
HITTITE JOURNAL OF SCIENCE AND 
ENGINEERING

e-ISSN: 2148-4171
Volume: 12 • Number: 2

June 2025

Optimization-Based Tuning of PI Controller Parameters for DC Motor 
Speed Control 

Ahmet Top 

Peer Review: Evaluated by independent reviewers working in at least two 
different institutions appointed by the field editor.
Ethical Statement: Not available.
Plagiarism Checks: Yes - iThenticate
Conflict of Interest: Authors declare no conflict of interest. 

CRediT AUTHOR STATEMENT
Ahmet Top: Conceptualization, Data curation, Formal Analysis, 
Investigation, Methodology, Resources, Supervision, Writing – 
review and editing. 
Copyright & License: Authors publishing with the journal retain 
the copyright of their work licensed under CC BY-NC 4.

Fırat University, Faculty of Technology, Department of Electrical and Electronic Engineering, Elazığ, Türkiye. 

Corresponding Author
Ahmet TOP

E-mail: atop@firat.edu.tr Phone: +90 0424 237 00 00
RORID1: https://ror.org/05teb7b63

Article Information
Article Type: Research Article

Doi: https://doi.org/10.17350/HJSE19030000354
Received: 0 1.12.2024
Accepted: 10.04.2025
Published: 30.06.2025

Cite As
Top A. Optimization-Based Tuning of PI Controller Parameters for DC Motor Speed Control . Hittite J Sci Eng. 2025;12(2):81-90.

https://orcid.org/0000-0001-6672-2119


82 Hittite Journal of Science and Engineering • Volume 12 • Number 2

INTRODUCTION
Motors that can be powered directly by a DC (direct current) 
source and convert electrical energy into mechanical energy 
are known as DC motors. They come in a variety of forms, 
including Brushed DC Motor [1], Servo Motors [2], Stepper 
Motors [3], Brushless DC (BLDC) Motors [4], and more. Their 
prices are also relatively low compared to AC Motors [5]. 
Furthermore, DC motors can be operated with simple and 
stable control algorithms. High efficiency and high initial 
torque in the event of abrupt load increases are further 
benefits [6]. On the other hand, brushless DC motors have 
become popular as a replacement for DC motors, which 
have drawbacks like the need for frequent maintenance, 
rapid mechanical wear of the outputs, glare, noise pollution, 
and the impact of the brush on efficiency [7]. Because of 
their benefits, including their lack of noise, low maintenance 
requirements, quick dynamic response, excellent torque 
characteristics, and effective operation, brushless DC motors 
may be preferred [8].

These days, DC motors are used extensively and are considered 
crucial to support human activity. Examples of frequently 
utilized systems are industrial applications [9], running a 
conveyor machine to transport an object [10], pumping water 
from below the surface to the top [11], utilizing a fan to cool the 
room [12], robotics [13,14], and electric vehicles [15]. Because 
of this, it’s critical to employ a suitable control method 
when controlling motor speed, particularly when facing 
variable and non-linear loads and input disturbances [16]. 
The DC motor system has been fitted with many controllers, 
including the PI Controller [17], PID Controller [18,19], ANFIS 
Hybrid PID Controller [20], Fractional Order PID [21], Fuzzy 
Logic Controller [22], Model Reference Adaptive Control 
(MRAC) [23], and Integral state feedback [24]. The most 
popular among these is the PID controller [25-27]. PID has 
several benefits, including an easy-to-implement hardware or 
software architecture, robust resistance, good stability, and 
simplicity of structure [28,29]. It is used in numerous systems, 
including temperature control [30], airplane systems [31], 

robots [32], etc. The main problem often discussed in PID is 
parameter tuning [33,34]. In other words, to obtain optimal 
system performance, the proportional gain (𝐾𝑝), integral 
gain (𝐾𝑖), and derivative gain (𝐾𝑑) parameter values   are 
determined [35,36]. One of the techniques used for this is 
parameter determination by trial and error [37]. However 
parameters are hard to set with this method, as the parameter 
search takes a long time, the control precision is poor, and the 
parameters that are employed are not ideal.

Many smart methods for adjusting PID parameters have 
been employed by researchers recently, including Learning-
Based Optimization [38], Artificial Bee Colony Algorithms 
[39,40], Gray Wolf Optimization [41], Firefly Algorithms [42], 
Differential Evolution [43], Genetic Algorithms [44], Sine 
Cosine Algorithms [45,46], and Water Wave Optimization 
[47]. When compared to other methods, parameter 
optimization utilizing the PSO method yields stable results, 
according to some research references [48].

The majority of research published in the literature on DC motor 
control has been performed in simulation. In experimental 
studies, only step references were used. It has not been shown 
that PSO or SCA can be effective in time-varying references 
for motors. In this study, the speed control of a DC motor with 
a PSO-based PI and SCA-based PI controller has been carried 
out experimentally for more than one reference. Step, offset 
sine and non-offset sine signals were selected as references. 
Open loop control, PI control, PSO-PI, and SCA-PI control 
were used as control methods. The reason for selecting the 
sinus reference is that different values   of reference data can 
be obtained in real time. In the experiments conducted using 
the Arduino Due development board, the performance of the 
motor was first examined by performing open-loop control. 
Then, the steady-state error of the system was measured 
by performing PI control with different parameter values. In 
cases where the error value was greater than the specified 
threshold value, parameter determination was performed 
with PSO/SCA for a certain number of iterations. Error rates 

Optimization-Based Tuning of PI Controller Parameters for DC Motor Speed Control 
Ahmet TOP

Fırat University, Faculty of Technology, Department of Electrical and Electronic Engineering, Elazığ, Türkiye.

Abstract
Direct current (DC) motors are widely used in industrial applications due to their numerous advantages, such as high efficiency, cost-
effectiveness, and adaptability. Therefore, accurate control of these motors is equally crucial. The most popular controller for regulating the 
speed of a DC motor is the conventional Proportional-Integral-Derivative (PID) controller. However, determining the parameters of a DC 
motor, developing a mathematical model, and subsequently identifying or experimentally selecting control parameters is a laborious and 
time-consuming process. In this study, the coefficients of the PI controller used for speed regulation of a DC motor were determined using the 
Particle Swarm Optimization (PSO) and Sine Cosine Algorithm (SCA) methods. The study was conducted experimentally for three different 
reference values and four distinct control methods, with the resulting data visualized using MATLAB. Step, sinus with offset, and sinus without 
offset signals were selected as reference values. The control methods employed included open-loop control, PI control, PSO-PI control, and 
SCA-PI control. When the results of open-loop control and optimization-based PI control were compared, it was observed that steady-state 
errors decreased by 91.25% and 90.41% for step reference with PSO and SCA, respectively; by 84.7% and 80.58% for sinus with offset reference 
with PSO and SCA, respectively; and by 76.72% and 74.75% for sinus without offset reference with PSO and SCA, respectively. Additionally, 
the motor demonstrated a more stable tracking of the reference values. When the PI control results were compared with PSO-PI and SCA-PI 
control, the steady-state error was found to decrease by an mean of 9.74% for the same reference values.

Keywords: DC motor control, PID controller, PSO,SCA, Arduino



Optimization-Based Tuning of PI Controller Parameters for DC Motor Speed Control 

83 Hittite Journal of Science and Engineering • Volume 12 • Number 2

were re-evaluated by performing PI control again with these 
parameters. Since step reference is generally chosen in the 
literature, step, offset sine, and non-offset sine were preferred 
as references in this study. The results obtained with the 
Arduino IDE serial port were transferred to the MATLAB 
program and the graphs  drawn here. The results obtained 
show that PSO and SCA are quite effective in obtaining PI 
parameters to reduce the steady-state error in motor speed.

MATERIAL AND METHOD
PID Control
Proportional (P), Integral (I), and Derivative (D) controllers, 
or PID controllers for short, are typically used to regulate 
the speed of the DC motor. The PID controller is widely 
recognized as the most commonly utilized method in various 
nonlinear control systems [49]. The PID controller concept 
is essentially a straightforward three-term controller that 
reduces steady-state error and enhances stability [50]. For 
many control problems, this controller provides the most 
effective and straightforward solution, addressing both 
transient and permanent state responses. The PID controller’s 
transfer function is typically expressed as the “gain notation” 
given by Equation (1) or the “time constant notation” given 
by Equation (2).

Where Ti is the integral time constant, Td is the derivative time 
constant. Kp is the proportional gain, Ki is the integral gain, 
and Kd is the derivative gain, When any of the gain values are 
set to zero, the controller type may change. For example, if 
Kd=0, it becomes a PI controller. While proportional control 
increases the response speed of the system, integral control 
corrects the steady-state error as it takes the integral of the 
error. Derivative control, on the other hand, detects rapid 
changes by taking the derivative of the error, that is, the 
slope of the error signal, and is thus effective in transient 
overshoots. Because the motor speed’s transient state would 
not be considered and the steady-state error would be 
addressed, PI control was employed in this study.

Particle Swarm Optimization (PSO)
Particle Swarm Optimization is a swarm-based optimization 
algorithm inspired by the social behavior of birds and fish 
and developed by transferring it to computer simulations. It 
was introduced by Eberhart and Kennedy in 1995 [51]. Each 
individual in this approach is referred to as a particle [52].

The general procedure of the PSO algorithm is as follows: 
In the first stage, the initial positions of the particles are 
generated randomly. In the second stage, the fitness values 
of these positions are calculated using a fitness function. 
The fitness function is used to obtain these fitness values. 
In the third stage, the best position of each particle for the 
relevant iteration (pbest,i) and the position of the best of the 
swarm so far (gbest) are identified. To make this determination, 

the fitness values calculated in the second stage are used. 
In the fourth stage, the speed and position of each particle 
are updated according to pbest,i, and gbest. A weight coefficient 
(inertia weight) is used to update the speed. In the fifth stage, 
the best solution obtained through these updates is stored 
in memory and the algorithm proceeds to the next iteration. 
This iterative process continues until the stopping criterion is 
met. Equations 3 and 4 show the speed and position update 
equations, and Figure 1(c) shows the workflow diagram of the 
algorithm.

where vt+1 is the current speed of the particle, w is the inertia 
weight, vt is the previous speed of the particle, r1 ,r2 are 
random numbers generated within the range (0,1), c1,c2 are 
the learning coefficients, pt is the previous position of the 
particle, pt+1 is the updated position of the particle [53].

Among the studies on PID controllers, the commonly used 
fitness functions are integral of absolute error (IAE), integral 
of time-weighted absolute error (ITAE), integral of squared 
error (ISE), and integral of time-weighted squared error (ITSE) 
[54]. These fitness functions are expressed in Equations 
5-8. Because the ISE and IAE criteria treat all errors equally,
without accounting for time, they can result in a response
with a long settling time and a relatively small overshoot [55]. 
To address this issue, an integral of time-weighted absolute
error (ITAE) is used as a fitness function in this paper [56].

Where 𝑡 is the time and 𝑒(𝑡) is the difference between the set 
point and the controlled variable.

Sine Cosine Algorithm (SCA)
The Sine Cosine Algorithm (SCA) is a newly developed 
population-based metaheuristic optimization technique 
introduced by Mirjalili. It mimics the behavior of mathematical 
sine and cosine functions [57]. In recent years, various 
versions of SCA, such as USMN-SCA [58], MTV-SCA [59], 
IC-SCA [60], and others, have been extensively studied and 
applied in DC motor control [57,61] as well as in renewable 
energy systems [62] and buck converter [63] optimizations. 
Solutions are updated based on the sine or cosine function, as 
represented in Equation 9.

Here, Ri represents the current solution position, t denotes 
the current iteration, and Yi indicates the target solution. The 

(1)

(3)

(5)

(6)

(7)

(8)

(9)

(2)

(4)



Top A.

84 Hittite Journal of Science and Engineering • Volume 12 • Number 2

parameter r1 is referred to as the transformation parameter, 
which determines the region of the next solution. The range 
of the sine and cosine functions in Equation 9 is adaptively 
adjusted using Equation 10.

where t is the current iteration, T is the total number of 
iterations, and b>0  is a constant. In Equation 9, r2∈[0,2π] is a 
random variable used to determine the movement direction 
of the next solution (i.e., either towards or away from Yi ). 
Additionally, r3 provides random weights as a stochastic 
factor to either increase (r3>1) or decrease (r3>1) the influence 
of Yi on defining the distance. The term r4 in Equation 9 is used 
to switch between sine and cosine functions [57]. To ensure 
accurate comparison with PSO, the time-weighted absolute 
error is used as a fitness function in this algorithm.

System Software
The Arduino Due development board was used to create 
the optimization and control algorithm and to facilitate 
bidirectional information exchange with the hardware. 
The software was written in the Arduino IDE (Integrated 
Development Environment) interface according to the 
workflow diagram in Figure 1. Specifically, Figure 1(a) shows 
the main program, Figure 1(b) shows the test subprogram, 
Figure 1(c) shows the PSO subprogram, and Figure 1(d) 
shows the SCA subprogram. After initially performing the 
necessary assignments and adjustments, the algorithm 
generates random parameters for speed control of the motor 
with the PI controller. These parameters are sent to the test 
subprogram and ensuring the motor operates for a specific 
period. During this period, the transient state is disregarded, 
and the absolute value of the difference between the steady-
state reference speed (Vref) and the measured motor speed 
(Vest) is taken. After completing the subprogram, these error 
values are divided by the number of samples as in Equation 11 
and the mean absolute error (MAE) value is determined.

MAE= 

where e is the error value, N is the total number of samples, 
and k is the number of samples. In this study, the MAE value 
was set to 1 rpm for sine without offset, while it was accepted 
as 0.5 rpm for other reference values. This is because the 
errors at the zero crossing points in the sine without offset 
are high. According to the algorithm, the system will control 
motor speed with randomly determined parameters if the 
MAE value is less than the threshold value. However, if it 
exceeds the threshold value, the optimization subprogram 
will be executed for the specified number of iterations. For 
the parameters found with optimization, the error status is 
rechecked by returning to the test subprogram, and motor 
control is provided using these parameters. The motor 
continues to move until the button specified for exit is 
pressed. PI parameter information, reference speed data, and 
instantaneous motor speed data were taken from the Arduino 
IDE serial port and entered into the MATLAB program, where 
the data was graphed.

Start

Define variables

Set random kp and ki

MAE>0.2?

Y

Show parameters

Show parameters

Perform PI 
control

Checked out?

Y

End

N

N

E

Start button 
pressed?

H

Find kp and ki 
using PSO

Display ref and motor 
speeds

Reference info

Measured speed 
information

e(k)=Vref(k)-Vest(k)

P=Kp*e(k)

I=Ki*((e(k)+e(k-1))*T*0.5+I

PID=P+I
e(k-1)=e(k)

PWM=65535*PID/88

Send to driver

Saturation(PWM)

Calculate cycle time

T>(8s or 2*pi)

N

Test

Calculate MAE

Test

Calculate MAE

Start

End

Y

Start

Create starting swarm, 
speeds and positions

Calculate fitness value 
for each particle in the 

swarm

Update gbest and pbest 
values

Update speed and 
position values of 

particles

Iteration 
complete?

N

End

Y

(a) (b) (c)

Start

Create the population

Calculate the fitness 
value for each particle 

in the swarm

Calculate the parameter 
r1

Update parameters r2,r3 
and r4

r4<0.5

End

N

Update the location 
using the second 

part of Equation 9
Y

Update the location 
using the first part 

of Equation 9

t=t+1

t<T

Y

N

(d)

Figure 1  System software workflow diagram: a) main program, b)test 
subprogram, c) PSO subprogram and d) SCA subprogram

Hardware
Direct current motors have advantages such as excellent 
torque and speed characteristics, quick response to dynamic 
changes, high power-to-weight ratio, no requirement for 
current excitation, and low operating noise. For these reasons, 
they are widely used in industrial applications and robotics 
[64]. In this study, a 12 V DC motor with a reducer with a 
conversion ratio of 131.1:1 and an encoder with a resolution of 
64 PPR was used. To generate voltage for this motor based 
on PWM (Pulse Width Modulation) values received from 
an Arduino Due, a SparkFun Monster Motor Driver Module 
containing two VNH2SP30-E H-bridge integrated circuits was 
used. This driver module allows the control of motors with a 
maximum voltage of 16 V, a continuous current draw of 14 A, 
and a maximum PWM frequency of 20 kHz

VNH2SP30

VNH2SP30
12V DC 
Power 
Supply

Speed measurement 
from the signal received 

by interrupt

  +  
     -

Reference
w

PI
ControllerPWM<<u

PWM

Saturation

PSO/SCA

w

e

AC

Kp Ki

Figure 2 General block diagram of the system

Figure 2 illustrates the general schematic structure of the 
system, while Figure 3 shows the physical setup. The motor 
is powered by a 12 V voltage source, whereas the Arduino is 
powered via a computer connection. To enhance the precision 
of motor operation, the Arduino’s PWM output resolution was 
increased from 8 bits to 16 bits, and the PWM frequency was 
set to 15 kHz.

(10)

(11)



Optimization-Based Tuning of PI Controller Parameters for DC Motor Speed Control 

85 Hittite Journal of Science and Engineering • Volume 12 • Number 2

.

Figure 3 System setup

The motor encoder is powered by the Arduino. The signals 
from the encoder are transferred to the interrupt pin, where 
instantaneous speed measurements are conducted within 
the interrupt subprogram in the Arduino. The measured 
speed value is then compared with the reference value in the 
program to calculate the error value.

EXPERIMENTAL RESULTS
In this study, the results were analyzed for three distinct 
reference values and four different control methods for the 
speed control of a DC motor. Step, offset sine, and non-
offset sine signals were chosen as reference values. For these 
references, motor speed control was implemented using 
open-loop control, a PI controller, a PSO-based PI controller, 
and an SCA-based PI controller. The steady-state MAE (Mean 
Absolute Error) was calculated by disregarding the transient 
states for the step and offset sine references, whereas for 
the non-offset sine reference, the MAE of the entire signal 
was considered to highlight the differences at zero-crossing 
points. Initially, as shown in Figure 4, the open-loop speed 
control results of the motor were obtained for a step reference 
value of 25 rpm.

Figure 4 Motor speed control with an open loop for 25 rpm setpoint

When the open loop speed control of the motor was examined, 
it was observed that the motor reached a steady state in 0.66 
seconds without overshoot, However, it remained constant at 
an mean of 22.60 rpm during the steady state, resulting in a 
steady state error of 2.40 rpm.

Closed loop control was achieved using the PI controller 
based on feedback received from the DC motor encoder. 
Since the motor parameters were unknown, the PI coefficients 
could not be determined directly. Consequently, the results 
obtained with different integral and proportional coefficients 

for PI control are shown in Figure 5.

Figure 5 Motor speed control with different PI parameters for 25 
rpm setpoint

When the results in Figure 5 are examined, it is observed 
that when the proportional and integral coefficients are low, 
the system does not exceed the reference value, but takes a 
long time to reach the steady state. Conversely, increasing 
the proportional coefficient and integral coefficient can 
accelerate the system response, but may lead to overshoots in 
transient states. To further improve this result, the appropriate 
parameter should either be calculated through mathematical 
modeling or determined experimentally via trial and error. 
However, since both methods are time-consuming when 
applied to different motors, PSO and SCA were used to find 
the appropriate parameters.

In the created algorithm, the MAE is first calculated using 
randomly determined parameters over a specific time or 
period. If this error value exceeds the threshold, adjustments 
are made using PSO or SCA. The motor speed results for PI 
parameters determined using PSO and SCA are shown in 
Figures 6 and 7, respectively. To ensure clarity, error graphs 
were plotted from the moment the speed reached the 
reference value, while the MAE was calculated only after the 
steady-state time was achieved.

Figure 6 Motor speed control with PSO-PI for 25 rpm setpoint

The PI parameters obtained through PSO are kp=0.83 
and ki=3.31. Upon evaluating the performance with these 
parameters, the motor exhibits a rise time of 0.1242 seconds, 



Top A.

86 Hittite Journal of Science and Engineering • Volume 12 • Number 2

an overshoot of 7.12% at 0.3312 seconds, and reaches a steady 
state after 1.7595 seconds. Subsequently, the motor operates 
with an average steady-state error of 0.21 rpm.

Figure 7 Motor speed control with SCA-PI for 25 rpm setpoint

The PI parameters found with SCA are kp=1 and ki=8.37. 
Upon analyzing the results with these parameters, the motor 
exhibits a rise time of 0.062 seconds, an overshoot of 7.4% 
at 0.22 seconds, and reaches steady state after 1.09 seconds. 
Subsequently, the motor operates with an average steady-
state error of 0.23 rpm.

When the same control applications were applied to the 
reference value of 30+15Sin(wt), the results depicted in 
Figures 8-11 were obtained.

Motor speed with open loop control

0 2 4 6 8 10 12 14

Time (s)

0

10

20

30

40

50

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12

Time (s)

-2

0

2

4

6

|E
rro

r| 
(rp

m
)

Figure 8 Motor speed control with an open loop for 30+15Sin(wt) 
rpm setpoint 

In open-loop control, the system began tracking the reference 
value at 0.39 seconds, without exhibiting any overshoot during 
the transient state. The motor then continued its movement 
with an mean absolute speed of 1.70 rpm. Furthermore, as 
illustrated in the graph, the reference signal is followed with a 
noticeable delay.

Motor speed control with PI

0 2 4 6 8 10 12 14 15

Time (s)

0

10

20

30

40

50

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12

Time (s)

-2

0

2

|E
rro

r| 
(rp

m
)

Figure 9 Motor speed control with PI for 30+15Sin(wt) rpm setpoint 

For the PI control, the user set kp=0.5 and ki=23.75., and The 
results obtained with these parameters are shown in Figure 
9. The motor speed reached its rise time at 0.27 seconds and
exhibited an overshoot of 5.77% at 0.37 seconds. The motor
successfully followed the sine reference with an average error 
of 0.443 rpm.

Motor speed control with PSO-PI

0 2 4 6 8 10 12 14 15

Time (s)

0

10

20

30

40

50

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12 14

Time (s)

-2

0

2

|E
rro

r| 
(rp

m
)

Figure 10 Motor speed control with PSO-PI for 30+15Sin(wt) rpm 
setpoint 

After ten iterations, PSO algorithm determined the 
proportional parameter to be 0.92 and the integral coefficient 
to be 60.03. Upon evaluating the performance of the PI control 
with these coefficients, the motor exhibited an MAE of 0.268 
rpm. The system achieved a rise time of 0.102 seconds and a 
peak time of 0.204 seconds, before reaching steady state at 
1.29 seconds. During the peak time, the motor experienced an 
overshoot of 24.56%.

Motor speed control with SCA-PI

0 2 4 6 8 10 12 14 15

Time (s)

0

10

20

30

40

50

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12 14

Time (s)

-2

0

2

|E
rro

r| 
(rp

m
)

Figure 11 Motor speed control with SCA-PI for 30+15Sin(wt) rpm 
setpoint 



Optimization-Based Tuning of PI Controller Parameters for DC Motor Speed Control 

87 Hittite Journal of Science and Engineering • Volume 12 • Number 2

After ten iterations, SCA found the proportional parameter 
to be 7.28 and the integral coefficient to be 55.9. When the 
results of the PI control performed with these coefficients 
were examined, the motor moved with an MAE of 0.338 rpm. 
The system reached a rise time of 0.068 seconds and a peak 
time of 0.102 seconds, before attaining steady state at 0.476 
seconds. During the peak time, the motor experienced an 
overshoot of 8.34%.

For bidirectional motion control of the motors, the reference 
signal 25Sin(2wt) was applied to the motor, and control was 
performed using open-loop, PI, PSO-PI, and SCA-PI methods. 
The results obtained for each control method are presented 
in Figures 12, 13, 14, and 15, respectively. Two periods were 
considered for each control method, and the mean absolute 
errors were calculated. Due to the low pulse per revolution 
(PPR) of the encoder, speed information cannot be obtained 
with high accuracy, especially at low speeds, as the period of 
the encoder signal increases. Consequently, errors may occur 
at the zero-crossing points of the signal.

Motor speed with open loop control

0 2 4 6 8 10 12 14

Time (s)

-30

-20

-10

0

10

20

30

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed

Motor speed

Motor speed error-Time

0 2 4 6 8 10 12 14

Time (s)

0

2

4

6

8

|E
rro

r| 
(rp

m
)

Figure 12 Motor speed control with an open loop for 25Sin(2wt) rpm 
setpoint 

In open-loop control, the motor followed the reference with a 
delay of 0.22 seconds and an mean error of 3.054 rpm.

Motor speed control with PI

0 2 4 6 8 10 12 14

Time (s)

0

10

20

30

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12

Time (s)

-5

0

5

|E
rro

r| 
(rp

m
)

Figure 13 Motor speed control with PI for 25Sin(2wt) rpm setpoint 

The experimental values   produced by the user are Kp = 2.8 
and Ki = 55.12. The results obtained from the closed-loop PI 
controller of the motor with these values are shown in Figure 
13. Upon examining these graphs, it is observed that the
motor follows the reference value with an mean error of 0.787 

rpm, with no delay in the signal. However, jumps are present 
at the zero-crossing points.

Motor speed control with PSO-PI

0 2 4 6 8 10 12 14 15

Time (s)

0

10

20

30

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12

Time (s)

-4

-2

0

2

4

|E
rro

r| 
(rp

m
)

Figure 14 Motor speed control with PSO-PI for 25Sin(2wt) rpm 
setpoint

Since the MAE exceeded the threshold value, the parameters 
were recalculated using Particle Swarm Optimization (PSO), 
resulting in   kp = 7.23, and ki = 69.21. Upon examining the 
control results obtained with these values, it is observed that 
the reference is tracked with an error of 0.712 rpm, with no 
delay in the signal. Additionally, the zero-crossing points 
occur with reduced error compared to previous results.

Motor speed control with SCA-PI

0 2 4 6 8 10 12 14 15

Time (s)

0

10

20

30

M
ot

or
 s

pe
ed

 (r
pm

)

Ref. speed
Motor speed

Motor speed error-Time

0 2 4 6 8 10 12

Time (s)

-5

0

5

|E
rro

r| 
(rp

m
)

Figure 15 Motor speed control with SCA-PI for 25Sin(2wt) rpm 
setpoint

Since the MAE was above the threshold value, the parameters 
were calculated using SCA, yielding   kp = 8.87, and ki = 
63.35. When the control result obtained with these values   
is examined, it is observed that the reference is tracked with 
an error of 0.771 rpm, there is no delay in the signal and zero 
crossing points occur with less error. The results obtained with 
the controllers for all three references are given in Figures 16, 
17, and 18.

Figure 16 Motor speed control for 25rpm setpoint



Top A.

88 Hittite Journal of Science and Engineering • Volume 12 • Number 2

Figure 17 Motor speed control for 30+15Sin(wt) rpm setpoint

Figure 18 Motor speed control for 25Sin(2wt) rpm setpoint

When analyzing the above results, it is observed that in 
the DC motor controls performed with the PI parameters 
obtained through experimental studies using SCA and PSO, 
SCA provides superior performance in the transient state, 
while PSO proves to be more effective in reducing steady-
state error.

CONCLUSION
In this study, the Particle Swarm Optimization (PSO) algorithm 
and the Sine Cosine Algorithm (SCA) were employed to 
determine the optimal proportional-integral (PI) controller 
parameters for the speed control of a DC motor. The 
experimental study utilized using three different reference 
values: step reference, offset sine, and non-offset sine. 
Additionally, bidirectional control of the motor was achieved 
with the non-offset sine reference. A comparative analysis 
was conducted on the data obtained from open-loop control, 
PI control with experimentally determined parameters, and PI 
control using the proposed optimization methods. The results 
demonstrated that the PI controller when optimized with the 
proposed methods, produced effective outcomes.

An analysis of the experimental results presented in Table 
1 and the associated graphs revealed steady-state errors of 
2.40 rpm, 1.70 rpm, and 3.05 rpm for step, offset sine, and 
non-offset sine reference values, respectively, under open-
loop control. Furthermore, the motor speed failed to reach 
the reference speed in the open-loop control scenario. For PI 
control with experimentally determined coefficients, it was 
observed that some parameter configurations yielded fast 
responses accompanied by overshoots, while others resulted 
in slower responses with no overshoot.

When the PI parameters were optimized using PSO, the 
steady-state error values for the step, offset sine, and non-
offset sine reference cases were reduced to 0.21 rpm, 0.26 
rpm, and 0.71 rpm, respectively. Similarly, with SCA-based 
optimization, the error values were 0.23 rpm, 0.33 rpm, and 

0.77 rpm for the same reference cases. Notably, in the DC 
motor speed control implementations using PSO-optimized 
parameters, the mean absolute error was consistently below, 
indicating that the motor successfully tracked the reference 
values with high accuracy.

Table 1 Steady-state errors of control methods according to different 
setpoints

Control Method 

Reference

Open 
loop

PI PSO-PI SCA-PI 

ess(rpm) for Step 
Reference

2.40
0.2 (for 

kp=0.8, ki=5)
0.21 0.23

ess(rpm) for Sinus with 
offset ref.

1.70 0.44 0.26 0.33

 ess(rpm)  for Sinus 
without offset ref.

3.05 0.78 0.71 0.77

In the operation with a sinusoidal reference without offset, 
it was determined that the fluctuations at the zero-crossing 
points of the motor speed were caused by the low resolution 
of the DC motor encoder. Since feedback information was 
obtained with fewer samples for this reference value, the 
instantaneous speed was measured with greater oscillation. 
In contrast, more stable results were obtained with a fixed 
reference due to the higher sampling rate used during the 
measurement. Since the steady-state error was considered 
as the primary control performance criterion and derivative 
control was not included to improve the transient regime, 
overshoots during the transition phase were not evaluated as 
a success metric. Experimental studies demonstrated that 10 
iterations for 10 particles reduced the error to an acceptable 
level; therefore, the mean absolute error (MAE) was not 
reassessed in either optimization result. However, to enhance 
usability in different systems, the optimization cycle can 
be repeated until the error from the PSO and SCA outputs 
reaches an acceptable level, or the optimization process can 
continue until the desired error level is achieved instead of 
relying on a fixed number of iterations.

References
1. Chotai J, Narwekar K. Modelling and position control of

brushed DC motor. In: International Conference on Advances in
Computing, Communication and Control (ICAC3); 2017. p. 1–5. 

2. Kumar, P., Chatterjee, S., Shah, D., Saha, U.K., & Chatterjee, S. On 
comparison of tuning method of FOPID controller for controlling 
field controlled DC servo motor. Cogent Engineering, 2017; vol.
4, no. 1.

3. Shekhawat AS, Rohilla Y. Design and control of two-wheeled
self-balancing robot using Arduino. In: Proceedings of
the International Conference on Smart Electronics and
Communication (ICOSEC); 2020. p. 1025–1030.

4. Shekhar S, Saha PK, Thakura PR. Optimal PID tuning of BLDC
drive using LQR technique. In: Proceedings of the 2019 IEEE
International Conference on Intelligent Systems and Green
Technology (ICISGT); 2019. p. 57–61.

5. Köse F, Kaplan K, Ertunç M. PID ve bulanık mantık ile DC motorun 
gerçek zamanda STM32F407 tabanlı hız kontrolü. In: Otomatik
Kontrol Ulusal Toplantısı; 2013 Sep 26–28; Malatya, Türkiye.



Optimization-Based Tuning of PI Controller Parameters for DC Motor Speed Control 

89 Hittite Journal of Science and Engineering • Volume 12 • Number 2

6. Siemens Training Education Program. STEP 2000 Series. Basics 
of DC drives and related products.

7. Oguntoyinbo, O. PID control of brushless dc motor and robot
trajectory planning and simulation with matlab/simulink,
Vaasan Ammattikorkeakoulu University Of Applied Sciences
Degree Programme of Inform. 2009.

8. Yedamale P. Brushless DC motor fundamentals. Chandler (AZ):
Microchip Technology Inc.; 2003.

9. Okoro, I. S., & Enwerem, C. O. Robust control of a DC motor.
Heliyon, 2020; vol. 6, no. 12, https://doi.org/10.1016/j.
heliyon.2020.e05777.

10. Dezaki, M. L., Hatami, S., Zolfagharian, A., & Bodaghi, M. A
pneumatic conveyor robot for color detection and sorting.
Cognitive Robotics. 2022; vol. 2, pp. 60–72, https://doi.
org/10.1016/j.cogr.2022.03.001.

11. Ahmed, M. M., Hassanien, W. S., & Enany, M. A. Modeling and
evaluation of SC MPPT controllers for PVWPS based on DC
motor. Energy Reports. 2021; vol. 7, pp. 6044–6053, https://doi.
org/10.1016/j.egyr.2021.09.055.

12. Hendra, H., Pebriyanto, S., Hernadewita, H., Hermiyetti,
H., & Yoserizal, Y. Applying Programmable Logic Control
(PLC) for Control Motors. Blower and Heater in the Rubber
Drying Processing, Jurnal Ilmiah Teknik Elektro Komputer
dan Informatika. 2021; vol. 7, no. 1, pp. 131–141, https://doi.
org/10.26555/jiteki.v7i1.20514.

13. Auzan, M., Hujja, R. M., Fuadin, M. R., & Lelono, D. Path Tracking
and Position Control of Nonholonomic Differential Drive
Wheeled Mobile Robot, Jurnal Ilmiah Teknik Elektro Komputer
dan Informatika. 2021; vol. 7, no. 3, pp. 368–379. https://doi.
org/10.26555/jiteki.v7i3.21017.

14. Maarif, A., Puriyanto, R. D., & Hasan, F. R. T. Robot Keseimbangan 
Dengan Kendali Proporsional-Integral-Derivatif (PID) dan
Kalman Filter. IT Journal Research and Development. ITJRD.
2020; vol. 4, no. 2, pp. 117–127.

15. Ashokkumar, R., Suresh, M., Sharmila, B., Panchal, H., Gokul, C.,
Udhayanatchi, K. V. et al. A novel method for Arduino based
electric vehicle emulator. International Journal of Ambient
Energy. 2021; 43(1), pp. 4299-4304. https://doi.org/10.1080/01
430750.2020.1860129.

16. Kocaoğlu S, Kuşçu H. PIC ile DC motorun hız ve konum kontrolü 
için gerekli PID parametrelerinin belirlenmesi ve bir uygulama.
In: Otomatik Kontrol Ulusal Toplantısı (TOK); 2012.

17. Chaouch S, Hasni M, Boutaghane A, Babes B, Mezaache M,
Slimane S, Djenaihi M. DC-motor control using Arduino-Uno
board for wire-feed system. In: 2018 International Conference
on Electrical Sciences and Technologies in Maghreb (CISTEM);
2018 Oct. p. 1–6.

18. Gasparesc G. PID control of a DC motor using LabVIEW interface 
for embedded platforms. In: 12th International Symposium on
Electronics and Telecommunications (ISETC); 2016. p. 145–148.

19. Adel Z, Hamou AA, Abdellatif S. Design of real-time PID tracking 
controller using Arduino Mega 2560 for a permanent magnet
DC motor under real disturbances. In: 2018 International
Conference on Electrical Sciences and Technologies in Maghreb 
(CISTEM); 2018 Oct. p. 1–5.

20. Guo, Y., & Mohamed, M. E. A. Speed Control of Direct Current
Motor Using ANFIS Based Hybrid P-I-D Configuration Controller, 
IEEE Access. 2020; vol. 8, pp. 125638–125647.

21. Hekimoglu B. Optimal Tuning of Fractional Order PID Controller 
for DC Motor Speed Control via Chaotic Atom Search
Optimization Algorithm. IEEE Access. 2019; vol. 7, pp. 38100–

38114.
22. Tir Z, Malik O, Hamida MA, Cherif H, Bekakra Y, Kadrine A.

Implementation of a fuzzy logic speed controller for a permanent 
magnet DC motor using a low-cost Arduino platform. In:
2017 5th International Conference on Electrical Engineering -
Boumerdes (ICEE-B); 2017 Oct. p. 1–4. 

23. Akbar, M. A., Naniwa, T., & Taniai, Y. Model reference adaptive
control for DC motor based on Simulink. In: 2016 6th International 
Annual Engineering Seminar (InAES); 2016 Aug. p. 101–106. 

24. Ahmad M, Khan A, Raza MA, Ullah S. A study of state feedback
controllers for pole placement. In: 2018 5th International Multi-
Topic ICT Conference (IMTIC); 2018 Apr. p. 1–6.

25. Somwanshi, D., Bundele, M., Kumar, G., & Parashar, G.
Comparison of fuzzy-PID and PID controller for speed control of 
DC motor using LabVIEW. in Procedia Computer Science. 2019;
vol. 152, pp. 252–260.

26. Varshney, A., Gupta, D., & Dwivedi, B. Speed response of
brushless DC motor using fuzzy PID controller under varying
load condition. Journal of Electrical Systems and Information
Technology. 2017; vol. 4, no. 2, pp. 310–321.

27. Ma’arif, A., Nabila, H., & Wahyunggoro, O. Application of
Intelligent Search Algorithms in Proportional-Integral-
Derivative Control of Direct-Current Motor System. İn: The 2019 
Conference on Fundamental and Applied Science for Advanced 
Technology; 2019, vol. 1373, no. 1, pp. 1–10.

28. Joseph, S. B., Dada, E. G., Abidemi, A., Oyewola, D. O., & Khammas, 
B. M. Metaheuristic algorithms for PID controller parameters
tuning: review, approaches and open problems. Heliyon. 2022;
vol. 8, no. 5. https://doi.org/10.1016/j.heliyon.2022.e09399.

29. Borase, R. P., Maghade, D. K., Sondkar, S. Y., & Pawar, S. N.
A review of PID control, tuning methods and applications.
International Journal of Dynamics and Control. 2021; vol. 9, pp.
818–827. https://doi.org/10.1007/s40435-020-00665-4.

30. Kherkhar, A., Chiba, Y., Tlemçani, A., & Mamur, H. Thermal
investigation of a thermoelectric cooler based on Arduino and
PID control approach. Case Studies in Thermal Engineering.
2022; vol. 36. https://doi.org/10.1016/j.csite.2022.102249.

31. Xu, F., Liang, X., Chen, M., & Liu, W. Robust Self-Learning PID
Control of an Aircraft Anti-Skid Braking System. Mathematics.
2022; vol. 10, no. 8, p. 1290, 2022. https://doi.org/10.3390/
math10081290.

32. Božek, P., & Nikitin, Y. The Development of an Optimally-Tuned
PID Control for the Actuator of a Transport Robot. Actuators.
2021; vol. 10, no. 8, p. 195. https://doi.org/10.3390/act10080195.

33. Sun, J., Zhou, H., Ma, X., & Ju, Z. Study on PID tuning strategy
based on dynamic stiffness for radial active magnetic bearing.
ISA Transactions. 2018; vol. 80, pp. 458–474. 

34. Fan, Y., Shao, J., Sun, G., & Shao, X. Improved Beetle Antennae
Search Algorithm-Based Lévy Flight for Tuning of PID Controller 
in Force Control System. Mathematical Problems in Engineering. 
2020; vol. 2020.  https://doi.org/10.1155/2020/4287315.

35. Potnuru, D., Mary, K. A., & Babu, C. S. Experimental
implementation of Flower Pollination Algorithm for speed
controller of a BLDC motor. Ain Shams Engineering Journal.
2019; vol. 10, no. 2, pp. 287–295. https://doi.org/10.1016/j.
asej.2018.07.005.

36. Alagoz, B. B., Deniz, F. N., & Koseoglu, M. An efficient PID-
based optimizer loop and its application in De Jong’s functions
minimization and quadratic regression problems. Systems
& Control Letters. 2022; vol. 159. https://doi.org/10.1016/j.
sysconle.2021.105090.



Top A.

90 Hittite Journal of Science and Engineering • Volume 12 • Number 2

37. Farag W. Complex Trajectory Tracking Using PID Control for
Autonomous Driving.  International Journal of Intelligent
Transportation Systems Research. 2019; vol. 18, no. 2, pp. 356–
366. https://doi.org/10.1007/s13177-019-00204-2.

38. Ulusoy, S., Nigdeli, S. M., & Bekdaş, G. Novel metaheuristic-based 
tuning of PID controllers for seismic structures and verification
of robustness. Journal of Building Engineering. 2021; vol. 33.
https://doi.org/10.1016/j.jobe.2020.101647.

39. Du, H., Liu, P., Cui, Q., Ma, X., & Wang, H. PID Controller Parameter 
Optimized by Reformative Artificial Bee Colony Algorithm.
Journal of Mathematics. 2022; vol. 2022, pp. 1–16. https://doi.
org/10.1155/2022/3826702.

40. Wang, H., Du, H., Cui, Q., & Song, H. Artificial bee colony
algorithm based PID controller for steel stripe deviation control 
system. Science Progress. 2022; vol. 105, no. 1, pp. 1–22. https://
doi.org/10.1177/00368504221075188.

41. Bhookya, J., Kumar, M. V., Kumar, J. R., & Rao, A. S.
Implementation of PID controller for liquid level system using
mGWO and integration of IoT application. Journal of Industrial
Information Integration. 2022; vol. 28. https://doi.org/10.1016/j.
jii.2022.100368.

42. Kommula, B. N., & Kota, V. R. Direct instantaneous torque
control of Brushless DC motor using firefly Algorithm based
fractional order PID controller.  Journal of King Saud University
- Engineering Sciences. 2020; vol. 32, no. 2, pp. 133–140. https://
doi.org/10.1016/j.jksues.2018.04.007.

43. Rodríguez-Molina, A., Villarreal-Cervantes, M. G., Álvarez-
Gallegos, J., & Aldape-Pérez, M. Bio-inspired adaptive control
strategy for the highly efficient speed regulation of the DC motor 
under parametric uncertainty. Applied Soft Computing. 2019;
vol. 75, pp. 29–45. https://doi.org/10.1016/j.asoc.2018.11.002.

44. Gani, M. M., Islam, M. S., & Ullah, M. A. Optimal PID tuning for
controlling the temperature of electric furnace by genetic
algorithm. SN Applied Sciences, 2019; vol. 1, no. 8, pp. 1–8,
https://doi.org/10.1007/s42452-019-0929-y.

45. Bhookya, J., & Jatoth, R. K. Optimal FOPID/PID controller
parameters tuning for the AVR system based on sine–cosine-
algorithm.Evolutionary Intelligence. 2019; vol. 12, no. 4, pp. 725–
733. https://doi.org/10.1007/s12065-019-00290-x.

46. Hekimoğlu B. Sine-cosine algorithm-based optimization
for automatic voltage regulator system. Transactions of the
Institute of Measurement and Control. 2018; vol. 41, no. 6, pp.
1761–1771 https://doi.org/10.1177/0142331218811453.

47. Zhou, Y., Zhang, J., Yang, X., & Ling, Y. Optimization of PID
Controller Based on Water Wave Optimization for an Automatic 
Voltage Regulator System.  Information Technology and
Control, 2019; vol. 48, no. 1, pp. 160–171. https://doi.org/10.5755/
j01.itc.48.1.20296.

48. Rahayu, E. S., Ma’arif, A., & Cakan, A. Particle swarm optimization 
(PSO) tuning of PID control on DC motor. International Journal
of Robotics and Control Systems. 2022; Vol 2, No 2.

49. Kushwah, M., & Patra, A. Tuning PID controller for speed control 
of DC motor using soft computing techniques-A review. Advance 
in Electronic and Electric Engineering. 2014; 4(2), 141-148.

50. Ang, K. H., Chong, G., & Li, Y. PID control system analysis,

design, and technology. IEEE transactions on control systems 
technology. 2005 13(4), 559-576.

51. Eberhart R, Kennedy J. A new optimizer using particle swarm
theory. In: MHS’95 Proceedings of the Sixth International
Symposium on Micro Machine and Human Science; 1995 Oct. p.
39–43. 

52. Yıldırım, M. Y., & Akay, R. Mobil robotlar için çok engelli
ortamlarda hızlı yol planlama. Gazi Üniversitesi Mühendislik
Mimarlık Fakültesi Dergisi. 2021; 36(3), pp.1551-1564.

53. Garip, Z., Karayel, D., & Çimen, M. E. Parçacık Sürü Optimizasyon 
Tabanlı Mobil Robotlarda Global Yol Planlama. Journal of Smart
Systems Research. 2021; Volume: 2 Issue: 1, pp. 18-26.

54. Ulusoy, A., & Güneş, M. Mobil robot kolunun PSO ile stabilizasyonu. 
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri
Dergisi. 2019; 22(4), 288-297.

55. Sahib, M. A., & Ahmed, B. S. A new multiobjective performance
criterion used in PID tuning optimization algorithms. Journal of
Advanced Research. 2016; Vol.7, No.1, pp. 125-134.

56. Idir, A., Kidouche, M., Bensafia, Y., Khettab, K., & Tadjer, S. A.
Speed control of DC motor using PID and FOPID controllers
based on differential evolution and PSO. Int. J. Intell. Eng. Syst,
2018; Vol.11, No.4.

57. Ekinci, S., Hekimoğlu, B., Demirören, A., & Eker, E. Speed
control of DC motor using improved sine cosine algorithm
based PID controller. In 2019 3rd International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT).
IEEE. 2019, October; (pp. 1-7).

58. Wu, C., Chen, L., Xiong, H., & Hu, J. USMN-SCA: A Blockchain
Sharding Consensus Algorithm With Tolerance for an Unlimited 
Scale of Malicious Nodes. IEEE Transactions on Network and
Service Management. 2024; Volume: 22 Issue: 2.

59. Nadimi-Shahraki, M. H., Taghian, S., Javaheri, D., Sadiq, A. S.,
Khodadadi, N., & Mirjalili, S. MTV-SCA: multi-trial vector-based
sine cosine algorithm. Cluster Computing. 2024; 27(10), 13471-
13515.

60. Shinde, V., Jha, R., & Mishra, D. K. Improved Chaotic Sine Cosine 
Algorithm (ICSCA) for global optima. International Journal of
Information Technology. 2024; 16(1), pp. 245-260.

61. Kumar, M. S., Gopisetti, S., & Sujatha, P. Optimal PI controller
parameter setting for torque ripple minimization in SVPWM–
DTC based BLDC motor drive using sine cosine algorithm.
Engineering Research Express. 2024; 6(4), 045359.

62. Yousef, A. M., Ebeed, M., Abo-Elyousr, F. K., Elnozohy, A.,
Mohamed, M., & Abdelwahab, S. M. Optimization of PID
controller for hybrid renewable energy system using adaptive
sine cosine algorithm. International Journal of Renewable
Energy Research-IJRER. 2020; pp. 670-677.

63. Nanyan, N. F., Ahmad, M. A., & Hekimoğlu, B. Optimal pid
controller for the dc-dc buck converter using the improved sine 
cosine algorithm. Results in Control and Optimization. 2024; 14, 
100352.

64. Purnama HS, Sutikno T, Alavandar S, Subrata AC. Intelligent
control strategies for tuning PID of speed control of DC
motor—a review. In: 2019 IEEE Conference on Energy Conversion 
(CENCON); 2019 Oct. p. 24–30.




