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INTRODUCTION
Motors that can be powered directly by a DC (direct current) 
source and convert electrical energy into mechanical energy 
are known as DC motors. They come in a variety of forms, 
including Brushed DC Motor [1], Servo Motors [2], Stepper 
Motors [3], Brushless DC (BLDC) Motors [4], and more. Their 
prices are also relatively low compared to AC Motors [5]. 
Furthermore, DC motors can be operated with simple and 
stable control algorithms. High efficiency and high initial 
torque in the event of abrupt load increases are further 
benefits [6]. On the other hand, brushless DC motors have 
become popular as a replacement for DC motors, which 
have drawbacks like the need for frequent maintenance, 
rapid mechanical wear of the outputs, glare, noise pollution, 
and the impact of the brush on efficiency [7]. Because of 
their benefits, including their lack of noise, low maintenance 
requirements, quick dynamic response, excellent torque 
characteristics, and effective operation, brushless DC motors 
may be preferred [8].

These days, DC motors are used extensively and are considered 
crucial to support human activity. Examples of frequently 
utilized systems are industrial applications [9], running a 
conveyor machine to transport an object [10], pumping water 
from below the surface to the top [11], utilizing a fan to cool the 
room [12], robotics [13,14], and electric vehicles [15]. Because 
of this, it’s critical to employ a suitable control method 
when controlling motor speed, particularly when facing 
variable and non-linear loads and input disturbances [16]. 
The DC motor system has been fitted with many controllers, 
including the PI Controller [17], PID Controller [18,19], ANFIS 
Hybrid PID Controller [20], Fractional Order PID [21], Fuzzy 
Logic Controller [22], Model Reference Adaptive Control 
(MRAC) [23], and Integral state feedback [24]. The most 
popular among these is the PID controller [25-27]. PID has 
several benefits, including an easy-to-implement hardware or 
software architecture, robust resistance, good stability, and 
simplicity of structure [28,29]. It is used in numerous systems, 
including temperature control [30], airplane systems [31], 

robots [32], etc. The main problem often discussed in PID is 
parameter tuning [33,34]. In other words, to obtain optimal 
system performance, the proportional gain (𝐾𝑝), integral 
gain (𝐾𝑖), and derivative gain (𝐾𝑑) parameter values   are 
determined [35,36]. One of the techniques used for this is 
parameter determination by trial and error [37]. However 
parameters are hard to set with this method, as the parameter 
search takes a long time, the control precision is poor, and the 
parameters that are employed are not ideal.

Many smart methods for adjusting PID parameters have 
been employed by researchers recently, including Learning-
Based Optimization [38], Artificial Bee Colony Algorithms 
[39,40], Gray Wolf Optimization [41], Firefly Algorithms [42], 
Differential Evolution [43], Genetic Algorithms [44], Sine 
Cosine Algorithms [45,46], and Water Wave Optimization 
[47]. When compared to other methods, parameter 
optimization utilizing the PSO method yields stable results, 
according to some research references [48].

The majority of research published in the literature on DC motor 
control has been performed in simulation. In experimental 
studies, only step references were used. It has not been shown 
that PSO or SCA can be effective in time-varying references 
for motors. In this study, the speed control of a DC motor with 
a PSO-based PI and SCA-based PI controller has been carried 
out experimentally for more than one reference. Step, offset 
sine and non-offset sine signals were selected as references. 
Open loop control, PI control, PSO-PI, and SCA-PI control 
were used as control methods. The reason for selecting the 
sinus reference is that different values   of reference data can 
be obtained in real time. In the experiments conducted using 
the Arduino Due development board, the performance of the 
motor was first examined by performing open-loop control. 
Then, the steady-state error of the system was measured 
by performing PI control with different parameter values. In 
cases where the error value was greater than the specified 
threshold value, parameter determination was performed 
with PSO/SCA for a certain number of iterations. Error rates 
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were re-evaluated by performing PI control again with these 
parameters. Since step reference is generally chosen in the 
literature, step, offset sine, and non-offset sine were preferred 
as references in this study. The results obtained with the 
Arduino IDE serial port were transferred to the MATLAB 
program and the graphs  drawn here. The results obtained 
show that PSO and SCA are quite effective in obtaining PI 
parameters to reduce the steady-state error in motor speed.

MATERIAL AND METHOD
PID Control
Proportional (P), Integral (I), and Derivative (D) controllers, 
or PID controllers for short, are typically used to regulate 
the speed of the DC motor. The PID controller is widely 
recognized as the most commonly utilized method in various 
nonlinear control systems [49]. The PID controller concept 
is essentially a straightforward three-term controller that 
reduces steady-state error and enhances stability [50]. For 
many control problems, this controller provides the most 
effective and straightforward solution, addressing both 
transient and permanent state responses. The PID controller’s 
transfer function is typically expressed as the “gain notation” 
given by Equation (1) or the “time constant notation” given 
by Equation (2).

Where Ti is the integral time constant, Td is the derivative time 
constant. Kp is the proportional gain, Ki is the integral gain, 
and Kd is the derivative gain, When any of the gain values are 
set to zero, the controller type may change. For example, if 
Kd=0, it becomes a PI controller. While proportional control 
increases the response speed of the system, integral control 
corrects the steady-state error as it takes the integral of the 
error. Derivative control, on the other hand, detects rapid 
changes by taking the derivative of the error, that is, the 
slope of the error signal, and is thus effective in transient 
overshoots. Because the motor speed’s transient state would 
not be considered and the steady-state error would be 
addressed, PI control was employed in this study.

Particle Swarm Optimization (PSO)
Particle Swarm Optimization is a swarm-based optimization 
algorithm inspired by the social behavior of birds and fish 
and developed by transferring it to computer simulations. It 
was introduced by Eberhart and Kennedy in 1995 [51]. Each 
individual in this approach is referred to as a particle [52].

The general procedure of the PSO algorithm is as follows: 
In the first stage, the initial positions of the particles are 
generated randomly. In the second stage, the fitness values 
of these positions are calculated using a fitness function. 
The fitness function is used to obtain these fitness values. 
In the third stage, the best position of each particle for the 
relevant iteration (pbest,i) and the position of the best of the 
swarm so far (gbest) are identified. To make this determination, 

the fitness values calculated in the second stage are used. 
In the fourth stage, the speed and position of each particle 
are updated according to pbest,i, and gbest. A weight coefficient 
(inertia weight) is used to update the speed. In the fifth stage, 
the best solution obtained through these updates is stored 
in memory and the algorithm proceeds to the next iteration. 
This iterative process continues until the stopping criterion is 
met. Equations 3 and 4 show the speed and position update 
equations, and Figure 1(c) shows the workflow diagram of the 
algorithm.

where vt+1 is the current speed of the particle, w is the inertia 
weight, vt is the previous speed of the particle, r1 ,r2 are 
random numbers generated within the range (0,1), c1,c2 are 
the learning coefficients, pt is the previous position of the 
particle, pt+1 is the updated position of the particle [53].

Among the studies on PID controllers, the commonly used 
fitness functions are integral of absolute error (IAE), integral 
of time-weighted absolute error (ITAE), integral of squared 
error (ISE), and integral of time-weighted squared error (ITSE) 
[54]. These fitness functions are expressed in Equations 
5-8. Because the ISE and IAE criteria treat all errors equally,
without accounting for time, they can result in a response
with a long settling time and a relatively small overshoot [55]. 
To address this issue, an integral of time-weighted absolute
error (ITAE) is used as a fitness function in this paper [56].

Where 𝑡 is the time and 𝑒(𝑡) is the difference between the set 
point and the controlled variable.

Sine Cosine Algorithm (SCA)
The Sine Cosine Algorithm (SCA) is a newly developed 
population-based metaheuristic optimization technique 
introduced by Mirjalili. It mimics the behavior of mathematical 
sine and cosine functions [57]. In recent years, various 
versions of SCA, such as USMN-SCA [58], MTV-SCA [59], 
IC-SCA [60], and others, have been extensively studied and 
applied in DC motor control [57,61] as well as in renewable 
energy systems [62] and buck converter [63] optimizations. 
Solutions are updated based on the sine or cosine function, as 
represented in Equation 9.

Here, Ri represents the current solution position, t denotes 
the current iteration, and Yi indicates the target solution. The 
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parameter r1 is referred to as the transformation parameter, 
which determines the region of the next solution. The range 
of the sine and cosine functions in Equation 9 is adaptively 
adjusted using Equation 10.

where t is the current iteration, T is the total number of 
iterations, and b>0  is a constant. In Equation 9, r2∈[0,2π] is a 
random variable used to determine the movement direction 
of the next solution (i.e., either towards or away from Yi ). 
Additionally, r3 provides random weights as a stochastic 
factor to either increase (r3>1) or decrease (r3>1) the influence 
of Yi on defining the distance. The term r4 in Equation 9 is used 
to switch between sine and cosine functions [57]. To ensure 
accurate comparison with PSO, the time-weighted absolute 
error is used as a fitness function in this algorithm.

System Software
The Arduino Due development board was used to create 
the optimization and control algorithm and to facilitate 
bidirectional information exchange with the hardware. 
The software was written in the Arduino IDE (Integrated 
Development Environment) interface according to the 
workflow diagram in Figure 1. Specifically, Figure 1(a) shows 
the main program, Figure 1(b) shows the test subprogram, 
Figure 1(c) shows the PSO subprogram, and Figure 1(d) 
shows the SCA subprogram. After initially performing the 
necessary assignments and adjustments, the algorithm 
generates random parameters for speed control of the motor 
with the PI controller. These parameters are sent to the test 
subprogram and ensuring the motor operates for a specific 
period. During this period, the transient state is disregarded, 
and the absolute value of the difference between the steady-
state reference speed (Vref) and the measured motor speed 
(Vest) is taken. After completing the subprogram, these error 
values are divided by the number of samples as in Equation 11 
and the mean absolute error (MAE) value is determined.

MAE= 

where e is the error value, N is the total number of samples, 
and k is the number of samples. In this study, the MAE value 
was set to 1 rpm for sine without offset, while it was accepted 
as 0.5 rpm for other reference values. This is because the 
errors at the zero crossing points in the sine without offset 
are high. According to the algorithm, the system will control 
motor speed with randomly determined parameters if the 
MAE value is less than the threshold value. However, if it 
exceeds the threshold value, the optimization subprogram 
will be executed for the specified number of iterations. For 
the parameters found with optimization, the error status is 
rechecked by returning to the test subprogram, and motor 
control is provided using these parameters. The motor 
continues to move until the button specified for exit is 
pressed. PI parameter information, reference speed data, and 
instantaneous motor speed data were taken from the Arduino 
IDE serial port and entered into the MATLAB program, where 
the data was graphed.
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Figure 1  System software workflow diagram: a) main program, b)test 
subprogram, c) PSO subprogram and d) SCA subprogram

Hardware
Direct current motors have advantages such as excellent 
torque and speed characteristics, quick response to dynamic 
changes, high power-to-weight ratio, no requirement for 
current excitation, and low operating noise. For these reasons, 
they are widely used in industrial applications and robotics 
[64]. In this study, a 12 V DC motor with a reducer with a 
conversion ratio of 131.1:1 and an encoder with a resolution of 
64 PPR was used. To generate voltage for this motor based 
on PWM (Pulse Width Modulation) values received from 
an Arduino Due, a SparkFun Monster Motor Driver Module 
containing two VNH2SP30-E H-bridge integrated circuits was 
used. This driver module allows the control of motors with a 
maximum voltage of 16 V, a continuous current draw of 14 A, 
and a maximum PWM frequency of 20 kHz

VNH2SP30

VNH2SP30
12V DC 
Power 
Supply

Speed measurement 
from the signal received 

by interrupt

  +  
     -

Reference
w

PI
ControllerPWM<<u

PWM

Saturation

PSO/SCA

w

e

AC

Kp Ki

Figure 2 General block diagram of the system

Figure 2 illustrates the general schematic structure of the 
system, while Figure 3 shows the physical setup. The motor 
is powered by a 12 V voltage source, whereas the Arduino is 
powered via a computer connection. To enhance the precision 
of motor operation, the Arduino’s PWM output resolution was 
increased from 8 bits to 16 bits, and the PWM frequency was 
set to 15 kHz.

(10)

(11)
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.

Figure 3 System setup

The motor encoder is powered by the Arduino. The signals 
from the encoder are transferred to the interrupt pin, where 
instantaneous speed measurements are conducted within 
the interrupt subprogram in the Arduino. The measured 
speed value is then compared with the reference value in the 
program to calculate the error value.

EXPERIMENTAL RESULTS
In this study, the results were analyzed for three distinct 
reference values and four different control methods for the 
speed control of a DC motor. Step, offset sine, and non-
offset sine signals were chosen as reference values. For these 
references, motor speed control was implemented using 
open-loop control, a PI controller, a PSO-based PI controller, 
and an SCA-based PI controller. The steady-state MAE (Mean 
Absolute Error) was calculated by disregarding the transient 
states for the step and offset sine references, whereas for 
the non-offset sine reference, the MAE of the entire signal 
was considered to highlight the differences at zero-crossing 
points. Initially, as shown in Figure 4, the open-loop speed 
control results of the motor were obtained for a step reference 
value of 25 rpm.

Figure 4 Motor speed control with an open loop for 25 rpm setpoint

When the open loop speed control of the motor was examined, 
it was observed that the motor reached a steady state in 0.66 
seconds without overshoot, However, it remained constant at 
an mean of 22.60 rpm during the steady state, resulting in a 
steady state error of 2.40 rpm.

Closed loop control was achieved using the PI controller 
based on feedback received from the DC motor encoder. 
Since the motor parameters were unknown, the PI coefficients 
could not be determined directly. Consequently, the results 
obtained with different integral and proportional coefficients 

for PI control are shown in Figure 5.

Figure 5 Motor speed control with different PI parameters for 25 
rpm setpoint

When the results in Figure 5 are examined, it is observed 
that when the proportional and integral coefficients are low, 
the system does not exceed the reference value, but takes a 
long time to reach the steady state. Conversely, increasing 
the proportional coefficient and integral coefficient can 
accelerate the system response, but may lead to overshoots in 
transient states. To further improve this result, the appropriate 
parameter should either be calculated through mathematical 
modeling or determined experimentally via trial and error. 
However, since both methods are time-consuming when 
applied to different motors, PSO and SCA were used to find 
the appropriate parameters.

In the created algorithm, the MAE is first calculated using 
randomly determined parameters over a specific time or 
period. If this error value exceeds the threshold, adjustments 
are made using PSO or SCA. The motor speed results for PI 
parameters determined using PSO and SCA are shown in 
Figures 6 and 7, respectively. To ensure clarity, error graphs 
were plotted from the moment the speed reached the 
reference value, while the MAE was calculated only after the 
steady-state time was achieved.

Figure 6 Motor speed control with PSO-PI for 25 rpm setpoint

The PI parameters obtained through PSO are kp=0.83 
and ki=3.31. Upon evaluating the performance with these 
parameters, the motor exhibits a rise time of 0.1242 seconds, 
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an overshoot of 7.12% at 0.3312 seconds, and reaches a steady 
state after 1.7595 seconds. Subsequently, the motor operates 
with an average steady-state error of 0.21 rpm.

Figure 7 Motor speed control with SCA-PI for 25 rpm setpoint

The PI parameters found with SCA are kp=1 and ki=8.37. 
Upon analyzing the results with these parameters, the motor 
exhibits a rise time of 0.062 seconds, an overshoot of 7.4% 
at 0.22 seconds, and reaches steady state after 1.09 seconds. 
Subsequently, the motor operates with an average steady-
state error of 0.23 rpm.

When the same control applications were applied to the 
reference value of 30+15Sin(wt), the results depicted in 
Figures 8-11 were obtained.
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Figure 8 Motor speed control with an open loop for 30+15Sin(wt) 
rpm setpoint 

In open-loop control, the system began tracking the reference 
value at 0.39 seconds, without exhibiting any overshoot during 
the transient state. The motor then continued its movement 
with an mean absolute speed of 1.70 rpm. Furthermore, as 
illustrated in the graph, the reference signal is followed with a 
noticeable delay.

Motor speed control with PI
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Figure 9 Motor speed control with PI for 30+15Sin(wt) rpm setpoint 

For the PI control, the user set kp=0.5 and ki=23.75., and The 
results obtained with these parameters are shown in Figure 
9. The motor speed reached its rise time at 0.27 seconds and
exhibited an overshoot of 5.77% at 0.37 seconds. The motor
successfully followed the sine reference with an average error 
of 0.443 rpm.
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Figure 10 Motor speed control with PSO-PI for 30+15Sin(wt) rpm 
setpoint 

After ten iterations, PSO algorithm determined the 
proportional parameter to be 0.92 and the integral coefficient 
to be 60.03. Upon evaluating the performance of the PI control 
with these coefficients, the motor exhibited an MAE of 0.268 
rpm. The system achieved a rise time of 0.102 seconds and a 
peak time of 0.204 seconds, before reaching steady state at 
1.29 seconds. During the peak time, the motor experienced an 
overshoot of 24.56%.

Motor speed control with SCA-PI
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Figure 11 Motor speed control with SCA-PI for 30+15Sin(wt) rpm 
setpoint 
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After ten iterations, SCA found the proportional parameter 
to be 7.28 and the integral coefficient to be 55.9. When the 
results of the PI control performed with these coefficients 
were examined, the motor moved with an MAE of 0.338 rpm. 
The system reached a rise time of 0.068 seconds and a peak 
time of 0.102 seconds, before attaining steady state at 0.476 
seconds. During the peak time, the motor experienced an 
overshoot of 8.34%.

For bidirectional motion control of the motors, the reference 
signal 25Sin(2wt) was applied to the motor, and control was 
performed using open-loop, PI, PSO-PI, and SCA-PI methods. 
The results obtained for each control method are presented 
in Figures 12, 13, 14, and 15, respectively. Two periods were 
considered for each control method, and the mean absolute 
errors were calculated. Due to the low pulse per revolution 
(PPR) of the encoder, speed information cannot be obtained 
with high accuracy, especially at low speeds, as the period of 
the encoder signal increases. Consequently, errors may occur 
at the zero-crossing points of the signal.
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Figure 12 Motor speed control with an open loop for 25Sin(2wt) rpm 
setpoint 

In open-loop control, the motor followed the reference with a 
delay of 0.22 seconds and an mean error of 3.054 rpm.

Motor speed control with PI
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Figure 13 Motor speed control with PI for 25Sin(2wt) rpm setpoint 

The experimental values   produced by the user are Kp = 2.8 
and Ki = 55.12. The results obtained from the closed-loop PI 
controller of the motor with these values are shown in Figure 
13. Upon examining these graphs, it is observed that the
motor follows the reference value with an mean error of 0.787 

rpm, with no delay in the signal. However, jumps are present 
at the zero-crossing points.

Motor speed control with PSO-PI
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Figure 14 Motor speed control with PSO-PI for 25Sin(2wt) rpm 
setpoint

Since the MAE exceeded the threshold value, the parameters 
were recalculated using Particle Swarm Optimization (PSO), 
resulting in   kp = 7.23, and ki = 69.21. Upon examining the 
control results obtained with these values, it is observed that 
the reference is tracked with an error of 0.712 rpm, with no 
delay in the signal. Additionally, the zero-crossing points 
occur with reduced error compared to previous results.

Motor speed control with SCA-PI
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Figure 15 Motor speed control with SCA-PI for 25Sin(2wt) rpm 
setpoint

Since the MAE was above the threshold value, the parameters 
were calculated using SCA, yielding   kp = 8.87, and ki = 
63.35. When the control result obtained with these values   
is examined, it is observed that the reference is tracked with 
an error of 0.771 rpm, there is no delay in the signal and zero 
crossing points occur with less error. The results obtained with 
the controllers for all three references are given in Figures 16, 
17, and 18.

Figure 16 Motor speed control for 25rpm setpoint
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Figure 17 Motor speed control for 30+15Sin(wt) rpm setpoint

Figure 18 Motor speed control for 25Sin(2wt) rpm setpoint

When analyzing the above results, it is observed that in 
the DC motor controls performed with the PI parameters 
obtained through experimental studies using SCA and PSO, 
SCA provides superior performance in the transient state, 
while PSO proves to be more effective in reducing steady-
state error.

CONCLUSION
In this study, the Particle Swarm Optimization (PSO) algorithm 
and the Sine Cosine Algorithm (SCA) were employed to 
determine the optimal proportional-integral (PI) controller 
parameters for the speed control of a DC motor. The 
experimental study utilized using three different reference 
values: step reference, offset sine, and non-offset sine. 
Additionally, bidirectional control of the motor was achieved 
with the non-offset sine reference. A comparative analysis 
was conducted on the data obtained from open-loop control, 
PI control with experimentally determined parameters, and PI 
control using the proposed optimization methods. The results 
demonstrated that the PI controller when optimized with the 
proposed methods, produced effective outcomes.

An analysis of the experimental results presented in Table 
1 and the associated graphs revealed steady-state errors of 
2.40 rpm, 1.70 rpm, and 3.05 rpm for step, offset sine, and 
non-offset sine reference values, respectively, under open-
loop control. Furthermore, the motor speed failed to reach 
the reference speed in the open-loop control scenario. For PI 
control with experimentally determined coefficients, it was 
observed that some parameter configurations yielded fast 
responses accompanied by overshoots, while others resulted 
in slower responses with no overshoot.

When the PI parameters were optimized using PSO, the 
steady-state error values for the step, offset sine, and non-
offset sine reference cases were reduced to 0.21 rpm, 0.26 
rpm, and 0.71 rpm, respectively. Similarly, with SCA-based 
optimization, the error values were 0.23 rpm, 0.33 rpm, and 

0.77 rpm for the same reference cases. Notably, in the DC 
motor speed control implementations using PSO-optimized 
parameters, the mean absolute error was consistently below, 
indicating that the motor successfully tracked the reference 
values with high accuracy.

Table 1 Steady-state errors of control methods according to different 
setpoints

Control Method 

Reference

Open 
loop

PI PSO-PI SCA-PI 

ess(rpm) for Step 
Reference

2.40
0.2 (for 

kp=0.8, ki=5)
0.21 0.23

ess(rpm) for Sinus with 
offset ref.

1.70 0.44 0.26 0.33

 ess(rpm)  for Sinus 
without offset ref.

3.05 0.78 0.71 0.77

In the operation with a sinusoidal reference without offset, 
it was determined that the fluctuations at the zero-crossing 
points of the motor speed were caused by the low resolution 
of the DC motor encoder. Since feedback information was 
obtained with fewer samples for this reference value, the 
instantaneous speed was measured with greater oscillation. 
In contrast, more stable results were obtained with a fixed 
reference due to the higher sampling rate used during the 
measurement. Since the steady-state error was considered 
as the primary control performance criterion and derivative 
control was not included to improve the transient regime, 
overshoots during the transition phase were not evaluated as 
a success metric. Experimental studies demonstrated that 10 
iterations for 10 particles reduced the error to an acceptable 
level; therefore, the mean absolute error (MAE) was not 
reassessed in either optimization result. However, to enhance 
usability in different systems, the optimization cycle can 
be repeated until the error from the PSO and SCA outputs 
reaches an acceptable level, or the optimization process can 
continue until the desired error level is achieved instead of 
relying on a fixed number of iterations.
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