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Research Article

Abstract − This paper characterizes the semigroup ideal Ln
R(I) of a ring R, where I is an

ideal of R, defined by L0
R(I) = I and Ln

R(I) = {a ∈ R | aRa ⊆ Ln−1
R (I)}, for all n ∈ Z+,

the set of all the positive integers. Moreover, it studies the basic properties of the set Ln
R(I)

and defines n-prime ideals, n-semiprime ideals, n-prime rings, and n-semiprime rings. This
study also investigates relationships between the sets LR(I) and Ln

R(I) and exemplifies some
of the related properties. It obtains the main results concerning prime rings and prime ideals
by the properties of the set Ln

R(I).
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1. Introduction

Prime and semiprime ideals are essential classes of rings, especially in noncommutative rings. There-
fore, many studies have been conducted on rings’ prime ideals and semiprime ideals [1–4]. Addition-
ally, numerous generalizations of these structures have been proposed by the concepts of prime and
semiprime ideals [4–10]. Moreover, many studies have been undertaken on prime ideals in Noetherian
rings [11–15]. Besides, prime ideals play a significant role in the theory of associative algebras [16,17].
In [18], the concept of the source of the semiprimeness of a ring R expressed by SR has been explored
through semiprime ideals, leading to the definition of new structures: The |SR|-reduced rings, the
|SR|-domains, and the |SR|-division rings. Further, several properties of these structures have been
investigated. Furthermore, Karalarlıoğlu Camcı [19] has introduced the structures of |SR|-semiprime
and |SR|-prime rings using the set SR and analyzed the relationships between these two types of rings.
The author has also researched the necessary and sufficient conditions for a ring R to be isomorphic
to the subdirect sum of some of the |SR|-prime rings of R and obtained a generalization related to
the relationship between the prime radical β(R) of R and SR. In addition, Karalarlıoğlu Camcı [19]
has suggested the set LR(A) = {a ∈ R : aRa ⊆ A}, where A is a non-empty subset of a ring R,
and considered some of its basic properties, presented examples to enhance understanding of the set
LR(A), and investigated the relations between the sets LR(A) and SR.

This study defines the set Ln
R(I), a generalization of the set LR(I) such that I is an ideal of a ring

R, analyzes its properties, and exemplifies some of them. Moreover, this generalization proposes the
definitions of n-prime ideals, n-semiprime ideals, n-prime rings, and n-semiprime rings, along with
theorems and results derived from these novel notions.
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2. Preliminaries

The current section provides the following basic definitions and some properties in [18–22].

Definition 2.1. Let R be a multiplicative semigroup, I ̸= ∅, and I ⊆ R. If ar, ra ∈ I, for all a ∈ I

and for all r ∈ R, then I is called a semigroup ideal of R.

Across this study, if R is a ring, then its multiplicative semigroup concerning the second operation of
the ring R is considered for the concepts related to semigroup ideals.

Definition 2.2. Let R be a ring and I be a semigroup ideal of R. If aRb ⊆ I implies a ∈ I or b ∈ I,
then I is called a semigroup prime ideal of R.

Definition 2.3. Let R be a ring and I be an ideal of R. If aRb ⊆ I implies a ∈ I or b ∈ I, then I is
called a prime ideal of R.

Definition 2.4. Let R be a ring and I be a semigroup ideal of R. If aRa ⊆ I implies a ∈ I, then I

is called a semigroup semiprime ideal of R.

Definition 2.5. Let R be a ring and I be an ideal of R. If aRa ⊆ I implies a ∈ I, then I is called a
semiprime ideal of R.

Definition 2.6. Let R be a ring, A ̸= ∅, and A ⊆ R. Then, the set SR(A) = {a ∈ R : aAa = (0)} is
called the source of semiprimeness of A in R. If A = R, then SR will be used instead of SR(R).

Definition 2.7. Let R be a ring. If, for all a ∈ R, aRa ⊆ SR implies a ∈ SR, then R is called an
|SR|-semiprime ring, and if, for all a, b ∈ R, aRb ⊆ SR implies a ∈ SR or b ∈ SR, then R is called an
|SR|-prime ring.

Proposition 2.8. Let R be a ring. Then, the following properties hold:

i. If I is a semigroup right (left) ideal of R, then I ⊆ LR(I).

ii. If I is a semigroup right (left) ideal of R, then LR(I) is a semigroup right (left) ideal of R.

iii. If I is a semigroup right (left) ideal of R, then SR ⊆ LR(I).

iv. If I is an ideal of R and π : R → R/I is a natural epimorphism defined by π(r) = r + I, then
π(LR(I)) = SR/I and π−1(SR/I) = LR(I).

v. For an ideal I of R, I is a semiprime ideal if and only if I = LR(I).

3. Main Results

Let R be a ring and I be an ideal of R. In [19], the set LR(I) is defined as follows:

LR(I) = {a ∈ R : aRa ⊆ I}

Motivated by this set, the following is introduced:

L0
R (I) = I and Ln

R (I) =
{

a ∈ R : aRa ⊆ Ln−1
R (I)

}
, for all n ∈ Z+

where Z+ is the set of all the positive integers. Moreover, L1
R (I) is denoted by LR (I). Then,

LR (0) = {a ∈ R : aRa ⊆ (0)} and Ln
R (0) =

{
a ∈ R : aRa ⊆ Ln−1

R (0)
}

Consider the set
SGR = {I ⊆ R : I is a semigroup ideal of R}
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From Proposition 2.8, the set LR(I) = {a ∈ R : aRa ⊆ I} is a semigroup ideal of R. Therefore,
LR(I) ∈ SGR. As a consequence,

LR : SGR → SGR, LR(I) = {a ∈ R : aRa ⊆ I}

can be constructed. Finally, it is operationalizing as

Ln
R(I) = LR

(
Ln−1

R (I)
)

=
{

a ∈ R : aRa ⊆ Ln−1
R (I)

}
for all n ∈ Z+. Thus, it is noticeable from the induction that

Lm
R (Ln

R(I)) = Lm+n
R (I)

for all n, m ∈ N, the set of all the nonnegative integers.

Definition 3.1. Let I be an ideal of a ring R. Then, I is called an n-prime ideal if Ln
R (I) is a

semigroup prime ideal of R.

Definition 3.2. Let I be an ideal of a ring R. Then, I is called an n-semiprime ideal if Ln
R (I) is a

semigroup semiprime ideal of R.

Definition 3.3. Let R be a ring. Then, R is called an n-prime ring if Ln
R (0) is a semigroup prime

ideal of R.

Definition 3.4. Let R be a ring. Then, R is called an n-semiprime ring if Ln
R (0) is a semigroup

semiprime ideal of R.

Lemma 3.5. Let R be a ring. If P is a prime ideal of R, then P is an n-prime ideal of R.

Proof. Let R be a ring and P be a prime ideal of R. Since LR(P ) = P , Ln
R(P ) = P . Therefore,

Ln
R(P ) is a prime ideal of R. Thus, P is an n-prime ideal of R.

Lemma 3.6. Let R be a ring. If P is a semiprime ideal of R, then P is an n-semiprime ideal of R.

The proof is carried out similarly to the proof of Lemma 3.5.

Example 3.7. Consider the ring Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Then, I = {0, 4} is an ideal of Z8. Thus,
the set

LZ8(I) = {a ∈ Z8 : aZ8a ⊆ I} = {0, 2, 4, 6}

is a semiprime ideal of Z8. Thus, I is a 1-semiprime ideal of Z8 but not a semiprime ideal of Z8.

Theorem 3.8. Let R be a ring, P be an ideal of R, and A be a semigroup ideal of R such that P ⊆ A.
Then, A/P is a semigroup ideal of the ring R/P .

Proof. Since it follows the fact that A/P ̸= {0 + P}, then

A/P = {a + P : a ∈ A} ⊆ R/P

Therefore,
(a + P )(r + P ) = ar + P ∈ A/P

and
(r + P )(a + P ) = ra + P ∈ A/P

for all a ∈ A and for all r ∈ R.

Theorem 3.9. Let R be a ring, I be an ideal of R, and π : R → R/I be a natural epimorphism
defined by π(r) = r + I. Then, for all n ∈ N,

π−1
(
Ln

R/I (0)
)

= Ln
R (I)
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Proof. For n = 0,
π−1

(
L0

R/I (0)
)

= π−1 (0) = Ker π = I = L0
R(I)

Let x ∈ π−1(LR/I(0)), for n = 1. Then, π(x) = x+I ∈ (LR/I(0)). It follows that (x+I)(r+I)(x+I) =
(0 + I), for all r ∈ R. Therefore, xRx ⊆ I, for all r ∈ R, because xrx ∈ I, for all r ∈ R. Hence,
x ∈ LR(I). Furthermore, if x ∈ LR(I), then xRx ⊆ I. Since xrx ∈ I, for all r ∈ R, the equality
(x+I)(r +I)(x+I) = (0+I) holds. This requires π(x) = x+I ∈ (LR/I(0)). Thus, x ∈ π−1(LR/I(0)).
Hence, π−1(LR/I(0)) = LR(I).

Assume that
π−1

(
Ln

R/I (0)
)

= Ln
R (I)

for an arbitrary n ∈ N. Let x ∈ π−1(Ln+1
R/I (0)). Then, π(x) ∈ (Ln+1

R/I (0)). Namely, π(x)π(r)π(x) ∈
(Ln

R/I(0)). Since π is an epimorphism, π(xrx) ∈ (Ln
R/I(0)), for all r ∈ R. Consequently, xrx ∈

π−1(Ln
R/I(0)) = Ln

R(I), for all r ∈ R. Thus, xRx ⊆ Ln
R(I) and hence x ∈ Ln+1

R (I). The converse is
similar. Consequently, Ln+1

R (I) = π−1(Ln+1
R/I (0)).

Lemma 3.10. Let R be a ring, I and P be two ideals of R, and P ⊆ I. Then, Ln
R(I)/P = Ln

R/P (I/P ),
for all n ∈ N.

Proof. The proof is straightforward for n = 0.

Let n = 1. Since I is an ideal of R, xr, rx ∈ I, for all x ∈ I and for all r ∈ R. Thus, xrx ∈ I

and x ∈ LR(I). Hence, I ⊆ LR(I). Moreover, let x + P ∈ LR(I)/P . Therefore, x ∈ LR(I).
Thereby, xRx ⊆ I. In this way, xRx + P ⊆ I/P . Herewith, (x + P )(r + P )(x + P ) ∈ I/P . Thus,
x + P ∈ LR/P (I/P ). As a result, LR(I)/P ⊆ LR/P (I/P ). The converse is similar. Consequently,
LR(I)/P = LR/P (I/P ).

Suppose that for an arbitrary n ∈ N,

Ln
R(I)/P = Ln

R/P (I/P )

Further, let y + P ∈ Ln+1
R (I)/P . Thus, y ∈ Ln+1

R (I). Hence, yRy ⊆ Ln
R(I). Thereby, yRy + P ⊆

Ln
R(I)/P = Ln

R/P (I/P ). Therefore, (y + P )(r + P )(y + P ) ∈ Ln
R/P (I/P ), for all r ∈ R. In this way,

y + P ∈ Ln+1
R/P (I/P ). The converse is similar. In conclusion, Ln+1

R (I)/P = Ln+1
R/P (I/P ).

From the aforesaid definitions and theorems, the following significant Theorem is provided.

Theorem 3.11. Let R be a ring and P be an ideal of R. Then, P is an n-prime ideal of R if and
only if R/P is an n-prime ring.

Proof. Let R be a ring and P be an ideal of R.

⇒: Assume that P is an n-prime ideal of R. Then, Ln
R(P ) is a semigroup prime ideal of R from

Definition 3.1. Thus, R/P is an n-prime ring from Definition 3.3.

⇐: Let R/P is an n-prime ring. Then, Ln
R/P (0) is a semigroup prime ideal of R/P . From Lemma

3.10, Ln
R/P (P/P ) = Ln

R(P )/P . Let xRy ⊆ Ln
R(P ), for all x, y ∈ R. Then, xry ∈ Ln

R(P ), for all
r ∈ R. Hence, since (xry) + P ∈ Ln

R(P )/P , (x + P )(R/P )(y + P ) ⊆ Ln
R(P )/P = Ln

R/P (P/P ).
Since Ln

R/P (P/P ) is a semigroup prime ideal of R/P , x + P ∈ Ln
R/P (P/P ) = Ln

R(P )/P or y + P ∈
Ln

R/P (P/P ) = Ln
R(P )/P . Namely, x ∈ Ln

R(P ) or y ∈ Ln
R(P ). Thence, Ln

R(P ) is a semigroup prime
ideal of R. Consequently, P is an n-prime ideal of R.

Lemma 3.12. Let R and S be two rings, φ : R → S be an epimorphism, and I be an ideal of R.
Then, Ln

S(φ(I)) = φ(Ln
R(I)), for all n ∈ N.



Journal of New Theory 49 (2024) 62-68 / A Generalization of Source of Semiprimeness 66

Proof. Let R and S be two rings, φ : R → S be an epimorphism, and I be an ideal of R. Since
φ(I) = φ(I), then L0

S(φ(I)) = φ(L0
R(I)), for n = 0. Moreover, let y ∈ φ(LR(I)). Then, y = φ(x) and

x ∈ LR(I). Thus, ysy = φ(x)φ(r)φ(x) = φ(xrx), for all r ∈ R and for all s ∈ S. Hence, ySy ⊆ φ(I).
Thereby, y ∈ LS(φ(I)). The other inclusion is similarly proved. Consequently, LS(φ(I)) = φ(LR(I)).

Assume that Ln
S(φ(I)) = φ(Ln

R(I)), for an arbitrary n ∈ N. If y ∈ φ(Ln+1
R (I)), then y = φ(x)

and x ∈ Ln+1
R (I). Thus, ysy = φ(x)φ(r)φ(x) = φ(xrx), for all r ∈ R and for all s ∈ S. Hence,

ySy ⊆ Ln
S(φ(I)). Thereby, y ∈ Ln+1

S (φ(I)). Similarly, Ln+1
S (φ(I)) ⊆ φ(Ln+1

R (I)). Consequently,
Ln+1

S (φ(I)) = φ(Ln+1
R (I)).

Theorem 3.13. Let R and S be two rings and φ : R → S be an epimorphism. If Ker φ ⊆ P is an
n-prime ideal of R, then φ (P ) is an n-prime ideal of S.

Proof. Let Ker φ ⊆ P be an n-prime ideal of R. Then, φ (P ) is an ideal of S. Since P is an n-prime
ideal of R, Ln

R(P ) is a semigroup prime ideal of R. Therefore, φ(Ln
R(P )) is also a semigroup ideal of S.

Let a, b ∈ S. Then, there exist x, y ∈ R such that aSb = φ(x)φ(R)φ(y). Thus, φ(xRy) ⊆ φ(Ln
R(P )).

Hence, φ(xry) = φ(p) such that p ∈ Ln
R(P ). Thereby, xry − p ∈ Ker φ ⊆ P . Herewith, xry = p + k

such that k ∈ P and p ∈ Ln
R(P ). In this way, xry ∈ Ln

R(P ). Since Ln
R(P ) is a semigroup prime

ideal of R, x ∈ Ln
R(P ) or y ∈ Ln

R(P ). Therefore, a = φ(x) ∈ φ(Ln
R(P )) or b = φ(y) ∈ φ(Ln

R(P )).
Consequently, φ(Ln

R(P )) is a prime ideal of S. From Lemma 3.12, since φ(Ln
R(P )) = Ln

R(φ(P )),
Ln

R(φ(P )) is a semigroup prime ideal of S. Thus, φ(P ) is an n-prime ideal of S.

Theorem 3.14. Let R and S be two rings and φ : R → S be an epimorphism. Then, for an ideal I

of S,
φ−1(LS (I)) = LR

(
φ−1 (I)

)
Proof. Let R and S be two rings, φ : R → S be an epimorphism, and I be an ideal of S. For all
x ∈ φ−1(LS (I)),

φ (x) Sφ (x) = φ (x) φ (R) φ (x) = φ (xRx) ⊆ I

and
xRx ⊆ φ−1 (φ (xRx)) ⊆ φ−1 (I)

Therefore, x ∈ LR

(
φ−1 (I)

)
and φ−1(LS (I)) ⊆ LR

(
φ−1 (I)

)
. Moreover, xRx ⊆ φ−1 (I), for all

x ∈ LR

(
φ−1 (I)

)
. Thus,

φ (xRx) = φ (x) φ (R) φ (x) ⊆ φ
(
φ−1 (I)

)
⊆ I

As a result, φ (x) ∈ LS (I) and x ∈ φ−1(LS (I)). Namely, LR

(
φ−1 (I)

)
⊆ φ−1(LS (I)).

Theorem 3.15. Let R and S be two rings and φ : R → S be an epimorphism. Then, for an ideal I

of S,
φ−1(Ln

S (I)) = Ln
R

(
φ−1 (I)

)
, for all n ∈ N

Proof. Using Theorem 3.14 and the induction method, the following result is obtained:

φ−1(Ln
S (I)) = Ln

R

(
φ−1 (I)

)
, for all n ∈ N

Theorem 3.16. Let R be a ring and I be a semigroup ideal of R. Thus, for all n ∈ N,

Ln
R(I) ⊆ Ln+1

R (I)

Proof. Since Ln
R(I) is a semigroup ideal of R, aRa ⊆ Ln

R(I), for all a ∈ Ln
R(I). Hence, a ∈ Ln+1

R (I).
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Corollary 3.17. Let R be a ring and I be a semigroup ideal of R. Then,

I ⊆ LR(I) ⊆ L2
R(I) ⊆ · · · ⊆ Ln

R(I) ⊆ Ln+1
R (I) ⊆ · · ·

4. Conclusion

This study attempts to generalize the set LR(I), expressed by Ln
R(I) such that I is an ideal of a

ring R. In this paper, the basic properties of this set are also provided. Furthermore, adopting this
generalization, it explores the definitions of n-prime ideals, n-semiprime ideals, n-prime rings, and
n-semiprime rings and their properties. Moreover, the relations of this set under epimorphism are
mentioned. Future studies could extend these results to different rings, utilizing the generalization of
the set LR(I), thereby contributing significantly to ring theory. Furthermore, this generalization paves
the way for additional extensions, leading to the introduction of new definitions and the development
of novel results. In addition, by utilizing the set Ln

R(I), researchers can define the n-prime radicals,
serving as a generalization of the prime radicals of a ring R.
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