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Abstract: Factor analysis is a statistical method to explore the relationships among 

observed variables and identify latent structures. It is crucial in scale development 

and validity analysis. Key factors affecting the accuracy of factor analysis results 

include the type of data, sample size, and the number of response categories. While 

some studies suggest that reliability improves with more response categories, 

others find no significant relationship between the number of response categories 

and reliability. A key consideration is that increasing the number of response 

categories can introduce measurement errors, especially when there are too many 

categories for participants to respond accurately. The study examines how different 

numbers of response categories affect sample size requirements in factor analysis, 
particularly under misspecified and correctly specified models. MonteCarloSEM 

package in R was used to simulate data sets based on sample size, number of 

response categories, model specification, and test length. Results show that a 

higher number of categories helps reduce bias and improve model fit, especially in 

smaller samples. However, when sample sizes are small or when fewer categories 

are used, increasing the number of items or the number of categories can improve 

parameter estimation. The findings suggest that for optimal results, researchers 

should carefully balance sample size, number of items, and response categories, 

particularly in studies with categorical data. 

1. INTRODUCTION 

Factor analysis is a multivariate statistical technique that aims to explore the relationships 

among observed variables and uncover the underlying latent structures of these variables. This 

technique, which is widely used in the fields of social sciences and psychometrics, plays a 

crucial role in scale development and validity analysis. The type of data used in factor analysis 

and the sample size are significant factors affecting the accuracy of the results obtained 

(Kyriazos, 2018). In factor analysis, the number of response categories used in items can 

influence the quality and reliability of the results (Bandalos & Enders, 1996; Lozano et al., 

2008). While researchers often propose different recommendations, there is no clear consensus 

on the best number of response categories (Simms et al., 2019; Wakita et al., 2012; Yoon, 

2024). Abulela and Khalaf (2024) note that while some studies recommend between 4 and 7 
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response categories, others focus on the range between 5 and 7, however; most scales use 4 to 

5 categories.  

Several studies investigate the relationship between the number of response categories and the 

reliability of measurement (Abulela & Khalaf, 2024; Lozano et al., 2008; Matell & Jacoby, 

1971; Wakita et al., 2012; Yoon, 2024). While many argue that reliability improves with more 

categories, some studies contradict this statement. That is, some researchers suggest that 

increasing the number of categories improves reliability, while other studies show no significant 

relationship between reliability and the number of response categories (Abulela & Khalaf, 

2024; Yoon, 2024). Specifically, “both reliability and validity are independent of the number 

of response categories” (Matell & Jacoby, 1971). The number of response categories does not 

significantly affect descriptive statistics or Cronbach’s alpha (Wakita et al., 2012). Having more 

categories does not necessarily guarantee higher reliability (Abulela & Khalaf, 2024) nor does 

reducing longer scales to two-point or three-point scales may compromise the reliability or 

validity of the results (Matell & Jacoby, 1971). 

Increasing the number of categories can also lead to drawbacks. Komorita and Graham (1965, 

as cited in Abulela & Khalaf, 2024) suggest that using more than seven categories may exceed 

participants' capacity to respond accurately, which increases measurement error. The 

complexity of a 7-point scale is unwarranted; four- or five-point scales provide adequate 

differentiation for most measurement needs (Wakita et al., 2012). Participants tend to avoid 

selecting extreme responses on a 7-point scale, as “an increase in the number of options biases 

responders against answering the strongest expressions” (Wakita et al., 2012, p. 543). For 

instance, Abulela and Khalaf (2024) point out that using more than seven categories can make 

labeling each option more challenging. Similarly, Simms et al. (2019) argues that there is no 

psychometric advantage (e.g., in terms of alpha) to using more than six categories. In fact, 

presenting respondents with many similar options (e.g., "strongly disagree," "disagree," 

"slightly disagree") can make it more difficult to differentiate between them, potentially leading 

to confusion.  

Increasing the number of categories can also increase the time required for respondents to 

complete the questionnaire (Preston & Colman, 2000). According to Preston and Colman 

(2000), 5-point scales are the easiest to use, but they may be insufficient for expressing 

emotions or thoughts compared to scales with more categories. However, items with fewer 

categories are faster to answer compared to those with more categories, and thus scales with as 

few as 3 categories can be used depending on the study's purpose (Preston & Colman, 2000). 

Additionally, the number of categories may depend on the respondents' age group. For example, 

3 to 4 categories may be appropriate for children, while adults may benefit from scales with 5 

or more categories (Abulela & Khalaf, 2024). This is similar to the increase in response options 

for multiple-choice questions that accompany an increase in test-takers' age. Therefore, if 

participants find it too difficult or too easy to express their attitudes or feelings using the scale, 

their motivation to respond may decrease, leading to lower-quality data (Preston & Colman, 

2000). Moreover, if the number of response categories is not chosen carefully when drafting 

items, it may result in significant measurement errors during parameter estimation (Abulela & 

Khalaf, 2024; Bandalos & Enders, 1996). 

From another point of view, increasing the number of response categories leads to better model 

fit, regardless of whether the model is correctly specified or misspecified (Maydeu-Olivares et 

al., 2017). It was suggested that scales with more than 5 categories may help detect misspecified 

models more effectively. However, it was also pointed out that reducing the number of response 

alternatives may also decrease the likelihood of rejecting a misspecified model (Maydeu-

Olivares et al., 2017). Specifically, decreasing the number of categories can improve model fit 

while introducing parameter bias, thus reducing the likelihood of rejecting a model that should 

be rejected (Abdelsamea, 2020). Moreover, the Root Mean Square Error of Approximation 



Orçan                                                                                     Int. J. Assess. Tools Educ., Vol. 12, No. 2, (2025) pp. 341–352 

 343 

(RMSEA) tends to increase with the number of response categories, whereas the impact of the 

number of categories on SRMR is less pronounced (Maydeu-Olivares et al., 2017). 

The sample size is also a critical factor in factor analysis regarding model fit and the accuracy 

of parameter estimates (Kline, 2011). In particular, the sample size plays a crucial role in the 

effectiveness of factor analysis (MacCallum et al., 1999). Rhemtulla et al. (2012) defined 

studies with sample sizes ranging from 100 to 200 as small, and those with up to 600 

participants were categorized as medium-sized. However, researchers often debate the ideal 

sample size, as this can vary depending on factors such as the complexity of the model, the type 

of data, and the analytical approach used. Kyriazos (2018) provides a comprehensive overview 

of the various factors that influence sample size in factor analysis. Specifically, 

“In CFA, being a SEM category, sample size depends on a number of features like 

study design (e.g. cross-sectional vs. longitudinal); the number of relationships 

among indicators; indicator reliability, the data scaling (e.g., categorical versus 

continuous) and the estimator type (e.g., ML, robust ML etc.), the missing data level 

and pattern and model complexity” (p. 2208). 

While the distinction between categorical and continuous data is often emphasized in 

discussions of sample size, the number of categories within categorical data also plays a critical 

role. The relationship between the number of categories and sample size remains underexplored 

in the literature. The purpose of this study is to examine the effects of the number of response 

categories in scales on sample size requirements in factor analysis. 

2. METHOD 

2.1. Data Generation Procedure 

The data generation process was conducted using the MonteCarloSEM package (Orçan, 2021) 

within the R-CRAN environment (R Core Team, 2020). This package facilitates the simulation 

and analysis of data sets under various simulation conditions, including sample size and 

normality, for a specified model (Orçan, 2021). The data were generated based on two-factor 

models as shown in Figure 1. Based on the simulation conditions, the data generation model 

was modified. Various design factors were considered in this simulation study. After the data 

were generated, a one-factor model, as shown in Figure (right panel), was used to analyze the 

data. 

Figure 1. Models for data generation and simulation. 

            Generation 

 

                        Simulation 
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2.1.1. Design factors for data generation 

Four design factors were considered for the study. 

• Sample Sizes: Five different sample sizes were considered: 100, 200, 300, 500 and 1000. 

These sample sizes were deliberately chosen to cover a broad spectrum, ranging from small 

to large, within the context of Structural Equation Modeling (SEM) analysis (Orcan & Yang, 

2016). 

• Test Length: Three different test lengths were considered: 6, 10, 20. The number of items was 

equally distributed across factors. For example, when there are 6 items in total, three of those 

were assigned to the first factor and the rest assigned to the second factor. The factor loadings 

were all set at .7 within the study. That is, the factor loading was not a design factor for this 

study.  

• Number of Response Categories: Four different categories were used within this study: 2 (C2), 

3 (C3), 4 (C4), and 5 (C5). Items with two categories represent responses such as yes/no or 

pass/fail. Similarly, five categories represent five-point Likert-type items such as strongly 

disagree, disagree, neutral, agree, strongly agree. Categories larger than five were not 

considered in this study since scales with four or five points are sufficient (Wakita et al., 

2012).  

• Model Specifications: Three different models were used in this study: Strong misspecified 

model (r = .5), moderate misspecified model (r = .8), and correctly specified model (r = 1). 

Under the strongly misspecified model (MS_S), the correlation between the factors was set to 

be .5. However, the data analyzed with one-factor model as if the correlation between the 

factors was assumed to be 1. Under the moderately misspecified model (MS_M), the 

correlation was .8 and in the correctly specified model, the correlation was set to 1. That is, 

under the correctly specified (CS) model, the data generation and simulation model were the 

same.  

Consequently, the data were generated based on a total of 180 distinct conditions using these 

four design factors: 5 sample sizes x 3 Number of items x 4 number of categories x 3 model 

specifications. 

2.2. Data Analysis 

A total of 1000 data sets were generated using the MonteCarloSEM package for each of the 

conditions. The data generation process began by generating normally distributed data sets. 

Later, using per-given threshold values, the normally distributed data sets were transformed 

into categorical data sets. The threshold values which were used are given in Figure 2. For 

example, to create two categories, the threshold value was set to 0 (zero). The simulated values 

lower than 0 were set to 1 and larger than 0 were set to 2 to create two categories (Kılıç, 2022). 

The CFA modes were estimated using the Weighted Least Squares with Mean and Variance 

(WLSMV) estimation method in the lavaan packages (Rosseel, 2012). The WLSMV is 

considered "the best available categorical estimator" and is recommended for data sets with 

variables containing fewer than five categories (Rhemtulla et al., 2012, p. 354). Moreover, the 

WLSMV method could produce model solutions with sample sizes as small as 100 (Flora & 

Curran, 2004), indicating its robustness even in smaller datasets. 

Figure 2. Threshold values used for categorical data generation. 
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Model data fits were estimated using the p-value from the chi-square test. In addition to the chi-

square test, supplementary fit indices such as the Comparative Fit Index (CFI) and RMSEA 

should be examined to obtain a comprehensive evaluation of model fit (Flora & Curran, 2004). 

Therefore, CFI, RMSEA, and the standardized root mean square residual (SRMR) values were 

also assessed for model-data fit. For the evaluation of model data fit, Hu and Bentler’s (1999) 

criteria were used. Also, parameter estimates for the first factor loadings were examined in 

detail. For this purpose, the relative biases were calculated using Equation 1. 

𝐵𝑖𝑎𝑠 =
𝐴𝑏𝑠(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒−𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒)

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
                              (1) 

Although Flora and Curran (2004) indicated that biases below 5% are considered “trivial”, the 

critical bias threshold was set at 5% in order to be more conservative. The factor loadings for 

the models were all set at .7 within the study. Therefore, the true value in this study was .7. 

3. RESULTS 

All the replications across the models converged to a solution. That is, non-converge was not 

an issue for the simulation conditions. 

3.1. Results Based on Mis-specified Models 

Two misspecified models were examined in this study. Results based on the bias calculations 

are presented in Figure 3 and Figure 4. When the correlation between the factors was .5, all the 

bias estimates exceeded the 5% critical value (see Figure 3). When examined in detail, as the 

sample size increased, the percentage of bias decreased, regardless of test length. Also, when 

the number of items increased, the percentage of bias decreased slightly. However, the 

decreased bias values were still much higher than the 5% critical value. 

Figure 3. Bias of the parameter estimates for MS_S. 

 

In short, under the MS_S (larger miss specification), having fewer categories for an item does 

not require more items or larger sample sizes, except when the sample size is too small, such 

as 100. That is, when the sample size is larger than 100, the estimated bases were almost 

identical, regardless of the number of items or categories. However, when the sample size was 

100, confusing results were obtained. 

When the misspecification level was decreased, i.e., when the correlation between the factors 

was set to .8 (MS_M), the levels of bias decreased for all conditions. Although the bias values 

decreased, similar patterns can be observed across the figures. Specifically, as the sample size 

increased, the percentage of bias decreased. Under the small sample size conditions, the 

increasing number of items affected the percentage of bias. For instance, when the sample size 

was 200 and the number of categories was 2, the bias was 10% for 6 items; however, increasing 

the number of items to 10 reduced the bias to 8%. Under small sample sizes, it appears that the 
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number of categories influences the percentage of bias. Holding everything constant but 

increasing the number of response categories from 2 to 4 reduces the bias estimates. Namely, 

under the MS_M model, similar to the results of MS_S, to achieve smaller item parameter bias, 

it is better to have larger sample sizes or more response categories for items. When the number 

of categories is low, increasing the sample size becomes "a necessity" according to the 

simulation results. It is also important to note that all estimates of the bias were still larger than 

the 5% critical value. 

Besides biases in parameter estimation, model-data fit indices were also examined under 

misspecified models (MS_S and MS_M). Specifically, the p-values of the chi-square test, CFI, 

RMSEA, and SRMR values were checked. 

Figure 4. Bias of the parameter estimates for MS_M. 

 

Table 1 shows the percentage of model fits for each CFI, RMSEA, and SRMR. The models 

reported in Table 1 are misspecified: The correlations between the factors were .5 and .8, 

respectively. Therefore, the values in the table were expected to be small. As the numbers 

increased, detecting misspecified models became less likely. For example, with 6 items, a 

sample size of 100, and a .5 correlation, the CFI value was .28. This means 28% of the data fit 

the model, even though the model was misspecified. The corresponding value for the .8 

correlation (MS_M) was .98. Under the moderate misspecification with a .8 correlation, the 

percentage values increased. Most of the values were 1, indicating 100%. That is, 100% of the 

data showed fit even though it was a misspecified model. Based on the results, the values 

differed for the strong and moderate misspecification. It seems that when the misspecification 

was more evident (MS_S), as the number of categories decreased, the percentages of not 

rejecting the misspecified model increased based on the CFI and RMSEA values. However, as 

the sample size increases, up to 1000, this pattern disappears. For SRMR, the values remained 

almost the same regardless of size of response categories. However, under the small number of 

items, SRMR did not work properly, indicating biases larger than 5%, especially for the small 

sample sizes. Moreover, as the number of items increased, the values all became 0%. The 

pattern was different for the MS_M. The values were all much larger than the critical threshold 

for expected biases. 

The results for the p-value of chi-square tests are given in Table 2. Similar to Table 1, the 

smaller the values, the better the misspecified model is detected. For example, with 6 items, 

sample size of 100, and a correlation of .5, the p-value was .10. This means 10% of the data fits 

the model according to the chi-square test, even though the model is misspecified. The 

corresponding value for a correlation of .8 (MS_M) was .89. When the corresponding values 

of MS_S and MS_M were compared, MS_M indicated larger values, in general. That is, a 

moderate level of misspecification is less likely to detect the problem. Based on the results, as 

the category decreased under the small item and sample size, detecting misspecification became 

less likely. As the number of items and/or sample size increased, the effect diminished. 
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Table 1. Percent of model-data fit for misspecified models. 

Index 
Number 

of Items 
SS 

      MS_S        MS_M 

C5 C4 C3 C2   C5 C4 C3 C2 

CFI 

6 

100 .28 .33 .40 .46  .98 .99 .98 .96 

200 .14 .13 .22 .27  1.00 1.00 1.00 .99 

300 .06 .06 .11 .18  1.00 1.00 1.00 1.00 

500 .02 .01 .04 .07  1.00 1.00 1.00 1.00 

1000 .00 .00 .00 .01   1.00 1.00 1.00 1.00 

10 

100 .26 .29 .41 .44  1.00 1.00 1.00 1.00 

200 .10 .12 .17 .22  1.00 1.00 1.00 1.00 

300 .03 .05 .08 .12  1.00 1.00 1.00 1.00 

500 .01 .01 .02 .03  1.00 1.00 1.00 1.00 

1000 .00 .00 .00 .00   1.00 1.00 1.00 1.00 

20 

100 .24 .29 .37 .44  1.00 1.00 1.00 1.00 

200 .10 .10 .14 .20  1.00 1.00 1.00 1.00 

300 .03 .04 .04 .09  1.00 1.00 1.00 1.00 

500 .00 .01 .01 .02  1.00 1.00 1.00 1.00 

1000 .00 .00 .00 .00   1.00 1.00 1.00 1.00 

RMSEA 

6 

100 .03 .05 .20 .31  .70 .76 .87 .87 

200 .00 .00 .03 .11  .67 .72 .85 .88 

300 .00 .00 .01 .03  .60 .66 .83 .91 

500 .00 .00 .00 .01  .48 .58 .84 .92 

1000 .00 .00 .00 .00   .31 .49 .86 .96 

10 

100 .01 .03 .18 .29  .85 .90 .95 .96 

200 .00 .00 .02 .08  .81 .88 .97 .98 

300 .00 .00 .00 .02  .80 .87 .99 1.00 

500 .00 .00 .00 .00  .76 .85 .98 1.00 

1000 .00 .00 .00 .00   .68 .84 1.00 1.00 

20 

100 .01 .01 .12 .26  .95 .98 1.00 1.00 

200 .00 .00 .00 .06  .96 .99 1.00 1.00 

300 .00 .00 .00 .01  95 .99 1.00 1.00 

500 .00 .00 .00 .00  .94 .99 1.00 1.00 

1000 .00 .00 .00 .00   .93 .99 1.00 1.00 

SRMR 

6 

100 .07 .08 .07 08  .90 .87 .65 .51 

200 .07 .06 .06 .07  .99 .98 .94 .86 

300 .05 .04 .04 .05  1.00 1.00 .98 .95 

500 .02 .01 .04 .04  1.00 1.00 1.00 .99 

1000 .00 .00 .01 .01   1.00 1.00 1.00 1.00 

10 

100 .00 .00 .00 .00  .84 .74 .32 .13 

200 .00 .00 .00 .00  .99 .98 .87 .69 

300 .00 .00 .00 .00  1.00 1.00 .99 .92 

500 .00 .00 .00 .00  1.00 1.00 1.00 1.00 

1000 .00 .00 .00 .00   1.00 1.00 1.00 1.00 

20 

100 .00 .00 .00 .00  .69 .50 .03 .00 

200 .00 .00 .00 .00  .99 .98 .80 .37 

300 .00 .00 .00 .00  1.00 1.00 .99 .88 

500 .00 .00 .00 .00  1.00 1.00 1.00 1.00 

1000 .00 .00 .00 .00   1.00 1.00 1.00 1.00 
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Table 2. Percent of model-data fit based on the p-value for misspecified models. 

Number of 

Items 
SS 

    MS_S     MS_M 

C5 C4 C3 C2 C5 C4 C3 C2 

6 

100 .10 .19 .40 .55 .89 .92 .96 .96 

200 .00 .01 .04 .14 .72 .78 .88 .92 

300 .00 .00 .00 .02 .04 .09 .09 .48 

500 .00 .00 .00 .00 .00 .00 .00 .12 

1000 .00 .00 .00 .00 .00 .00 .00 .00 

10 

100 01 .04 .20 .34 .22 .30 .30 .88 

200 .00 .00 .01 .02 .00 .00 .00 .57 

300 .00 .00 .00 .00 .00 .00 .00 .26 

500 .00 .00 .00 .00 .00 .00 .00 .01 

1000 .00 .00 .00 .00 .00 .00 .00 .00 

20 

100 .00 .00 .04 .10 .02 .03 .03 .84 

200 .00 .00 .00 .00 .00 .00 .00 .41 

300 .00 .00 .00 .00 .00 .00 00 .05 

500 .00 .00 .00 .00 .00 .00 .00 .00 

1000 .00 .00 .00 .00 .00 .00 .00 .00 

3.2. Results Based on Correctly Specified Models 

Percentages of bias for the correctly specified model (CS) were given in Figure 5. Under the 

CS model, the data were generated with a correlation of 1 between factors (see Figure 1). As 

expected, as the sample size increases the percentage bias decreases, regardless of the test length 

or number of categories. Although the effect is limited, increasing the number of items 

contributes to a reduction in bias. For example, with a sample size was 200 and five response 

categories, biases were 5.8, 5.4, and 4.8 for 6, 10, and 20 item models respectively. It is worth 

noting that as the number of items reached 20, the bias dropped below the 5% critical value. 

Additionally, the number of response categories influenced bias estimates. Specifically, as the 

number of categories decreased, bias increased, regardless of the item and sample sizes. 

Figure 5. Bias of the parameter estimates for CS. 

 

Increasing sample sizes or the number of items eventually reduces the percent bias values below 

the critical value. Furthermore, increasing the number response options also reduces bias. 

Percentages of model data fit for the correctly specified model were reported in Table 3. The 

values in the table were expected to be small, indicating the percentages of non-fit for the model. 

For example, with 6 items and a sample size of 100, the RMSEA value was .02. This means 

that only 2% of the data does not fit the model. However, when viewed comprehensively, most 
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of the values in Table 3 were zero. Non-zero values were visible only for the sample size of 

100. Based on the results, only SRMR values distinguish model-data fit. CFI and RMSEA 

values were almost all zero, while non-zero values were smaller than .05. Also, the p-value of 

the Chi-square test was all zero. Therefore, Chi-square, CFI, and RMSEA do not provide any 

feedback about model-data fit. However, SRMR indicates some non-zero values. 

Table 3. Percent of model-data fit for correctly specified models. 

Index Number of Items SS C5 C4 C3 C2 

CFI 

6 
100 0 0 0 0 

200 0 0 0 0 

10 
100 0 0 0 0 

200 0 0 0 0 

20 
100 0 0 0 0 

200 0 0 0 0 

RMSEA 

6 
100 .02 .01 .01 .03 

200 0 0 0 0 

10 
100 0 0 0 0 

200 0 0 0 0 

20 
100 0 0 0 0 

200 0 0 0 0 

SRMR 

6 
100 0 0 .06 .18 

200 0 0 0 0 

10 
100 0 0 .16 .52 

200 0 0 0 0 

20 
100 0 0 .43 .95 

200 0 0 0 0 

Note: Since the values were zero (0) for sample sizes of 300, 500, and 1000, these cases were omitted 
from the table for clarity. 

All these non-zero values corresponded to samples with sizes below 100, with the numbers of 

categories being three and two. That is if all three supplementary fit indices were examined 

together, under the small sample sizes and a smaller number of response categories, model data 

fit points to a problem. Therefore, if the sample size is small, increasing the number of response 

categories can solve model data fit issues. From another point of view, as long as an adequate 

sample size is given (larger than 200), the number of response categories does not have a direct 

impact on model-data fit. Furthermore, as the model complexity (df) increases, the effect on 

model-data fit increases as well. For instance, in a structure with six items and two response 

categories, model-data fit was not achieved 18% of the time, whereas, with 10 and 20 items, 

this rate rises to 52% and 95%, respectively. 

4. DISCUSSION and CONCLUSION 

The effects of the number of categories on factor analysis were examined in this study. For this 

purpose, the Monte Carlo simulation technique was used. Sample size, test length, response 

categories, and model specifications were used as the design factor of the simulation. Under a 

misspecified model, considering that the required sample size is expected to increase as the 

number of items grows, a sample of 100 for 20 items may be regarded as rather low. 

Furthermore, in such a small sample, reducing the number of response categories appears to 
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have significantly impacted the estimation of model parameters. Consequently, having fewer 

categories changes the results considerably until the sample size reaches a certain threshold. To 

reduce bias, it would be beneficial either to increase the test length or the number of categories, 

in cases where an adequate sample size is not feasible due to the study population. More 

broadly, regardless of sample size, increasing the number of categories can at the very least 

prevent an increase in bias under a misspecified model. On the other hand, when the number of 

categories is low, increasing either the sample size or the number of items, even slightly, can 

help reduce bias. Therefore, the number of categories is linked to both the sample and test length 

requirements. 

For model-data fits, it is better to evaluate MS_S and MS_M separately. Moderate levels of 

misspecification were likely more challenging for the model to identify, as they more closely 

resembled the true structure. In other words, when the correlation is as high as .8, distinguishing 

a single-factor structure in the predictive model becomes more challenging. Thus, in assessing 

misspecification, it would be more appropriate to focus on the result of MS_S. 

As with supplementary fit indices such as SRMR, the number of response categories also 

impacts chi-square values (Shi et al., 2021). Specifically, when sample size and test length are 

low, reducing the number of categories makes it harder to correctly identify a misspecified 

model (Maydeu-Olivares et al., 2017). In this context, in terms of chi-square values, increasing 

the number of categories can make a positive contribution to the identification of a misspecified 

model (Abulela & Khalaf, 2024), especially when sample size and test length are limited. 

In sum, when estimating a model that is not correctly specified (such as MS_S), it becomes 

essential to increase either the number of items in the model or the sample size if the number 

of categories is low. Put differently, if a small number of response options is to be used when 

designing items, it is important to ensure a larger number of items or a substantial sample size. 

Therefore, in cases where item development or access to samples is challenging, increasing the 

number of categories becomes crucial to accurately estimating model-data fit in misspecified 

models. 

Similar to misspecified models, the results showed that, for the correctly specified model, 

increasing the sample size (MacCallum et al., 1999) or the number of items (Simms et al., 2019) 

reduces bias values. Furthermore, results indicate that the number of response categories used 

in items also helps lower estimated bias values (Shi et al., 2021). Consequently, in situations 

where sample access is limited or the number of items is restricted, increasing the number of 

response options in categorically defined items serves as a compensating factor. Conversely, if 

the number of response options is reduced, achieving consistent results would require either 

more items or a larger sample size. In a nutshell, when the sample size and test length are 

limited, choosing more response options can help lower the bias estimates. 

In a correctly specified model, having a sample size above 200 can help prevent potential issues 

related to model-data fit. However, when the sample is insufficient or challenging to obtain, 

using items with only two or three response categories can lead to model-data misfit, at least as 

indicated by the SRMR value. Considering that supplementary fit indices are generally 

evaluated together, a low number of response categories may falsely suggest problems with 

model-data fit. 

In conclusion, findings show that in misspecified models, low sample sizes and fewer response 

categories increase bias and lower the accuracies of parameter estimation (Lozano et al., 2008, 

Shi et al., 2021). To mitigate these effects, larger samples or more response categories are 

recommended. Particularly in models with small sample sizes and/or item counts, the number 

of response categories must be increased to reduce bias. Correctly specified models also benefit 

from additional categories, reducing bias and supporting model-data fit. A sample size of over 

200 is ideal for avoiding model misfit, as low category counts with limited samples may 

inaccurately indicate poor fit. Finally, the study demonstrates that sample size requirements are 
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influenced not only by factors such as study design and estimator type (Kyriazos, 2018) but 

also by the number of response categories in the items. Specifically, in studies employing 

categorical data, using a larger number of response categories (e.g., 5) rather than fewer (e.g., 

2 or 3) positively affects the adequacy of the sample size. This suggests that employing a greater 

number of response options can help meet sample size requirements more effectively.  

Future research could examine scenarios involving studies with more than five categories, as 

this study is limited to a maximum of five. Furthermore, it would be beneficial to analyze how 

outcomes might vary in the context of more complex models. Finally, evaluating the use of a 

different estimation method could yield valuable insights. 
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