNormalization  
6. ReLU Activation 
7. Conv2D (1024 filters, 1x1, stride 1, padding=’same’)  
8. Shortcut: Conv2D (1024 filters, 1x1, stride 1, 
padding=’same’)  
9. BatchNormalization  
10. BatchNormalization  
11. Element-wise Addition (Residual Connection)  
12. ReLU Activation 
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2.3.2. Fine Tuning 

 
Fine-tuning a pre-trained model like 

EfficientNetV2B3 concerns adjusting its parameters to fit 
a specific dataset better, improving its capability to 
classify human actions in this scenario. Commonly, this 
procedure starts by unfreezing layers—here, 20 layers 
are unfrozen—to allow their weights to be updated 
during training. The model can adjust to the subtle 
features of the 15 labeled human action classes by 
concentrating on the top layers, where abstract features 
are encoded. This process leverages the general features 
learned from the original ImageNet pre-training in the 
lower layers, maintaining their ability to identify 
essential visual patterns while distilling the model’s 
higher-level representations to determine more 
effectively among the diverse actions in the dataset.  

We incorporate SE and residual blocks operating 
transfer learning and fine-tuning techniques on 
EfficientNetV2B3 to improve the model’s performance. 
The SE blocks, which adaptively recalibrate channel-wise 
feature responses by explicitly modeling 
interdependencies between channels, are integrated to 
enhance the network’s sensitivity to features. 
Meanwhile, the residual blocks, which enable gradient 
flow and mitigate the vanishing gradient problem 
through shortcut connections, enhance convergence and 
network depth.  

This combination of SE and residual blocks, along 
with the sophisticated transfer learning and fine-tuning 
techniques, aims to create a robust and highly accurate 
model for HAR, balancing computational efficiency and 
predictive undertaking. 

 

2.4. Hybrid Model Structure 
 

The hybrid model designed for HAR incorporates the 
powers of three well-known models: VGG16, 
EfficientNetV2B3, and ResNet50. Each of these models 
has been pretrained on the ImageNet dataset, allowing 
them to extract significant features from images. 
Integrating multiple models lets the hybrid model 
leverage various feature representations, improving its 
capacity to distinguish subtle nuances in human 
activities given in the dataset.  

In the structure of the hybrid model, each base 
model—VGG16, EfficientNetV2B3, and ResNet50—is 
initialized with weights from ImageNet and configured to 
exclude their top classification layers. This configuration 
lets the models concentrate only on feature extraction 
rather than classification, aligning them for HAR. The 
input images, resized to a standardized 224x224 pixels, 
undergo feature extraction independently within each 
base model.  

After extracting features from the final convolutional 
layers of VGG16, EfficientNetV2B3, and ResNet50, the 
hybrid model combines these features via concatenation. 
This fusion procedure integrates each model’s spatial 
hierarchies and learned filters, enhancing the overall 
feature representation. Combining these diverse features 
gives the hybrid model a more comprehensive 
understanding of the visual cues associated with 

different human actions, thereby enhancing its 
classification accuracy. 

Following feature concatenation, the combined 
feature vector is passed through dense layers with 
rectified linear unit (ReLU) activation functions. These 
dense layers facilitate learning complicated relationships 
among the concatenated features, allowing the model to 
grasp intricate patterns relevant to HAR. Then, dropout 
regularization is involved after the dense layers to 
prevent overfitting by randomly deactivating a fraction 
of neurons during training, enabling better model 
generalization.  

The output layer of the hybrid model utilizes a 
softmax activation function to yield a probability 
distribution across the 15 human action classes present 
in the dataset. This final layer ensures the model’s 
predictions are normalized, providing a classification 
prediction for each input image. 
 

2.4.1. SE Block Integration in Hybrid Model 
Architecture 

 

In the hybrid model architecture, the SE block is applied 
to the output feature maps of each base pre-trained 
model. This integration recalibrates channel-wise 
responses, enhancing feature discriminability. After 
using the SE block, the improved feature maps are 
flattened and concatenated to form a unified feature 
vector. This concatenated feature vector combines 
improved representations from multiple architectures, 
enhancing the model’s ability. 
 
2.4.2. Residual and SE Blocks Integration in Hybrid 

Model Architecture 
 

SE Blocks are incorporated into the model to improve 
the channel-wise feature responses from each base CNN 
model (VGG16, MobileNetV2, and ResNet50). SE Blocks 
aims to recalibrate channel-wise feature responses 
adaptively, focusing on more important features and 
concealing the less useful ones. This mechanism helps 
improve the model’s discriminative power by 
emphasizing essential features.  

Residual Blocks are introduced to catch and 
propagate deeper feature representations through the 
model. Residual connections alleviate the vanishing 
gradient problem. By propagating gradients more 
efficiently, Residual Blocks enable the learning of 
complex features across multiple layers. After passing 
through SE Blocks, the features from all three base 
models are concatenated.  

SE Blocks improves feature representation by 
concentrating on informative channels. Residual Blocks 
enable deeper feature learning and gradient flow, 
enhancing the model’s capability to grasp complex 
patterns. Concurrently, these components contribute to 
the usefulness and robustness of the hybrid model 
architecture, leveraging the power of both SE Blocks for 
channel recalibration and Residual Blocks for deep 
feature propagation. 

Figure 2 demonstrates an architecture for a hybrid 
neural network model focusing on HAR. The procedure 
starts with an input image, shown by a person riding a 
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bicycle with a child. This image is then processed through 
three pre-trained CNNs: VGG16, EfficientNetV2B3, and 
ResNet50. Each network is well-regarded for its unique 
architecture and feature extraction capabilities. VGG16 is 

known for its deep but straightforward structure, 
EfficientNetV2B3 for its computational efficiency and 
performance, and ResNet50 for its ability to manage deep 
layers through residual learning.

 

 
Figure 2. Hybrid Model 
 

After these pre-trained models’ initial feature 
extraction, the outputs are fed into SE Blocks. SE Blocks 
improve the quality of the extracted features by 
recalibrating channel-wise feature responses, effectively 
modeling the interdependencies between channels. This 
phase is crucial as it amplifies valuable features while 
reducing the less important ones, thus distilling the 
overall feature representation obtained from the CNNs.  

Once the SE Blocks have processed the features, they 
are concatenated. This concatenation combines the 
diverse feature representations from the three networks 
into a wide feature vector. By incorporating features 
from multiple models, the architecture leverages the 
powers of each, showing a more thorough understanding 
of the input image.  

The concatenated feature vector is then passed 
through a Residual Block. Residual Blocks are beneficial 
in deep neural networks as they help to mitigate the 
vanishing gradient problem. This block also distills the 
combined features, enabling the model to learn more 
complex and nuanced representations of the input data. 
Finally, the processed features pass through a series of 
fully connected layers, including BatchNormalization, 
Dropout, Flatten, and Dense layers. The output layer 
results in classification, indicating the recognized human 
action. In summary, this hybrid model architecture 
combines the powers of different architectures with 
developed feature processing techniques like SE Blocks 
and Residual Blocks. 

 
2.4.3. Feature Extraction using EfficientNetV2B3, 

SVM and Random Forest as classifiers 
 

The model combines feature extraction using a pre-
trained EfficientNetV2B3 model and classification using 
SVM and RF. EfficientNetV2B3 is employed to extract 
features from input images. Then, a feature 
representation of the input images is acquired by 
removing the top classification layers of 
EfficientNetV2B3. These features grab hierarchical 
patterns learned by EfficientNetV2B3 during its training 
on ImageNet. The extracted features are then fed into an 
SVM classifier or Random Forest. 
 
2.5. Zero-shot Learning 

 
Zero-shot learning refers to the capability of a model 

to generalize to unseen classes without explicit training 
on those classes. Zero-shot learning with OpenAI’s CLIP-
ViT-Base-Patch32 model harnesses its capabilities. The 
model CLIP-ViT-BasePatch32 identifies the class that 
most matches the query without needing explicit training 
on that specific class. This approach enables effective 
classification across various categories, making it 
particularly useful in applications requiring adaptation 
to new concepts or rapid deployment without thorough 
training data. 
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Figure 3. Examples of different human activities from the dataset. Each figure represents a unique activity 
 
 

3. Results 
 

3.1. Dataset 
 

Our experimentations used a dataset of over 12,000 
labeled images sourced from Kaggle (Human Action 
Recognition dataset) [32]. These images were resized to 
a standardized 224x224 pixels format for consistency 
across the dataset. The dataset has 15 classes, each 
depicting different human activities such as calling, 
clapping, cycling, dancing, drinking, eating, fighting, 
hugging, laughing, listening to music, running, sitting, 
sleeping, texting, and using a laptop. Each activity is 
annotated with a score of 0 to 14, enabling accurate 
labeling for classification. 

Figure 3 illustrates samples of human activities 
included in the dataset for training the HAR model. Each 
subfigure, tagged from (a) to (o), represents a specific 
activity, such as calling, clapping, and cycling. These 
images provide various scenarios to enhance the 
robustness and accuracy of the model in recognizing 
multiple human actions. We partitioned the dataset into 
a training set of 10,080 images and a testing set of 2,520 
images. Notably, each class within the dataset includes an 
equal number of examples, assuring balanced 
representation across all activities as seen in Figure 4. 
This balanced distribution prevents biases during model 
training and evaluation. 

 
3.2. Experimental Results 

 

The model training is configured with the Adam 
optimizer and a learning rate 1e-3 to ensure efficient and 
adaptive learning. Categorical cross-entropy is the loss 
function appropriate for multi-class classification tasks, 
with accuracy as the evaluation metric. The training 

process spans 30 epochs to adequately learn from the 
data while mitigating overfitting risks.  

 

 
Figure 4. Data distribution per category 
 

Table 1 presents the experimental results of various 
model configurations and methods applied to the HAR 
task. The “Base” column represents the performance of 
the base EfficientNetV2B3 model. 

 

4. Discussion 
 

Based on the experiments conducted, we can deduce 
the following outcomes:  

• Base Model (EfficientNetV2B3): The baseline 
accuracy for transfer learning EfficientNet is 69.68%. 
When SE Blocks are added, the accuracy enhances 
greatly to 72.18%, and further increases to 75.79% with 
the addition of Residual Blocks.  
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• Fine-Tuning: Fine-tuning the EfficientNetV2B3 
model results in a higher base accuracy of 73.06%. The 
accuracy improves to 75.08% with the addition of SE 
Blocks and further increases to 76.87% with the addition 
of Residual Blocks.  

• Hybrid Model: The hybrid model, which 
incorporates multiple pre-trained models, also 
demonstrates significant progress with SE and Residual 
Blocks, reaching accuracies of 75% and 76.75%.  

• EfficientNetV2B3-SVM and EfficientNetV2B3-RF: 
These methods use the EfficientNetV2B3 features with 
SVM and RF classifiers. The SVM classifier performs an 
accuracy of 74%, while the RF classifier has a lower 
accuracy of 58%. 

• Zero-Shot Learning: This technique achieves a high 
accuracy of 75.19%, exhibiting its effectiveness in 
generalizing to new tasks without additional training. 
 
Table 1 Experimental results 

 

 
Figure 5. Confusion Matrix for hybrid model with SE and 
Residual Blocks 
 

These results demonstrate the effectiveness of using 
SE Blocks and Residual Blocks in improving the 
performance of the EfficientNetV2B3 model and 
highlight the potential benefits of SE and residual blocks 
and hybrid model approaches. SE blocks dynamically 
emphasize important feature channels, while residual 
blocks enable deeper networks by ensuring effective 
feature propagation. Together, they allow HAR models to 
focus on salient features and capture complex action 
patterns, significantly improving classification 
performance. This integration during transfer learning 

or fine-tuning enhances the robustness and effectiveness 
of Human Action Recognition systems. 

Figure 5 displays the confusion matrix for the hybrid 
model that includes both SE and residual blocks, offering 
a visual representation of the classification performance. 
It highlights the model’s ability to accurately classify 
actions while identifying areas where misclassifications 
occur, providing insights into specific classes that may 
need further refinement in the model. 
 

5. Conclusion  
 

This study explored several advanced techniques to 
enhance HAR using deep learning models. Our focus 
centered on incorporating and examining the 
effectiveness of the SE and residual blocks within these 
models. A thorough analysis showed that the SE and 
residual blocks significantly improve feature 
representations’ discriminative ability. This is 
accomplished by recalibrating channel-wise feature 
responses. This process applies by adjusting the 
importance of different channels in the feature maps 
based on their relevance to the task.  

Furthermore, our research extended beyond the SE 
and residual blocks to include methodologies 
EfficientNetV2B3 for feature extraction and classifiers 
like SVM and RF. Moreover, our investigation into zero-
shot learning highlighted its potential for extending the 
scope of HAR beyond trained classes from Open AI’s 
model CLIP-ViTBase-Patch32.  

In conclusion, our study highlights the importance of 
incorporating advanced techniques like the SE and 
residual blocks and leveraging state-of-the-art models to 
improve HAR tasks. 
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