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Abstract
The diversity in the qualities under investigation is necessary to comprehend any phenom-
enon, whether in a real-world or practical setting. It is crucial to know the differences
between current and previous circumstances. Therefore, to estimate the population vari-
ance with dichotomous auxiliary information, the exponentially weighted moving average
statistic is used. This manuscript suggests a generalized class of memory-type estima-
tors for the estimation of population variance using the Bernoulli auxiliary variable under
time-scaled survey. The properties of the suggested class of memory type estimator and
exponentially weighted moving average version of the usual ratio, regression, and expo-
nential estimators are derived up to the first order of approximation. It has been shown
through empirical and simulation study that the suggested estimator is more efficient than
the usual estimators and the exponentially weighted moving average version of the esti-
mators in the literature.
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1. Introduction
In survey sampling, the estimation of population parameters is often improved by in-

corporating auxiliary information. When used effectively, it can improve the precision
of estimators and reduce sampling errors, making the estimation process more efficient.
Auxiliary information typically involves continuous variables that are related to the study
variable. Using auxiliary information, estimators can be constructed that take advantage
of this correlation to provide more accurate estimates of population variance. The auxil-
iary variable must have a strong linear relationship with the variable of interest in order
to be used as auxiliary information. This relationship can be used to generate variance
estimators that are more effective than those produced by simple random sampling, for
example, through the use of ratio or regression estimating techniques. Ratio estimators
can be used to estimate population parameters while accounting for known auxiliary infor-
mation when there is a linear relationship between the auxiliary variable and the variable
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of interest. Regression modeling allows for the modeling of the relationship between the
auxiliary variable and the variable of interest, leading to more accurate estimates of pop-
ulation variance. Isaki [8] proposed a ratio estimator for the estimation of population
variance using auxiliary information. Bhat et al. [5] and Das [7] have made an improve-
ment in the variance estimator for the estimation of population variance, using known
values of auxiliary information. Sharma and Singh [18] suggested estimators for popula-
tion variance using auxiliary information in the quartile, and Adichwa et al. [1] developed
a generalized class of estimators for population variance using information on two auxiliary
variables.

In certain instances, the supplemental data may not be continuous, but rather binary.
It is known as an auxiliary attribute. Incorporating auxiliary attributes in simple ran-
dom sampling enhances the estimation of population parameters, such as mean, variance,
quartile, etc., by leveraging the additional information encoded in categorical or binary
variables. This method improves precision and reduces sampling errors, especially when
the auxiliary attribute is strongly correlated with the variable of interest. For example, in
a health survey where some individuals do not respond, auxiliary variables such as age,
gender, or prior health history can be used to adjust for non-response. By incorporating
auxiliary attributes as variables correlated with the likelihood of response, we can adjust
the same weights or impute missing data, resulting in more accurate estimates of health
outcomes. For a second example, if we are conducting a household survey and we know
the number of households with Internet access from previous census data, the auxiliary at-
tributes are taken to adjust the weights of the sampled units to match known totals in the
population and to calibrate the survey weights to improve the precision of the estimated
total.

For the estimation of population mean, Koyuncu [9] suggested an efficient estimator us-
ing auxiliary attribute, Sharma and Singh [17] improved the estimators in simple random
sampling when the study variable is an attribute, and Sharma and Singh [16] suggested
some exponential ratio product type estimators using information on auxiliary attributes
under second order approximation. Kadılar [23] proposed a new exponential type esti-
mator for the population mean in simple random sampling and Özel and Kadılar [24]
suggested modified exponential type estimators for the population mean in stratified ran-
dom sampling. For the estimation of population variance, Özel et al. [22] suggested
separate ratio estimators for population variance in stratified random sampling. Singh et
al. [19] proposed a family of estimators using information on auxiliary attributes, then [10]
improved an estimator using two auxiliary attributes. Singh and Malik [20] suggested an
improved estimate of population variance using information on an auxiliary attribute in
simple random sampling, and Adichwal et al. [2] suggested a generalized class of estima-
tors for population variance using an auxiliary attribute. Tariq et al. [25] have performed
variance estimation using memory type estimators based on the exponentially weighted
moving average (EWMA) statistic for time-scaled surveys in stratified sampling.

Memory-type estimators use information from previous survey rounds, which helps in
reducing variance by exploiting the time-series correlation. Using auxiliary information
and past data, these estimators can significantly improve the efficiency of survey esti-
mates, often resulting in lower mean squared errors compared to traditional estimators.
These methods can be adapted to various types of survey and can accommodate complex
survey designs, including those with unequal probability sampling and missing data. The
memory type ratio and product estimators based on EWMA statistics were examined by
[13], whereas Noor-ul Amin [12] used hybrid exponentially weighted moving average for
estimation of population mean using memory type ratio and product estimators for time-
based surveys. Aslam et al. [4] proposed the memory type ratio and product estimators
under ranked-based sampling schemes. Bhushan et al. [6] evaluated the performance of
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memory-type logarithmic estimators under simple random sampling. To estimate popu-
lation variance, Qureshi et al. [15] developed an EWMA-based memory type ratio and
product estimators for population variance under simple random sampling. Noor-ul Amin
et al. [14] suggested a variable acceptance sampling plan based on exponentially weighted
hybrid moving averages. Zaman and Bulut [21] proposed an efficient family of robust-type
estimators for population variance in simple and stratified random sampling. Aslam et al.
[3] proposed a new memory-based ratio estimator for survey sampling. Despite the ben-
efits of employing auxiliary attributes to estimate population variance, there is a notable
gap in the research when it comes to using auxiliary attributes to estimate population
variance using the EWMA statistic. This approach, which uses the EWMA statistic to
estimate population variance using auxiliary attributes, has not been investigated in any
research to the best of our knowledge.

In this paper, we have proposed a family of memory-type estimators for population
variance and also developed the EWMA version of the usual ratio, regression, and expo-
nential estimator for the estimation of population variance when the auxiliary variable is
dichotomous in nature. In addition, the paper is divided into eight sections. The first
section contains the introduction on variance estimation and then about the estimation
using auxiliary attribute and also on the memory type estimator and EWMA statistic.
Then, in Section 2 we define the usual ratio, regression, and exponential type estimators
for the estimation of population variance in the literature. We have proposed a generalized
family of memory-type estimators and also the EWMA version of the usual estimators in
the literature for the population variance of the study variable Y in Section 3. Then we
compared the efficiency of the estimators in Section 4. In Section 5, we conducted an em-
pirical study and compared the efficiency of the estimators, and in Section 6 we conducted
a simulation study to evaluate the performance of the estimators. In Section 7 we discuss
the results of tables and figures. Finally, in the last section, that is, in Section 8 we have
discussed the conclusion.

2. Review of estimators
Consider a sample of size n, drawn by simple random sampling without replacement

(SRSWOR) from a population of size N and let yi and φi denote observations on variables
y and φ, respectively, for the unit ith (i = 1, 2, ..., N). The attributes can be defined as

φ(i) =
{

1 if ith unit of the population possesses attribute,
0 otherwise.

The EWMA statistic to estimate population variance based on sample variance for t > 0
for the study variable and auxiliary attribute is defined as Vt = δs2

yt
+ (1 − δ)Vt−1 and

Wt = δs2
φt

+(1−δ)Wt−1 where δ is weight given to the data known as the weight parameter
or smoothing constant of the current sample observation. The expected value and variance
of the EWMA statistic Vt are, respectively, given by

E(Vt) = S2
y , (2.1)

Var(Vt) = Var
[
δs2

yt
+ (1 − δ)

(
δs2

yt−1 + (1 − δ)Vt−2
)]

= Var
[
δs2

yt
+ (1 − δ)δs2

yt−1 + (1 − δ)2δs2
yt−2 + ...

]
= Var(s2

yt
)δ2

[
1 + (1 − δ)2 + (1 − δ)4 + ...

]
= Var(s2

yt
)δ2

∞∑
n=0

(1 − δ)2n. (2.2)
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The limiting variance of the EWMA statistic Vt is given by

Var(Vt) =
δ2Var(s2

yt
)

2δ − δ2 = ψVar(s2
yt

). (2.3)

similarly, the mean and limiting variance of EWMA statistic Wt can be expressed as
E(Wt) = S2

φ (2.4)

Var(Wt) =
δ2Var(s2

φ)
2δ − δ2 = ψVar(s2

φt
) (2.5)

where ψ = δ
2−δ .

The variance of the usual unbiased estimator S2
y is given by

V(S2
y) = S4

y

(
λ40 − 1
n

)
, (2.6)

where
λrs = µrq

µ
r/2
20 µ

q/2
02

(2.7)

µrq =
∑N

i=1(yi − Ȳ )r(φi − P )q

N − 1 (2.8)

To derive the MSE of the proposed memory-type estimators, we consider the following
notation:

Vt = S2
y(1 + e0t) and Wt = S2

φ(1 + e1t)
such that

E(e0t) = E(e1t) = 0,

E(e2
0t) = ψ

(
λ40 − 1
n

)
,

E(e2
1t) = ψ

(
λ04 − 1
n

)
,

E(e0te1t) = ψ

(
λ22 − 1
n

)
, (2.9)

where s2
φ =

∑n
i=1(φi − φ̄)2/(n− 1) and s2

y =
∑n

i=1(yi − ȳ)2/(n− 1) are the sample variance
of auxiliary attribute and study variable, respectively. S2

φ =
∑N

i=1(φi − µφ)2/(N − 1) and
S2

y =
∑N

i=1(Yi − µy)2/(N − 1) are the population variances of the auxiliary attribute and
the study variable, respectively. µφ =

∑N
i=1 φi/N and µy =

∑N
i=1 Yi/N are the population

means of the auxiliary attribute and the study variable, respectively. φ̄ =
∑n

i=1 φi/n and
ȳ =

∑n
i=1 yi/n are the sample means of the auxiliary attribute and the study variable,

respectively.
Singh et al. [19] proposed the ratio, regression and exponential type estimators for the

estimation of population variance using auxiliary attribute under simple random sampling.
The ratio estimator t1 is given by

t1 = s2
y

(
Sφ2

s2
φ

)
. (2.10)

The MSE of the ratio estimator t1 is obtained by

MSE(t1) = S4
y

[(λ40 − 1) + (λ04 − 1) − 2 (λ22 − 1)
n

]
. (2.11)

The regression estimator t2 is defined as

t2 = s2
y + bφ

(
S2

φ − s2
φ

)
. (2.12)
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The MSE of the regression estimator t2 is given by

MSE(t2) =
S4

y (λ40 − 1) + b2
φS

4
φ (λ04 − 1) − 2bφS

2
yS

2
φ (λ22 − 1)

n
(2.13)

on differentiating (2.4) with respect to bφ and equating to zero, we get

bφ =
S2

y (λ22 − 1)
S2

φ (λ04 − 1)
. (2.14)

Then, substituting the optimum value of bφ in (2.4), we get the minimum variance of
estimator t2 as

MSE(t2)min =
S4

y

n

[
(λ40 − 1) − (λ22 − 1)2

(λ04 − 1)

]
. (2.15)

The exponential estimator t3 is defined as

t3 = s2
y exp

(
Sφ2 − s2

φ

Sφ2 + s2
φ

)
. (2.16)

The MSE of the exponential estimator t3 is obtained by

MSE(t3) =
S4

y

n

[
(λ40 − 1) + (λ04 − 1)

4 − (λ22 − 1)
]
. (2.17)

3. Proposed estimator
In this study, motivated by [19], we developed the memory type ratio, regression, and

exponential estimators for population variance using auxiliary attributes under simple
random sampling. Firstly, the memory type ratio estimator t1e is defined as

t1e = Vt

(
Sφ2

Wt

)
. (3.1)

The MSE of the memory type ratio estimator t1e is obtained by

MSE(t1e) = S4
yψ

[(λ40 − 1) + (λ04 − 1) − 2 (λ22 − 1)
n

]
. (3.2)

The memory type regression estimator t2e is defined as

t2e = Vt + bφ

(
S2

φ −Wt

)
. (3.3)

The MSE of the memory type regression estimator t2e is obtained by

MSE(t2e) = ψ

[
S4

y (λ40 − 1) + b2
φS

4
φ (λ04 − 1) − 2bφS

2
yS

2
φ (λ22 − 1)

n

]
. (3.4)

On differentiating (3.4) with respect to bφ and equating to zero, we get

bφ =
S2

y (λ22 − 1)
S2

φ (λ04 − 1)
. (3.5)

Then, substituting the optimum value of bφ in (3.4), we obtain the minimum variance of
the estimator t2e as

MSE(t2e)min =
S4

yψ

n

[
(λ40 − 1) − (λ22 − 1)2

(λ04 − 1)

]
. (3.6)

The memory type exponential estimator t3e is defined as

t3e = Vt exp
(
Sφ2 −Wt

Sφ2 +Wt

)
. (3.7)
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The MSE of the memory type exponential estimator t3e is obtained by

MSE(t3e) =
S4

yψ

n

[
(λ40 − 1) + (λ04 − 1)

4 − (λ22 − 1)
]
. (3.8)

In this study, we propose the enhanced generalized family of memory type estimator for
the estimation of population variance using auxiliary attribute as

ta = r1Vt

(
Wt

S2
φ

)p

exp
(

η(S2
φ −Wt)

η(S2
φ +Wt) + 2q

)
+ r2Vt

[
1 + log

(
Wt

S2
φ

)]
(3.9)

where r1 and r2 are suitable constants to be determined such that the MSE of ta is
minimum, η, p and q are either real numbers or functions of the known parameters of
auxiliary variables and r1 + r2 6= 1 . Expressing (3.9) in terms of e0t and e1t, we get

ta = r1S
2
y(1 + e0t)

(
S2

φ(1 + e1t)
S2

φ

)p

exp

 η
(
S2

φ − S2
φ(1 + e1t)

)
η
(
S2

φ + S2
φ(1 + e1t)

)
+ 2q


+ r2S

2
y(1 + e0t) [1 + log(1 + e1t)]

= r1S
2
y(1 + e0t)(1 + e1t)p exp

( −ve1t

2 + ve1t

)
+ r2S

2
y(1 + e0t) [1 + log(1 + e1t)]

(3.10)

where v = ηS2
φ

2(ηS2
φ

+q) . Expanding (3.10) using Taylor’s series expansion up to first order
approximation, we have

ta − S2
y = (r1 + r2 − 1)S2

y + r1S
2
y

(
e0t + e1t

(
p− v

2

)
+ e2

1t

(
3v2

8 − vp

2 + p(p− 1)
2

))

+ e0te1t

(
p− v

2

)
+ r2S

2
y

(
e0t + e1t + e0te1t − e2

1t

2

)
.

(3.11)

Then, we have

(ta − S2
y)2 = S4

y + r2
1S

4
y

(
1 + e2

0t + e2
1t

(
p2 + v2

4 + 3v2

4 + p(p− 1)
)

+ 4e0te1t

(
p− v

2

))
+ r2

2S
4
y

(
1 + e2

0t + 4e0te1t

)
+ 2r1r2S

4
y

(
1 + e2

0t + e0te1t (2 + 2p− v))

+ e2
1t

(
p− v

2 + 3v2

8 − vp

2 + p(p− 1)
2

))

− 2r1S
4
y

(
1 + e2

1t

(3
8v

2 − vp

2 + p(p− 1)
2

)
+ e0te1t

(
p− v

2

))
− 2r2S

4
y

(
1 + e0te1t + e2

1t

2

)
. (3.12)

Taking expectations both sides in (3.12), we obtain

MSE(ta) = S4
y + r2

1A+ r2
2B + 2r1r2C − 2r1D − 2r2E. (3.13)
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where

A = S4
y

(
1 + ψ

[(
λ40 − 1
n

)
+ 4

(
λ22 − 1
n

)(
p− v

2

)
+
(
λ04 − 1
n

)(
p2 + v2 + p(p− 1)

)])
, (3.14)

B = S4
y

(
1 + ψ

[(
λ40 − 1
n

)
+ 4

(
λ22 − 1
n

)])
, (3.15)

C = S4
y

(
1 + ψ

[(
λ40 − 1
n

)
+
(
λ22 − 1
n

)
(2 + 2p− v)

+
(
λ04 − 1
n

)(
p− v

2 + 3v2

8 − vp

2 + p(p− 1)
2

)])
, (3.16)

D = S4
y

(
1 + ψ

[(
λ22 − 1
n

)(
p− v

2

)
+
(
λ04 − 1
n

)(3v2

8 − vp

2 + p(p− 1)
2

)])
, (3.17)

E = S4
y

(
1 + ψ

[(
λ22 − 1
n

)
+
(
λ04 − 1

2n

)])
. (3.18)

The expressions A, B, C, D, and E in Equations (3.14)–(3.18) are intermediate com-
ponents used to derive the minimum MSE of the proposed memory-type estimator ta.
Specifically, A captures the impact of higher-order moments and interactions between p
and v. B is a simplified form of A, excluding p and v, and reflects the contributions of
the baseline moment. C extends B by incorporating the linear and quadratic effects of
p and v, often related to the covariance structure. D adjusts for interaction effects using
moment ratios λ22 and λ04. Finally, E provides a compact adjustment term involving the
effects of the auxiliary attributes and the memory parameter ψ.

Differentiating (3.13) from r1, r2 and equating it with zero, we have

r1 = BD − CE

AB − C2 , r2 = AE − CD

AB − C2 . (3.19)

The minimum MSE is given by substituting the values of r1 and r2 in (3.13) as

MSEmin(ta) = S4
y −

(
AE2 +BD2 − 2CDE

AB − C2

)
(3.20)

A set of estimators generated from ta using suitable values of r1, r2, p, η, and q are
listed in Table 1. Table 1 contains conventional parameters such as the quartile deviation
Q2, the coefficient of variation Cx, and the coefficient of skewness B1(x).

4. Efficiency comparison
In this section, we compare the efficiency of the proposed memory type estimator ta with

the ratio estimator t1, regression estimator t2, and exponential estimator t3 for variance
estimation using an auxiliary attribute to show the superiority of the proposed estimators
over the others.

We also compare the efficiency of the proposed memory type estimator ta with the
EWMA version of the ratio estimator t1e, the regression estimator t2e, and the exponential
estimator t3e. Table 1 represents the set of estimators generated from the class of the
proposed memory type estimator (ta).
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Table 1. Set of estimators generated from the class of estimator (ta).

Subset of proposed estimator r1 r2 p η q

ta(1) = Vt 1 0 0 0 0

ta(2) = Vt

(
Wt
S2

φ

)
+ Vt

[
1 + log

(
Wt
S2

φ

)]
1 1 1 0 1

ta(3) = Vt

(
Wt
S2

φ

)p

+ Vt

[
1 + log

(
Wt
S2

φ

)]
1 1 p 0 1

ta(4) = Vt

(
Wt
S2

φ

)−1
+ Vt

[
1 + log

(
Wt
S2

φ

)]
1 1 −1 0 1

ta(5) = Vt

[
1 + log

(
Wt
S2

φ

)]
0 1 1 1 1

ta(6) = Vt exp
(

S2
φ

−Wt

S2
φ

+Wt

)
1 0 0 1 0

ta(7) = r1Vt

(
Wt
S2

φ

)
+ r2Vt

[
1 + log

(
Wt
S2

φ

)]
r1 r2 1 0 1

ta(8) = r1Vt + r2Vt

[
1 + log

(
Wt
S2

φ

)]
r1 r2 0 0 0

ta(9) = r1Vt exp
(

(S2
φ

−Wt)

(S2
φ

+Wt)+2

)
r1 0 0 1 1

ta(10) = r1Vt

(
Wt
S2

φ

)
exp
(

(S2
φ

−Wt)

(S2
φ

+Wt)+2

)
+ Vt

[
1 + log

(
Wt
S2

φ

)]
r1 1 1 1 1

ta(11) = Vt

(
Wt
S2

φ

)
exp
(

(S2
φ

−Wt)

(S2
φ

+Wt)+2

)
+ r2Vt

[
1 + log

(
Wt
S2

φ

)]
1 r2 1 1 1

ta(12) = r2Vt

(
1 + log

(
Wt
S2

φ

))
0 r2 0 0 0

ta(13) = r1Vt exp
(

S2
φ

−Wt

S2
φ

+Wt

)
r1 0 0 1 0

ta(14) = r1Vt exp
(

S2
φ

−Wt

(S2
φ

+Wt)+2

)
+ Vt

[
1 + log

(
Wt
S2

φ

)]
r1 1 0 1 1

ta(15) = Vt

(
Wt
S2

φ

)
1 0 1 0 0

ta(16) = Vt

(
Wt
S2

φ

)−1
1 0 −1 0 0

ta(17) = Vt

(
Wt
S2

φ

)−p

1 0 −p 0 0

ta(18) = r1Vt

(
Wt
S2

φ

)p

r1 0 p 0 0

ta(19) = r1Vt

(
Wt
S2

φ

)p

+ Vt

[
1 + log

(
Wt
S2

φ

)]
r1 1 p 0 1

ta(20) = Q2Vt + Vt

[
1 + log

(
Wt
S2

φ

)]
Q2 1 0 0 0

ta(21) = Q2Vt

(
Wt
S2

φ

)
exp
(

S2
φ

−Wt

S2
φ

+Wt

)
+ Vt

[
1 + log

(
Wt
S2

φ

)]
Q2 1 1 1 0

ta(22) = Q2Vt

(
Wt
S2

φ

)
exp
(

S2
φ

−Wt

S2
φ

+Wt

)
Q2 0 1 1 0

ta(23) = Q2Vt

[
1 + log

(
Wt
S2

φ

)]
0 Q2 0 1 1

ta(24) = Vt

(
Wt
S2

φ

)
+ Q2Vt

[
1 + log

(
Wt
S2

φ

)]
1 Q2 1 0 1

ta(25) = r1Vt exp
(

S2
φ

−Wt

(S2
φ

+Wt)+2

)
+ Q2Vt

[
1 + log

(
Wt
S2

φ

)]
r1 Q2 0 1 1

ta(26) = CxVt

(
Wt
S2

φ

)
Cx 0 1 0 0

ta(27) = CxVt

(
Wt
S2

φ

)p

exp
(

S2
φ

−Wt

S2
φ

+Wt

)
+ Vt

[
1 + log

(
Wt
S2

φ

)]
Cx 1 p 1 0

ta(28) = CxVt

[
1 + log

(
Wt
S2

φ

)]
0 Cx 0 0 1

ta(29) = B1(x)Vt

(
Wt
S2

φ

)
exp
(

S2
φ

−Wt

(S2
φ

+Wt)+2

)
+ Vt

[
1 + log

(
Wt
S2

φ

)]
B1(x) 1 1 1 1

ta(30) = r1Vt

(
Wt
S2

φ

)p

exp
(

S2
φ

−Wt

S2
φ

+Wt

)
+ B1(x)Vt

[
1 + log

(
Wt
S2

φ

)]
r1 B1(x) p 1 0
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MSE(t1) − MSE(ta) =
S4

y

n
[(λ40 − 1) + (λ04 − 1) − 2(λ22 − 1)]

−
(
S4

y + r2
1A+ r2

2B + 2r1r2C − 2r1D − 2r2E
)

≥ 0 (4.1)

MSE(t2)min − MSE(ta) =
S4

y

n

[
(λ40 − 1) − (λ22 − 1)2

(λ04 − 1)

]
−
(
S4

y + r2
1A+ r2

2B + 2r1r2C − 2r1D − 2r2E
)

≥ 0 (4.2)

MSE(t3) − MSE(ta) =
S4

y

n

[
(λ40 − 1) + (λ04 − 1)

4 − (λ22 − 1)
]

−
(
S4

y + r2
1A+ r2

2B + 2r1r2C − 2r1D − 2r2E
)

≥ 0 (4.3)

MSE(t1e) − MSE(ta) =
S4

yψ

n
[(λ40 − 1) + (λ04 − 1) − 2(λ22 − 1)]

−
(
S4

y + r2
1A+ r2

2B + 2r1r2C − 2r1D − 2r2E
)

≥ 0 (4.4)

MSE(t2e)min − MSE(ta) =
S4

yψ

n

[
(λ40 − 1) − (λ22 − 1)2

(λ04 − 1)

]
−
(
S4

y + r2
1A+ r2

2B + 2r1r2C − 2r1D − 2r2E
)

≥ 0 (4.5)

MSE(t3e) − MSE(ta) =
S4

yψ

n

[
(λ40 − 1) + (λ04 − 1)

4 − (λ22 − 1)
]

−
(
S4

y + r2
1A+ r2

2B + 2r1r2C − 2r1D − 2r2E
)

≥ 0 (4.6)

Equations (4.1), (4.2), (4.3), (4.4), (4.5), and (4.6) will always be greater than zero.

5. Empirical study
In this section, two data sets are performed to illustrate the efficiency of the proposed

estimator. The first data set is based on the household of the village [27]. The size of
the household in each village household is taken as the study variable y and the size of
the household that consists of more than five is taken as the auxiliary attribute φ. The
second data set is based on the household of the village [26]. The number of villages in the
circle is taken as the study variable y and a circle consisting of more than five villages is
taken as an auxiliary attribute φ. We have selected different sample sizes n = 5, 10, 15, 20
and different values of δ such as δ = 0.2, 0.5, 0.7, 0.9. The population characteristics are
given below in Table 2. To show the stepwise procedure of empirical investigation of the
proposed estimators over the others, a flow chart is presented in Figure 1.

Table 2. Population characteristics.

N S2
y S2

φ Cy Cp λ22 λ40 λ04

Population 1 35 4.232 0.252 0.346 0.897 0.952 4.977 1.052
Population 2 89 4.074 0.11 0.601 2.678 3.996 3.811 6.162
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Data

y = Study
Variable

φ = Auxiliary
Attribute

φ = 1; if ith unit possesses attribute φ = 0; otherwise

n = 5, 10, 15, 20 and δ = 0.2, 0.5, 0.7, 0.9

Calculate MSE

Figure 1. Flow chart of the empirical study

For a better and easier understanding of the properties of the proposed estimators along
with other estimators considered in this paper, we present the exploratory data analysis
of Tables 3 and 4. Tables 3 and 4 exhibit the MSEs of the estimators in the literature
and their EWMA version and also the MSE of proposed generalized class of memory type
estimators for Population 1 and 2 respectively. Here, we have taken different values of
n = 5, 10, 15, 20 and δ = 0.2, 0.5, 0.7, 0.9 and then obtained the MSE of the estimators.
Tables 3 and 4 show that as the value of n increases, the values of MSE decrease for the
estimators. So, there is a decreasing trend in the MSE values for the increase in the sample
size from 5 to 20. For the fixed value of n, as the values of δ increase from 0.2 to 0.9, the
MSE values also increase. The values of δ are used to assign weight to the current and
past observations, which can lead to the efficiency of the estimators, as shown in Tables
3 and 4. At different values of n and δ, we see that the MSEs of the EWMA version
of estimators in the literature are more efficient than the usual estimators, as the MSEs
of the EWMA version of estimators are less than the usual estimators in the literature.
In addition, the proposed generalized class of memory-type estimators is more efficient
than all the EWMA versions of estimators and the usual estimators in the literature using
Bernoulli auxiliary information.
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Table 3. The MSEs of estimators at different values of n and δ for Population 1

Estimator MSE Estimator MSE
n δ = 0.2 δ = 0.5 δ = 0.7 δ = 0.9

t1e 5 1.6417 4.9252 7.9561 12.0891 t1 14.7756
10 0.8209 2.4626 3.9780 6.0446 7.3878
15 0.5472 1.6417 2.6520 4.0297 4.9252
20 0.4104 1.2313 1.9890 3.0223 3.6939

t2e 5 1.4241 4.5898 7.5119 11.4967 t2 14.0868
10 0.7121 2.2949 3.7560 5.7483 7.0434
15 0.4947 1.5299 2.5040 3.8322 4.6956
20 0.3560 1.1474 1.8780 2.8742 3.5217

t3e 5 1.6071 4.8213 7.7883 11.8342 t3 14.4640
10 0.8036 2.4107 3.8941 5.9171 7.2320
15 0.5357 1.6071 2.5961 3.9447 4.8213
20 0.4018 1.2053 1.9471 2.9585 3.6160

ta 5 1.3871 3.4635 4.9800 6.6346 ta 7.5194
10 0.7187 1.8944 2.8444 3.9851 4.6465
15 0.4850 1.3035 1.9900 2.8460 3.3591
20 0.3660 0.9935 1.5302 2.2130 2.6298

Table 4. The MSEs of estimators at different values of n and δ for Population 2.

Estimator MSE Estimator MSE
n δ = 0.2 δ = 0.5 δ = 0.7 δ = 0.9

t1e 5 0.7307 2.1920 3.5409 5.3803 t1 6.5759
10 0.3653 1.0960 1.7704 2.6901 3.2879
15 0.2436 0.7307 1.1803 1.7934 2.1919
20 0.1827 0.5480 0.8852 1.3451 1.6439

t2e 5 0.3954 1.1863 1.9164 2.9119 t2 3.5589
10 0.1977 0.5932 0.9582 1.4559 1.7794
15 0.1318 0.3954 0.6388 0.9706 1.1863
20 0.0989 0.2966 0.4791 0.7280 0.8897

t3e 5 0.4077 1.2232 1.9760 3.0025 t3 3.6697
10 0.2039 0.6116 0.9880 1.5012 1.8348
15 0.1359 0.4077 0.6587 1.0008 1.2232
20 0.1019 0.3058 0.4940 0.7506 0.9174

ta 5 0.2919 1.0651 1.2585 2.6453 ta 3.2004
10 0.0537 0.3480 0.8149 1.3244 1.6213
15 0.0474 0.1919 0.4478 0.8176 1.0987
20 0.0138 0.0711 0.1100 0.3431 0.8415

6. Simulation Study
A simulation study is conducted to evaluate the performance of the proposed memory-

type estimators over the other estimators in the literature. The computation steps for the
MSEs of the estimators are listed below:

(1) A population of size 1000 are generated using the bivariate normal distribution
with parameters as (Y,X) ∼ N2(5, 6, 2, 5, ρ)
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(2) The different values of smoothing constant and correlation coefficient are taken as
δ = 0.2, 0.5, 0.7, 0.9 and ρ = 0.01, 0.05, 0.10, 0.50, respectively.

(3) Select 10000 samples of different sizes as n = 100, 200, 500, 800.
(4) The MSEs for each sample size are obtained using the formula given as

MSE(θ) = 1
10000

10000∑
i=1

(θi − S2
y)2 (6.1)

Figures 2 and 3 depict the MSEs of the memory-type estimators across n and δ, re-
spectively, for Population 1. Figure 2 shows the MSEs of the memory-type estimators for
Population 1 across different sample sizes (n), under four correlation levels: 0.2, 0.5, 0.7,
and 0.9. In all settings, the estimator ta consistently produces the lowest MSE, indicating
a better efficiency compared to the others. In contrast, t1e shows the highest MSE values
in each scenario. The estimators t2e and t3e perform similarly, closely following each other
in all subplots. As the correlation increases, the overall MSE values decrease, suggest-
ing that a higher correlation leads to improved estimator performance. Additionally, the
distinction between estimators becomes more pronounced at higher correlation levels.

Figure 2. MSEs of memory type estimators across n for Population 1

Figure 3 illustrates the MSEs of memory-type estimators for Population 1 across differ-
ent values of δ, under four sample sizes: 5, 10, 15, and 20. For all sample sizes, MSE values
decrease as δ increases. This indicates that higher values of δ improve the accuracy of
the estimation for all estimators. Among the estimators, ta consistently yields the lowest
MSE, confirming its superior efficiency. In contrast, t1e exhibits the highest MSE in all
settings. The performance of t2e and t3e is quite similar and generally falls between ta
and t1e. As the sample size increases, the differences in the MSEs between the estimators
become more pronounced, especially highlighting the advantage of ta.

Figures 4 and 5 depict the MSEs of the memory-type estimators across n and δ, respec-
tively, for Population 2 across different sample sizes (n), under four correlation levels: 0.2,
0.5, 0.7, and 0.9.
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Figure 3. MSEs of memory type estimators across δ for Population 1

Figure 4. MSEs of memory type estimators across n for Population 2

Figure 5. MSEs of memory type estimators across δ for Population 2
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Figure 6. MSEs of estimators at different values of n for Populations 1 and 2

In Figure 4, the MSE values increase with the sample size at all correlation levels (0.2,
0.5, 0.7, 0.9). Among the estimators, ta consistently yields the lowest MSE, followed by t3e

and t2e, while t1e performs the worst. The benefit of correlation becomes more apparent at
higher levels, with all estimators showing relatively lower MSEs. Figure 5 shows that MSEs
decrease as δ increases, indicating that larger values of δ lead to more accurate estimations.
Again, ta remains the most efficient estimator across all sample sizes, and t1e shows the
poorest performance. The difference in performance between estimators becomes more
distinct at larger sample sizes. Figure 6 shows the MSEs of the usual estimators and the
proposed memory type estimator at different values of n for Populations 1 and 2. Table 5
presents the MSEs of the estimators at several values of n and ρ. From Table 5, it can be
seen that as the value of n increases from 100 to 800 , the values of MSE decrease.

Table 5. MSEs of estimators at different values n and ρ.

ρ Sample size (n) t1 t2 t3

0.01 100 0.074474030 0.073616359 0.073852798
200 0.037489942 0.037350319 0.037386925
500 0.007583014 0.007570541 0.007574743
800 0.001843933 0.001844344 0.001843954

0.05 100 0.080231597 0.079511934 0.079663978
200 0.034853948 0.034682245 0.034732202
500 0.008144596 0.008134262 0.008137447
800 0.002324964 0.002324080 0.002324392

0.10 100 0.068778504 0.068144944 0.068298237
200 0.029927543 0.029800984 0.029830596
500 0.008311328 0.008302342 0.008304616
800 0.001942500 0.001942375 0.001942286

0.50 100 0.061881766 0.061412506 0.061461588
200 0.024129249 0.023984164 0.024028232
500 0.007053652 0.007048166 0.007049023
800 0.001986096 0.001986221 0.001985995



Variance estimation using Bernoulli attribute 793

Table 6. MSEs of memory type estimators at different values of n, ρ and δ.

ρ n δ t1e t2e t3e ta

0.01 100 0.2 0.008070695 0.008157621 0.007996600 0.007968853
0.5 0.025139498 0.025248435 0.024892906 0.024785149
0.7 0.039547104 0.040135219 0.039194730 0.039049582
0.9 0.060098173 0.061353568 0.059646846 0.059471866

200 0.2 0.003121118 0.003142532 0.003107786 0.003102919
0.5 0.009663651 0.009789600 0.009638463 0.009632072
0.7 0.016032223 0.016235195 0.015987198 0.015973613
0.9 0.024423161 0.024770919 0.024367786 0.024353948

500 0.2 0.000955665 0.000958673 0.000955167 0.000955085
0.5 0.002867827 0.002867864 0.002864374 0.002862950
0.7 0.004583108 0.004586237 0.004578351 0.004576452
0.9 0.006920719 0.006931447 0.006914867 0.006912785

800 0.2 0.000232497 0.000231652 0.000232277 0.000232156
0.5 0.000682781 0.000682677 0.000682569 0.000682479
0.7 0.001108105 0.001109038 0.001107932 0.001107895
0.9 0.001650170 0.001647717 0.001649263 0.001648800

0.05 100 0.2 0.007294725 0.007232105 0.007191152 0.007144751
0.5 0.020849600 0.021497283 0.020696645 0.020652966
0.7 0.034621683 0.035413472 0.034309477 0.034192589
0.9 0.051451909 0.052560065 0.051019224 0.050851817

200 0.2 0.003505380 0.003520028 0.003492192 0.003487248
0.5 0.010067906 0.010223116 0.010048743 0.010046038
0.7 0.016438497 0.016546146 0.016375082 0.016351367
0.9 0.025296262 0.025502353 0.025206709 0.025173276

500 0.2 0.000934758 0.000935868 0.000933865 0.000933538
0.5 0.002702813 0.002710472 0.002700990 0.002700546
0.7 0.004190165 0.004197515 0.004185838 0.004184287
0.9 0.006617622 0.006643919 0.006614614 0.006614435

800 0.2 0.000220116 0.000220804 0.000220169 0.000220216
0.5 0.000684491 0.000683023 0.000684029 0.000683786
0.7 0.001110035 0.001111724 0.001110018 0.001110073
0.9 0.001664942 0.001667011 0.001664833 0.001664866

0.10 100 0.2 0.008445069 0.008420667 0.008354160 0.008313983
0.5 0.025044947 0.025688222 0.024874052 0.024822400
0.7 0.040806295 0.041833041 0.040572986 0.040496798
0.9 0.062273696 0.063657284 0.061820251 0.061638118

200 0.2 0.003596798 0.003649247 0.003588857 0.003587546
0.5 0.010351823 0.010477647 0.010323714 0.010316494
0.7 0.017545582 0.017648135 0.017482370 0.017457346
0.9 0.025481799 0.025802523 0.025401345 0.025378481

500 0.2 0.001174675 0.001172851 0.001173203 0.001172546
0.5 0.003747531 0.003753736 0.003745183 0.003744497
0.7 0.005919403 0.005932769 0.005916102 0.005915332
0.9 0.009030532 0.009043229 0.009023034 0.009020422

800 0.2 0.000243781 0.000243512 0.000243670 0.000243615
0.5 0.000737599 0.000738841 0.000737608 0.000737655
0.7 0.001184690 0.001185721 0.001184569 0.001184555
0.9 0.001733259 0.001733878 0.001732884 0.001732749

0.50 100 0.2 0.008809943 0.008870927 0.008734070 0.008704825
0.5 0.026666422 0.027428546 0.026522655 0.026491662
0.7 0.043890202 0.045109507 0.043672955 0.043619884
0.9 0.064863281 0.067049324 0.064603703 0.064566737

200 0.2 0.003676004 0.003716788 0.003664672 0.003661272
0.5 0.011163133 0.011294014 0.011132897 0.011124303
0.7 0.018253305 0.018510915 0.018215299 0.018207382
0.9 0.027449633 0.027680124 0.027361425 0.027329136

500 0.2 0.000808593 0.000812158 0.000808141 0.000808080
0.5 0.002272645 0.002282460 0.002270869 0.002270494
0.7 0.003626710 0.003653547 0.003626432 0.003627294
0.9 0.005787633 0.005819542 0.005785099 0.005785158

800 0.2 0.000246984 0.000246721 0.000246879 0.000246826
0.5 0.000699952 0.000700261 0.000699792 0.000699735
0.7 0.001132896 0.001134379 0.001132823 0.001132843
0.9 0.001760733 0.001762220 0.001760497 0.001760450

Table 6 presents the MSE values of various estimators. It is clearly observed that, for
a fixed value of δ, the MSE values decrease steadily as the sample size n increases from
100 to 800. This behavior is consistent across all estimators considered in the study and
aligns with the general statistical expectation that larger sample sizes yield more precise
estimates due to reduced variability. Conversely, when the sample size n is held constant,
an increase in the parameter δ from 0.2 to 0.9 leads to a gradual increase in the MSE values
for all estimators. This suggests that higher values of δ, which may be associated with
increased variability or dependence in the data structure, negatively affect the estimation
accuracy.
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A comparative evaluation of Tables 5 and 6 reveals a significant finding: the proposed
generalized class of memory-type estimators consistently achieves lower MSE values com-
pared to both the traditional estimators available in the literature and their EWMA
versions. This clearly demonstrates the superior performance of the proposed estimator.

7. Conclusion
In this study, we have suggested a generalized class of memory-type estimators for the

estimation of population variance using Bernoulli auxiliary information. In addition, some
known estimators of population variance, such as the usual ratio and exponential ratio
type estimators, are found to be members of a generalized class of memory-type esti-
mators. The set of estimators are also generated from the proposed generalized class of
memory type estimators. Additionally, we calculated the MSE of the suggested estimator
up to the first order of approximation. The results of the empirical study showed that,
in different sample sizes, the suggested memory type estimators outperformed the other
memory-type estimators discussed above and the estimators in the literature. According
to simulation research results, the suggested memory type estimator outperformed the lit-
erature estimators at various values of n, δ and ρ. The suggested estimator had the lowest
MSE in both empirical and simulated studies, indicating that the suggested memory-type
estimator is more effective and beneficial for the estimation of population variance with
Bernoulli auxiliary information specifically for time-scaled surveys. Conventional estima-
tors often make the assumption that the auxiliary data is constant or independent over
time.

The proposed method utilizes an exponentially weighted moving average (EWMA),
which gives more weight to recent data while preserving some of the impact of previous
observations. This increases accuracy in dynamic contexts where population character-
istics change over time. Therefore, the suggested approach addresses the limitation of
existing studies. Future studies could concentrate on applying our suggested estimator to
different sampling schemes, as well as to situations involving measurement error and non
response, where the data from auxiliary attributes can be used to more precisely estimate
population variance.
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