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Abstract 
 

In this paper, simplicial Lie-Rinehart algebras and Lie-Rinehart cat1-algebras will be defined. With the help of 
these definitions, the relations between Lie-Rinehart crossed modules, cat1 -algebras and simplicial Lie-Rinehart 
algebras will be explained. 
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Öz 
 

Bu çalışmada, simplisel Lie-Rinehart cebirler ve Lie-Rinehart cat1 -cebirler tanımlanacaktır. Bu tanımlamalar 
yardımıyla, Lie-Rinehart çaprazlanmış modüller, cat1-cebirler ve simplisel Lie-Rinehart cebirler arasındaki ilişki 
açıklanacaktır. 
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Introduction 

Lie-Rinehart algebras represent a significant structure that examines the interactions between Lie 
algebras and differential geometry. These structures are defined as general constructions related to 
both Lie algebras and modules over commutative algebras and offer a rich and profound field of 
research in topics related to differential algebraic structures. Particularly, the study of modules over 
Lie-Rinehart algebras is crucial for understanding the geometric and algebraic properties of these 
structures. In this context, the crossed modules of Lie-Rinehart algebras emerge as a generalization of 
similar concepts in differential geometry and homological algebra. These were firstly introduced by 
Herz in (Herz, 1953). Lie-Rinehart algebras have a very close relationship to Lie algebroids and are their 
section spaces. For more information, see (Huebschmann, 1990; Mackenzie, 1987). 

Lie-Rinehart crossed modules represent a significant concept that merges algebraic and differential 
structures. These modules enable the formulation of a Lie algebra as a module while exploring the 
interactions of these structures across different mathematical contexts. These structures are critically 
important, particularly in the representation theory of Lie algebras and the study of geometric 
structures. The applications of these modules are extensive in fields such as differential geometry, 
algebraic geometry, and theoretical physics. For instance, Lie-Rinehart modules enable a better 
understanding of the relationships between differential forms and vector fields, thus providing a 
foundation for a deeper exploration of symmetries and structures. In conclusion, Lie-Rinehart crossed 
modules reveal connections between mathematical theories and structures, making significant 
contributions to both theoretical and applied research. In this context, a thorough investigation of 
these modules can offer new perspectives in various disciplines of modern mathematics. On the other 
hand, crossed modules for Lie-Rinehart algebras were defined in (Casas et al., 2004) to provide 
extensive information about the cohomology of Lie-Rinehart algebras. Afterwards, the authors have 
contributed the subject with the studied (Casas, 2011; Casas et al., 2005). 

Our main purpose in this article is to define simplicial Lie-Rinehart algebras and Lie-Rinehart cat1-
algebras, and give natural equivalences between the category of Lie Rinehart crossed modules, Lie 
Rinehart cat1-algebras and one dimensional simplicial Lie-Rinehart algebras. In addition, fort he Lie 
algebra and categorical aspect with see (Arvasi & Akça, 2002). 

Preliminaries  

In this section, the fundamental concepts and properties that will be used in the article will be given. 
For the detailed information about the definitions and theorems that we restate see (Casas et al., 
2004; Herz, 1953). Throughout this article, 𝑟 will be taken as a field, 𝐶 as a commutative algebra over 
𝑟, and 𝐷𝑒𝑟(𝐶) as the set of 𝑟-derivations of 𝐶. 

Definition 1.  Let 𝒳 be a Lie 𝑟-algebra and an 𝐶-module and 𝛾: 𝒳 → 𝐷𝑒𝑟(𝐶) is an 𝐶-module and a Lie 
𝑟-algebra homomorphism. So, (𝒳,𝛾) is called a Lie-Rinehart 𝐶-algebra over 𝐶 (or shortly called L-R 
algebra) and denoted by 𝒳, if 

[𝑥, 𝑐𝑥′] = 𝑐[𝑥, 𝑥′] + 𝑥(𝑐)𝑥′ 

for all 𝑥, 𝑥′ ∈ 𝒳, 𝑐 ∈ 𝐶 where 𝑥(𝑐) = 𝛾(𝑥)(𝑐). 

Definition 2.  Let 𝒳 and 𝒳 ′ be L-R algebras. Let 𝜁: 𝒳 → 𝒳 ′ be a Lie algebra homomorphism and an 𝐶-
module homomorphism. If the diagram 
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is commutative then 𝜁 is called a L-R algebra homomorphism. 

So, we have the category of L-R algebras and we denote this category by 𝔏ℜ(𝐶). 

Example 3.  If 𝛾 = 0 for a Lie-Rinehart algebra 𝒳 then 𝒳 is a Lie 𝐶-algebra. Also, 𝐷𝑒𝑟(𝐶) is a L-R 
algebra. 

Example 4.  If 𝒳 is a L-R algebra, then 𝒳 ⋊ 𝐶 with Lie bracket 

[(𝑥, 𝑐), (𝑥′, 𝑐′)] = ([𝑥, 𝑥′], 𝑥(𝑐′) − 𝑥′(𝑐)) 

and map  

𝛾
∼

: 𝒳 ⋊ 𝐶 → 𝐷𝑒𝑟(𝐶),  𝛾
∼

(𝑥, c) = 𝛾(𝑥) 

is a L-R algebra, where 𝛾 is 𝛾: 𝒳 → 𝐷𝑒𝑟(𝐶). 

Definition 5.  Let 𝒳 be a L-R algebra . A L-R subalgebra 𝒩 of 𝒳 consists of a Lie 𝑟-subalgebra 𝒩 which 
is an 𝐶-module and 𝐶 acts on 𝒩 via the composition  

𝒩 ↪ 𝒳 →
𝛾

𝐷𝑒𝑟(𝐶). 

It is trivial that a L-R subalgebra 𝒩 of 𝒳 is an ideal if 𝒩 is an ideal of 𝒳 as Lie 𝑟 -algebra with the 
following composition  

𝒩 ↪ 𝒳 →
𝛾

𝐷𝑒𝑟(𝐶). 

Definition 6.  Let 𝒳 be a L-R algebra and 𝑌 be a Lie 𝐶 -algebra. The action of 𝒳 on 𝑌 is a 𝑟 -linear map 

𝒳 × 𝑌 → 𝑌
(𝑥, 𝑦) ↦ 𝑥𝑦

 

satisfies the following axioms 

1. [𝑥,𝑥′]𝑦 =𝑥 (𝑥′
𝑦) − 𝑥

′
(𝑥𝑦) 

2. 𝑥[𝑦1, 𝑦2] = [𝑥𝑦1, 𝑦2] + [𝑦1,𝑥 𝑦2] 

3. 𝑐𝑥𝑦 = 𝑐(𝑥𝑦) 

4. 𝑥(𝑐𝑦) = 𝑐(𝑥𝑦) + (𝜁(𝑥)(𝑐))𝑦, 

 for all 𝑥, 𝑥′ ∈ 𝒳, 𝑦, 𝑦1, 𝑦2 ∈ 𝑌 and 𝑐 ∈ 𝐶. 

Definition 7.  Let 𝒳 be a L-R algebra, 𝑌 be a Lie 𝐶 -algebra and 𝒳 acts on 𝑌. Then 𝒳 ⋊ 𝑌 is a Lie 𝑟-
algebra with the Lie bracket  

[(𝑥, 𝑦), (𝑥′, 𝑦′)] = ([𝑥, 𝑥′], [𝑦, 𝑦′]+𝑥𝑦′−𝑥′
𝑦). 
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 This construction is called semi-direct product of 𝒳 and 𝑌. If we define 

𝛾
∼

: 𝒳 ⋊ 𝑌 → 𝐷𝑒𝑟(𝐶),  𝛾
∼

(𝑥, 𝑦) = 𝛾(𝑥) 

 then the pair (𝒳 ⋊ 𝑌, 𝛾
∼

) is a L-R algebra. 

Definition 8.  Let 𝑌 be an abelian Lie 𝐶-algebra and 𝒳 be a L-R 𝐶-algebra. If 𝒳 acts on 𝑌 then we call 
𝑌 as a L-R module over 𝒳 or shortly (𝒳, 𝐶)-module . 

Crossed Modules 

Crossed modules are a fundamental concept in algebraic topology and homological algebra, providing 
a way to study the interplay between group theory and homotopy theory. Put forward by Whitehead 
in (Whitehead, 1949), crossed modules generalize the notion of groups and their actions, allowing for 
a more nuanced understanding of how different algebraic structures can interact. This setup allows us 
to capture the idea of a group acting on another group, where the action is governed by the 
homomorphism. One of the key motivations for studying crossed modules is their role in the 
classification of 2-categories and the study of higher-dimensional algebra. They provide a framework 
for understanding how groups can be built up from simpler components, similar to how topological 
spaces can be constructed from simplices. Following Whitehead’s definition, many researchers have 
investigated the properties of crossed modules by defining them on various algebraic structures 
(Aytekin & Şahan, 2022; Gürmen, 2023; Odabaş et al., 2016; Şahan, 2019). 

Now, we will recall the definition of the Lie-Rinehart crossed module (or shortly called L-R crossed 
module). The examples, remarks and propositions for L-R crossed modules similar to crossed modules 
of commutative algebras and Lie algebras given in many different papers in the references. But many 
parts of the proofs are different for L-R algebra case. 

Definition 9.  Let 𝒳 be a L-R algebra, 𝑌 be a Lie 𝐶 -algebra and 𝒳 acts on 𝑌. Lie 𝑟-algebra 
homomorphism ∂: 𝑌 → 𝒳 is called L-R crossed module such that the following identities hold  

1. ∂(𝑙𝑦) = (𝑙 ∂(𝑦)) 

2. [∂(𝑦′), 𝑦] = [𝑦′, 𝑦] 

3. ∂(𝑐𝑦) = 𝑐 ∂(𝑦) 

4. ∂(𝑦)(𝑐) = 0, 

for all 𝑦, 𝑦′ ∈ 𝑌, 𝑥 ∈ 𝒳 and 𝑐 ∈ 𝐶 . This structure is denoted by (𝑌, 𝒳, ∂). 

As indicated in (Casas et al., 2004), the third condition says that ∂ is an 𝐶-module homomorphism and 
the fourth condition says that the composition 

𝑌 →
∂

𝒳 →
𝛾

𝐷𝑒𝑟(𝐶) 

is zero. 

Example 10.  Let 𝒳 be a L-R algebra and 𝐼 is an ideal of 𝒳. With homomorphim 

𝑖: 𝐼 → ℒ
𝑙 ↦ 𝑙

 

and action 

𝒳 × 𝐼 → 𝐼
(𝑥, 𝑡) ↦ [𝑥, 𝑡] 
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for all 𝑡 ∈ I, 𝑥 ∈ 𝒳, (𝐼, 𝒳, 𝑖), is a L-R crossed module. 

Example 11.  Let 𝑌 be a (𝒳, 𝐶)-module. Then 0: 𝑌 → 𝒳 is a L-R crossed module. 

Example 12.  Let 𝛽: 𝑌 → 𝑌′ be a homomorphism of (𝒳, 𝐶)-modules. We define an action of 𝒳 ⋊ 𝑌′ on 
𝑌 with (𝑥, 𝑦′) ⋅ 𝑦 = 𝑥𝑦 for all 𝑥 ∈ 𝒳, 𝑦 ∈ 𝑌 and 𝑦′ ∈ 𝑌′. Define  

∂: 𝑌 → 𝒳 ⋊ 𝑌′

𝑦 ↦ (0, 𝛽(𝑦)),
 

 

then (𝑌, 𝒳 ⋊ 𝑌′, ∂) is a L-R crossed module. 

Definition 13.  Let (𝑌, 𝒳, ∂) and (𝑌′, 𝒳 ′, ∂′) be L-R crossed modules. The homomorphism between 
these two crossed modules is the pair (𝑓, 𝜙) of Lie 𝑟-algebra homomorphism 𝑓: 𝑌 → 𝑌′ and L-R algebra 
homomorphism 𝜙: 𝒳 → 𝒳′ such that 

𝑓(𝑥 ⋅ 𝑦) = 𝜙(𝑥) ⋅ 𝑓(𝑦), ∂′𝑓(𝑦) = 𝜙 ∂(𝑦). 

Thus, the category of L-R crossed modules whose objects are L-R crossed modules and whose 
morphisms are homomorphism pairs is defined and this category is denoted as 𝔛𝔪𝔬𝔡(𝔏ℜ). 

Now, we will give some basic functorial properties of this category. Obviously, we can easily define 
some forgetful functors as follows; 

𝑈1: 𝔛𝔪𝔬𝔡(𝔏ℜ) → 𝔏ℜ(𝐶)

(𝑌, 𝒳, ∂) ↦ 𝒳
 

𝑈2: 𝔛𝔪𝔬𝔡(𝔏ℜ) → 𝔏(𝐶)

(𝑌, 𝒳, ∂) ↦ 𝑌
 

where 𝔏(𝐶) represents the category of Lie algebras. Also, if we denote the category of Lie  𝑟-algebras 
by 𝔛𝔪𝔬𝔡(𝔏ie) then we have 

𝑈3: 𝔛𝔪𝔬𝔡(𝔏ℜ) → 𝔛𝔪𝔬𝔡(𝔏ie) 

which forgets the 𝐶-module structure. 

Simplicial L-R Algebras 

Simplicial algebras are a branch of mathematics that arises from the interplay between algebraic 
structures and topological concepts, particularly in the study of simplicial sets and simplicial 
complexes. At its core, simplicial algebra provides a framework for understanding how algebraic 
operations can be performed on geometric objects, enabling mathematicians to explore relationships 
between topology, homotopy theory, and category theory. The fundamental building blocks of 
simplicial algebras are simplices geometric objects such as points, line segments, triangles, and higher-
dimensional analogs. These simplices are organized into higher-dimensional structures known as 
simplicial complexes, which serve as a way to study spaces through combinatorial and algebraic 
methods. One of the key contributions of simplicial algebra is its ability to capture homotopical 
properties of topological spaces through algebraic invariants, such as homology and cohomology 
groups. This provides for a wide understanding of the shape and connectivity of spaces, bridging the 
gap between algebraic and geometric perspectives.  

Now, we recall the definition of simplicial object in (Goerss & Jardine, 2009). Let ℭ be a category with 
all finite colimits and consider 𝑠ℭ, the category of simplicial objects in ℭ. A simplicial object in ℭ is 
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defined as a contravariant functor △𝑜𝑝→ ℭ from the ordinal number category △. In this context, a 
simplicial L-R algebra (or shortly called SL-R algebra) 𝐗 is a sequence of L-R algebras 

𝐗 = {𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . } 

together with face and degeneracy maps 

𝑑𝑖
𝑛: 𝑋𝑛 → 𝑋𝑛−1

𝑠𝑖
𝑛: 𝑋𝑛 → 𝑋𝑛+1

 

for all 0 ≤ 𝑖 ≤ 𝑛, 𝑛 ≠ 0 which are L-R homomorphisms satisfying the general simplicial identities. 

The Moore Complex 

The Moore complex 𝐍𝐗 of a simplicial L-R algebra 𝐗 is the complex 

𝐍𝐗: … N𝑋𝑛 →
∂𝑛

N𝑋𝑛−1 →
∂𝑛−1

… →
∂2

N𝑋1 →
∂1

N𝑋0 

where 𝑁𝑋0 = 𝑋0, 𝑁𝑋𝑛 = ⋂
𝑛−1

𝑖=0
𝐾𝑒𝑟𝑑𝑖 and ∂𝑛 is the restriction of 𝑑𝑛 to 𝑁𝑋𝑛. 

We express that the Moore complex 𝐍𝐗 of a SL-R algebra 𝒳 is of length k if 𝑁𝑋𝑛 = 0 for all 𝑛 ≥ 𝑘 + 1. 
In this situation since the kernel of a L-R homomorphism is a Lie 𝐶-algebra, so 𝑁𝑋𝑛 is a Lie 𝐶-algebra 
for 𝑛 ≥ 1. So, it can be defined the category of SL-R denoted by 𝔖𝔪𝔭≤𝔫(𝔏ℜ) whose objects are SL-R 
algebras with Moore complex of length 𝑛 and the morphisms are families of L-R homomorphisms 
suitable with face and degeneracy maps. 

Truncated SL-R Algebras 

Details of the group case can be found in (Curtis, 1971). For each 𝑘 ≥ 0 we have a subcategory of △, 

denoted as △≤𝑘 obtained by the objects [𝑗] of △ with 𝑗 ≤ 𝑘. A truncated SL-R algebra is △≤𝑘
𝑜𝑝

→ 𝔏ℜ(𝐶). 

As a consequence a truncated SL-R algebra is a family of L-R algebras {𝑋0, 𝑋1, . . . , 𝑋𝑘} and 
homomorphism 𝑑𝑖: 𝑋𝑛 → 𝑋𝑛−1, 𝑠𝑖: 𝑋𝑛 → 𝑋𝑛+1 for each 0 ≤ 𝑖 ≤ 𝑛 which previously mentioned. We 
denote the category of k -truncated SL-R algebras by 𝔗𝔯𝑘𝔖𝔪𝔭(𝔏ℜ). Also, there is the functor 
𝑡𝑟𝑘: 𝔖𝔪𝔭(𝔏ℜ) → 𝔗𝔯𝑘𝔖𝔪𝔭(𝔏ℜ) and the following relationship exists between it and the 𝑠𝑡𝑘 and 
𝑐𝑜𝑠𝑡𝑘 functors;  

𝔗𝔯𝑘𝔖𝔪𝔭(𝔏ℜ)
←
𝑡𝑟𝑘

→
𝑐𝑜𝑠𝑡𝑘

𝔖𝔪𝔭(𝔏ℜ)
→
𝑡𝑟𝑘

←
𝑠𝑡𝑘

𝔗𝔯𝑘𝔖𝔪𝔭(𝔏ℜ). 

For the definitions of the functors 𝑐𝑜𝑠𝑡𝑘 and 𝑠𝑡𝑘 see (Curtis, 1971). 

Theorem 14.  The category 𝔛𝔪𝔬𝔡(𝔏ℜ) is naturally equivalent to the category 𝔖𝔪𝔭≤1(𝔏ℜ). 

Proof. Let 𝑋 be an object of 𝔖𝔪𝔭≤1(𝔏ℜ). Take 𝑌 = ker𝑑0 (so 𝑌 is a Lie 𝐶 -algebra) and ∂ is the 
restriction of 𝑑1 to 𝑌. Action of 𝑋 on 𝑌 is defined as 

𝑋0 × 𝑌 → 𝑌
(𝑥, 𝑦) ↦ 𝑥𝑦 = [𝑠0𝑥, 𝑦]

 

for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. It is easy to check the conditions of the action. 

Since the maps 
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are L-R algebra homomorphism, we have the following commutative diagrams 

 

By using the commutativity of diagrams and some simplicial identities we have 

CM 1: 

∂(𝑥𝑦) = ∂[𝑠0𝑥, 𝑦]

= [𝑑1𝑠0𝑥, 𝑑1𝑦]

= [𝑥, ∂𝑦]       (∵  𝑑1𝑠0 = 𝑖𝑑).

 

CM 2: Employing similar manner we provide the following identity 

∂(𝑦′)𝑦 = [𝑦′, 𝑦]. 

CM 3: 

∂(𝑐𝑦) = 𝑐 ∂(𝑦)   (since ∂, is a 𝐶 -module homomorphism) 

CM 4: Taking advantgre of the definitions and properties, we obtain the following  

∂(𝑦)(𝑐) = 0. 

The homomorphism ∂: 𝑌 → 𝑋 is a L-R crossed module . So we obtain a functor 

𝑁1: 𝔖𝔪𝔭≤1(𝔏ℜ) → 𝔛𝔪𝔬𝔡(𝔏ℜ) 

Conversely let ∂: 𝑌 → 𝑋 be a L-R crossed module. With the action of 𝑋 on 𝑌 we can create 

𝑋1 = 𝑋 ⋊ 𝑌 = {(𝑥, 𝑦): 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}. 

For all 𝑐 ∈ 𝐶, 𝑥, 𝑥′ ∈ 𝑋0 and 𝑦, 𝑦′ ∈ 𝑌 the scalar multiplication, sum and multiplication defined as 

𝑐(𝑥, 𝑦) = (𝑐𝑥, 𝑐𝑦),

(𝑥, 𝑦) + (𝑥′, 𝑦′) = (𝑥 + 𝑥′, 𝑦 + 𝑦′),

[(𝑥, 𝑦), (𝑥′, 𝑦′)] = ([𝑥, 𝑥′], [𝑦, 𝑦′]+𝑥𝑦′−𝑥′
𝑦),

 

respectively. We have the homomorphisms 

𝑑0: 𝑋 ⋊ 𝑌 → 𝑋

(𝑥, 𝑦) ↦ 𝑥
𝑑1: 𝑋 ⋊ 𝑌 → 𝑋

(𝑥, 𝑦) ↦ (∂𝑦) + 𝑥
𝑠0: 𝑋 → 𝑋 ⋊ 𝑌

𝑥 ↦ (𝑥, 0)

 

and these maps satisfy the simplicial identities. 

Now we must show that these maps are L-R homomorphisms. Since 
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𝛾𝑑0 = �̃�, 𝛾𝑑1 = �̃� and �̃�𝑠0 = 𝛾 

we have 

𝛾𝑑0 = �̃� = 𝛾, 𝛾𝑑1 = �̃� = 𝛾 and �̃�𝑠0 = 𝛾𝑠0 = 𝛾 

so the maps are L-R homomorphisms (other conditions are omitted as they easy to check). Finally 

 

is an object of 𝔗𝔯1𝔖𝔪𝔭(𝔏ℜ). So, we have 

𝑀: 𝔛𝔪𝔬𝔡(𝔏ℜ) → 𝔗𝔯1𝔖𝔪𝔭(𝔏ℜ). 

On the other hand we have the functor 

𝑠𝑡1: 𝔗𝔯1𝔖𝔪𝔭(𝔏ℜ) → 𝔖𝔪𝔭≤1(𝔏ℜ). 

Thus, with the combination of the 𝑠𝑡1 and 𝑀 functors we obtain 

𝑁2: 𝔛𝔪𝔬𝔡(𝔏ℜ) → 𝔖𝔪𝔭≤1(𝔏ℜ). 

So, thanks to the functors 𝑁1 and 𝑁2, the natural equivalence between the two categories is shown. 

Cat𝟏 L-R Algebras 

Cat1 algebras emerge from the intersection of category theory and algebra, offering a powerful 
framework for studying algebraic structures through categorical concepts. By viewing algebraic entities 
such as groups, rings, and modules as objects within a category, Cat1 algebras enable a deeper 
exploration of their relationships and transformations. In this context, a Cat1 algebra can be 
understood as a category with a single object, where morphisms correspond to the algebraic 
operations defined on that object. This perspective allows for the analysis of algebraic properties in a 
more general setting, facilitating the investigation of homomorphisms, automorphisms, and 
extensions in a unified manner. One of the main advantages of Cat1 algebras is their ability to capture 
the essence of algebraic structures while retaining the flexibility of categorical operations. This 
approach not only enhances the understanding of traditional algebraic concepts but also bridges 
connections to other areas of mathematics, such as topology and homological algebra. 

Cat1 groups were defined by Loday in (Loday, 1982). He developed this concept to explore the 
connections between categorical structures and group theory. Cat1 groups provide an important 
framework for understanding how groups are structured within a category and how relationships 
between groups can be studied. Following Loday’s definition, many researchers have investigated the 
properties of this structure on various algebraic structures (Alp, 1998; Alp & Gürmen, 2003; Arvasi & 
Odabaş, 2016; Şahan & Kendir, 2023, Temel,2019). 

Definition 15.  A cat1 L-R algebra is a triple (𝒳, 𝑠, 𝑡) where 𝒳 is a L-R algebra, 𝑠 and 𝑡 are L-R 
homomorphisms such that; 

𝑖) 𝑠𝑡 = 𝑡 and 𝑡𝑠 = 𝑠 

𝑖𝑖) [ker𝑠, ker𝑡] = 0. 

Obviously we can form the category of cat1 L-R algebras where the morphisms are L-R algebra 
homomorphisms suitable with the source and target maps. We will denote this category by ℭ𝔞𝔱1(𝔏ℜ). 

We refer (Arvasi, 1997)  for commutative algebra case of below proposition. 
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Proposition 16.  The category 𝔛𝔪𝔬𝔡(𝔏ℜ) is naturally equivalent to the category ℭ𝔞𝔱1(𝔏ℜ). 

Proof. Let (𝒳, 𝑠, 𝑡) be a cat1 L-R algebra, 𝑀 = ker𝑠, N = Ims and ∂ = 𝑡|𝑀. First of all we have 𝛾𝑠 = 𝛾 
and 𝛾𝑡 = 𝛾, so 𝛾𝑠 = 𝛾𝑡. Define the action of 𝑁 on 𝑀 by 𝑛𝑚 = [𝑛, 𝑚]. Since 𝑀 is a kernel L-R 
homomorphism so is a Lie 𝐴-algebra. The first two conditions are trivial as indicated in  for 
commutative algebra case. In the fourth condition we must use the fact that 𝛼𝑠 = 𝛼𝑡 which is different 
from the commutative algebra case. 

CM 4: Since 𝑠 and 𝑡 are L-R algebra homomorphisms, 𝛾𝑠 = 𝛾𝑡 = 𝛾. So for 𝑚 ∈ 𝑀 and 𝑐 ∈ 𝐶 we have 

∂(𝑚)(𝑐) = (𝛾(∂𝑚))(𝑐)

= (𝛾(𝑡𝑚))(𝑐)

= (𝛾(𝑠𝑚))(𝑐)    (𝛾𝑡 = 𝑠 = 𝛾𝑠)

= (𝛾(0))(𝑐)     ( Since 𝑚 ∈ ker𝑠 = 𝑀)

= 0

 

From above calculations ∂: 𝑀 → 𝑁 is a L-R crossed module. 

Conversely, given a crossed module for L-R algebra (𝒳, 𝑌, ∂). 𝑌 ⋉ 𝒳 is a L-R algebra as proved in (Casas 
et al., 2004). 

Define 𝑠, 𝑡 as; 

𝑠: 𝑌 ⋉ 𝒳 → 𝑌 ⋉ 𝒳
(𝑦, 𝑥) ↦ (0, 𝑥)

 

and 

𝑡: 𝑌 ⋉ 𝒳 → 𝑌 ⋉ 𝒳
(𝑦, 𝑥) ↦ (0, ∂𝑦 + 𝑥) 

It is easy to check that 𝑠 and 𝑡 are 𝐶-module and Lie 𝑟-algebra homomorphisms. Here we will show the 
commutativity of the diagrams 

 

Since 

(𝛾
∼

(𝑠)) (𝑦, 𝑥) = 𝛾
∼

(0, 𝑥)

= 𝛾(𝑥)

= 𝛾
∼

(𝑦, 𝑥),

 

(𝛾
∼

(𝑡)) (𝑦, 𝑥) = 𝛾
∼

(0, ∂𝑦 + 𝑥)

= 𝛾(∂𝑦 + 𝑥)

= 𝛾 ∂𝑦 + 𝛾𝑥

= 0 + 𝛼𝑥

= 𝛾
∼

(𝑦, 𝑥),

 

we have that 𝑠 and 𝑡 are L-R homomorphisms. Also 𝑠𝑡 = 𝑡 and 𝑡𝑠 = 𝑠, that is, 
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𝑠(𝑡(𝑦, 𝑥)) = 𝑠(0, ∂𝑦 + 𝑥)

= (0, ∂𝑦 + 𝑥)

= 𝑡(𝑦, 𝑥)

 

and 

𝑡(𝑠(𝑦, 𝑥)) = 𝑡(0, 𝑥)

= (0, 𝑥)

= 𝑠(𝑦, 𝑥).

 

So, we have ker𝑠 = {(𝑦, 0) | 𝑦 ∈ 𝑌} and ker𝑡 = {(𝑦, − ∂𝑦) | 𝑦 ∈ 𝑌}. We have [ker𝑠, ker𝑡] = 0, since 

[(𝑦, 0), (𝑦′, − ∂(𝑦′))] = ([𝑦, 𝑦′]−− ∂𝑦′
𝑦+0𝑦′, [0, − ∂𝑦′])

= ([𝑦, 𝑦′]+∂𝑦′
𝑦 + 0,0)

= ([𝑦, 𝑦′] + [𝑦′, 𝑦], 0)

= (0,0).

 

Conclusion and Suggestions 

In this study, simplicial Lie-Rinehart algebras and Lie-Rinehart cat1-algebras are defined. Also, the 
relationships between Lie-Rinehart crossed module, cat1-algebra and simplicial Lie-Rinehart algebra 
categories are mentioned. Similar studies can be done using crossed modules on different algebraic 
structures. 
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