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ABSTRACT This paper employs a piecewise constant approximation to discretize a fractional order Holling
type II predator-prey model with harvesting in both populations. The dynamics of the resulting discrete-time
model are then investigated. First, the conditions for fixed points’ existence and stability are established. It is
also demonstrated that the proposed discrete-time model can undergo either flip bifurcation or Neimark-Sacker
bifurcation. The existence and direction of both bifurcations have been identified using the center manifold
theorem. The appearance of these bifurcations results in the emergence of chaotic dynamics. To stabilize
chaos at the fixed point of unstable trajectories, we provide two types of control chaos: hybrid control and
state feedback control. By selecting appropriate control settings, it is shown that both hybrid control and state
feedback control eliminate chaotic orbits and make the fixed point asymptotically stable. Some numerical
simulations were used to verify all analytical conclusions.
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INTRODUCTION

Predator-prey interaction is regarded as an essential component of
the food chain, making it one of the most extensively researched
concerns in ecology and mathematical biology (Brown et al. 2004).
Predator-prey interactions are investigated to get better under-
standing on their population dynamics and predict possible ex-
tinctions (Berryman 1992; Beretta and Kuang 1998). The study of
predator-prey systems is not only beneficial in developing scientific
theories, but it is also crucial to the establishment of a sustained
human society as well as environmental health (Guo et al. 2023).

Many scholars have recommended significant changes to the
system by incorporating ecological aspects such as functional re-
sponses (Holling 1965), Allee effect (Panigoro et al. 2023; Sahoo and
Sahoo 2024; Mandal et al. 2025), additional food (Ulfa et al. 2017;
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Mondal et al. 2024), cannibalism (Rayungsari et al. 2022; Shabbir
and Din 2022), harvesting (Suryanto et al. 2019; Guo et al. 2023;
Panigoro et al. 2023; Sarkar and Mondal 2023), and more. The func-
tional response in predator-prey interaction is a significant factor
because it specifies the amount of prey consumed per predator
per unit time, given the available prey (Uddin et al. 2024; Sarkar
and Mondal 2023). Holling developed three sorts of functional re-
sponses to describe mathematically predators’ prey consumption:
Holling types I, II, and III (Holling 1965, 1966). The Holling type
I functional response is appropriate for situations where preda-
tors have access to a large population of prey. Holling types II
and III are monotonic and exhibit a saturation effect when prey
population is large. In particular, the Holling type II functional
response reflects a reduction in intake levels due to limited prey.
This functional response involves two key parameters: handling
time and attack rate. The Holling type II functional response
has been frequently used in predator-prey models, as shown in
(Mukhopadhyay and Bhattacharyya 2016; Zhang et al. 2019).
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Harvesting of one or both species in a predator-prey system is
another critical aspect in predator-prey dynamics. Harvesting eco-
logical resources is typically done as part of integrated agriculture
pest management, fisheries, forestry, and wildlife management pro-
grams. Because of the long-term benefits to people, bio-economic
models have been developed for scientific management of renew-
able resources. Lee and Baek (2017) examined a predator-prey
model with a constant harvest rate. The research team investigated
the predator-prey model, which included linear harvesting of prey
and predators. Mukhopadhyay and Bhattacharyya (2016) exam-
ined a model with two predators fighting for the same prey and
investigated the implications of harvesting.

The predator-prey interaction models described above are ex-
pressed as first-order differential equations. In these models, the
population growth rate is only determined instantaneously. Nu-
merous researchers have recommended employing fractional order
derivatives to account for memory effects. For example, Hasan
et al. (2022) offered a fractional order Leslie-Gower model that
includes Allee effect and prey refuge. Rayungsari et al. (2023) in-
vestigated a fractional order predator-prey model that takes into
account the impacts of cannibalism and predator refuge. We have
also developed a number of fractional order predator-prey models
in the presence of pathogen infection, including (Panigoro et al.
2019, 2021).

Recently, Sarkar and Mondal (2023) introduced a fractional
order predator-prey model with linear harvesting for both prey
and predator population, namely

Dα x̂ = rx̂(1 − x̂
K
)− σx̂ŷ

1 + mx̂
− k1 x̂

Dα ŷ =
βx̂ŷ

1 + mx̂
− f ŷ − k2ŷ,

(1)

where x̂ = x̂(τ) and ŷ = ŷ(τ) denote the prey and predator popu-
lation at time τ. In this case, r, K, σ, β, m, and f are positive-valued
parameters which respectively indicate the intrinsic growth rate
of prey, the environmental carrying capacity of prey, the rate of
predation, the conversion rate of predation, the handling time to
catch and devour the prey population, and the natural death rate
of predators. k1 and k2 are respectively the harvesting rate of prey
and predator. Dα represents the Caputo fractional derivative of
order α where α ∈ (0, 1], which is defined as (Petráš 2011)

Dαu(τ) =
1

Γ(1 − α)

∫ τ

0

u′(s)
(τ − s)α

ds. (2)

To simplify the analysis, we introduce the following transformation

x̂ = Kx, ŷ =
rmK

σ
y, and τ = t/r,

such that model (1) can be written as

Dαx = x(1 − x)− xy
a + x

− px

Dαy =
bxy

a + x
− (c + q)x,

(3)

where

a =
1

mK
, b =

β

rm
, p =

k1
r

, c =
f
r

, and q =
g
r

.

While fractional order models can represent memory effects in
predator-prey interactions, numerous scholars choose to explore
discrete-time models. Discrete models are thought to be better
suited for explaining many phenomena in biology and have more

complex dynamics than continuous ones (Santra and Mahapa-
tra 2020; Alzabut et al. 2022; Panigoro et al. 2023). One method
for obtaining a discrete–time model is to discretize the continu-
ous one. For example, a discrete–time version of the first order
predator–prey model with Holling type II without harvesting has
been studied by Khan et al. (2019); Liu and Li (2021); Arias et al.
(2022). In this case, Liu and Li (2021) applied a semidiscretization
method, while Khan et al. (2019) implemented a nonstandard finite
difference scheme. In order to solve a system of fractional order or-
dinary differential equations (FODE), El-Sayed and Salman (2013)
proposed the piecewise constant approximation (PWCA) method.
Following that, several scholars adapted the PWCA method for
a variety of biological mechanisms. Selvam et al. (2020) and Mon-
dal et al. (2020) have independently implemented the PWCA ap-
proach for a fractional order predator-prey model with Holling
type II functional response and prey refuge, but no harvesting. Al-
Nassir (2021) has investigated a discrete model for fractional order
predator-prey model with harvesting obtained from the PWCA ap-
proach, although the functional response is Holling type III. In this
study, we consider a discrete-time version of model (3), which is
derived using the PWCA approach. We recognize that the PWCA
approach relies on the fact that the exact solution of a FODE

Dαu(t) = f (t, u(t)), u(0) = u0, (4)

can be written as

u(t) = u(0) +
1

Γ(α)

∫ t

0
(t − τ)α−1 f (τ, u(τ))dτ. (5)

If the function f (t, u(τ)) is assumed to be constant for τ ∈ [0, t),
i.e., f (t, u(τ)) = f̄ , then the solution (5) leads to

u(t) = u(0) +
1

Γ(α)

∫ t

0
(t − τ)α−1 f (τ, u(τ))dτ

= u(0) +
f̄

Γ(α)

∫ t

0
(t − τ)α−1dτ

= u(0) +
f̄ tα

Γ(α)
.

(6)

To discretize system (3), we suppose that the time domain is
divided into a finite number of sub-intervals tm−1 < t < tm, m =
1, 2, . . . , N. The solution is determined by applying equation (5)
and assuming that the solution is constant in each sub-interval,
namely u(t) = um−1 = u(tm−1) for t ∈ [tm−1, tm). In this way, we
obtain a PWCA scheme for model (3) as follows

xn+1 = xn + δ

[
(1 − xn)xn − xnyn

a + xn
− pxn

]
yn+1 = yn + δ

[
bxnyn

a + xn
− (c + q)yn

]
,

(7)

where δ = hα

αΓ(α) and h is the time step size of numerical integration.
Notice that when the order of fractional derivative is α = 1 then
scheme (7) is the forward Euler scheme for the model (3).

This work examines the dynamics of the discrete-time model
(7). To accomplish this, we first study the existence and stability of
all possible fixed points, then proceed to bifurcation analysis (flip
and Neimark-Sacker bifurcations). We may predict the occurrence
of chaos in our discrete system, just as we have in other discrete
systems. As consequently, we provide two distinct types of chaos
control: hybrid control and state feedback control. The hybrid
control has been successfully applied by Panigoro et al. (2023)
and Ruan and Li (2024) to eliminate the occurrence of the chaotic
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solution. The effective implementation of the state feedback control
to prevent chaotic behavior has been demonstrated (Ruan and Li
2024; Khan et al. 2024; Li et al. 2024). Finally, numerical simulations
are used to validate and elucidate the theoretical results.

FIXED POINTS AND THEIR STABILITY PROPERTIES

Existence of Fixed Points
The fixed points of the discrete system (7) can be determined by
solving the following system of algebraic equations

x = x + δ

[
1 − x − y

a + x
− p

]
x

y = y + δ

[
bx

a + x
− (c + q)

]
y.

(8)

It can be shown that system (7) has three fixed points, that are

E0 = (0, 0), E1 = (1 − p, 0), E∗ = (x∗, y∗) (9)

where

x∗ =
a(c + q)

b − (c + q)
, and y∗ =

ab((1 − p)(b − (c + q))− a(c + q))
(b − (c + q))2 .

It is clear that the extinction of both population fixed point (E0)
always exists. Furthermore, the extinction of predator fixed point
(E1) exists if p < 1, while the interior fixed-point E∗ exists if all
following conditions are satisfied

1. p < 1,

2. b > c + q, and

3. (1 − p) > a(c+q)
b−(c+q) .

Stability of Fixed Points
In this part we study the stability properties of all fixed-points by
observing system (7) around each fixed point. The Jacobian matrix
of system (7) evaluated at a fixed point Ē = (x̄, ȳ) is

J(E(x̄, ȳ)) =

1 + δ
[
1 − 2x̄ − p − aȳ

(a+x̄)2

]
−δ
[ x̄

a+x̄
]

δ
[

abȳ
(a+x̄)2

]
1 + δ

[
bx̄

(a+x̄) − (c + q)
]
 .

(10)

If λ1 and λ2 are eigenvalues of the Jacobian matrix (10), then the
fixed point Ē is asymptotically stable if |λ1,2| < 1. If |λ1| = 1
or |λ2| = 1, then Ē is a non-hyperbolic fixed point. We now
investigate the stability properties of each fixed point.

It is easy to check that the Jacobian matrix at E0 = (0, 0) is

J(E0) =

1 + δ(1 − p) 0

0 1 − δ(c + q)

 , (11)

where its eigenvalues are

λ1 = 1 + δ(1 − p), λ2 = 1 − δ(c + q).

It is directly observed that λ1 > 1 if p < 1. For p > 1, |λ1| < 1 if

and only if δ < 2
p−1 ⇔ h < α

√
2αΓ(α)

p−1 = h1. Similarly, we have that

|λ2| < 1 ⇔ δ < 2
c+q ⇔ h < α

√
2αΓ(α)

c+q = h2. By observing those
eigenvalues using the same method, we can prove the following
results. The fixed point E0 is

1. a sink if p > 1 and 0 < h < min {h1, h2}.

2. a source if one of the following conditions holds

(a) p < 1 and h > h2,

(b) p > 1 and h > max {h1, h2}.

3. a saddle if one of the following conditions holds

(a) p < 1 and 0 < h < h2,

(b) p > 1 and min {h1, h2} < h < max {h1, h2}.

4. a non-hyperbolic if one of the following conditions holds

(a) p = 1,

(b) p > 1 and h = h1,

(c) h = h2.

If the fixed point E1 = (1 − p, 0) is substituted into the Jacobian
matrix (10), then we obtain

J(E1) =

1 − δ(1 − p) − δ(1−p)
a+(1−p)

0 1 + δ
(

b(1−p)
a+(1−p) − (c + q)

)
 . (12)

The eigenvalues of the Jacobian matrix J(E1) are

λ1 = 1 − δ(1 − p), λ2 = 1 + δ

(
b(1 − p)

a + (1 − p)
− (c + q)

)
.

If E1 exists, i.e. when p < 1, then λ1 < 1. We also observe that if
(1 − p) > L∗ where L∗ =

a(c+q)
b−(c+q) then λ2 > 1. By evaluating the

values of λ1 and λ2 in similar way, we conclude the following
results regarding the topology of the fixed point E1.

Let h3 = α

√
2αΓ(α)

1−p and h4 = α

√
2αΓ(α)(a+(1−p))

(a+(1−p))(c+q)−b(1−p) . Then, the

fixed point E1 is

1. a sink if (1 − p) < L∗ and h < min {h3, h4}.

2. a source if one of the following conditions holds

(a) 1 − p > L∗ and h > h3,

(b) 1 − p < L∗ and h > max {h3, h4}.

3. a saddle if one of the following conditions holds

(a) 1 − p > L∗ and 0 < h < h3,

(b) 1 − p < L∗ and min {h3, h4} < h < max {h3, h4}.

4. a non-hyperbolic if one of the following conditions holds

(a) 1 − p = L∗,

(b) 1 − p < L∗ and h = h4,

(c) h = h3.

The Jacobian matrix (10) evaluated at E∗ := (x∗, y∗) is

J(E∗) =

1 + δj11 δj12

δj21 1

 , (13)
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where

j11 =
(c + q)

b(b − (c + q))
((1 − p)(b − (c + q))− a(b + c + q)),

j12 = − c + q
b

< 0,

j21 = (1 − p)(b − (c + q))− a(c + q).

The characteristics equation of the Jacobian matrix J(E∗) is given
by

F(λ) = λ2 − Tr(J(E∗))λ + Det(J(E∗)) = 0 (14)

where

Tr(J(E∗)) = 2 + Ψ1δ,

Det(J(E∗)) = 1 + Ψ1δ + Ψ2δ2,

and

Ψ1 = j11 =
(c + q)

b(b − (c + q))
((1 − p)(b − (c + q))− a(b + c + q)),

Ψ2 = −j12 j21 =
(c + q)

b
((1 − p)(b − (c + q))− a(c + q)) .

According to Liu and Xiao (2007), if λ1 and λ2 are characteristics
roots of (14) and if F(1) > 0, then the following results hold.

1. |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and
Det(J(E∗)) < 1.

2. |λ1| < 1 and |λ2| > 1 or |λ1| > 1 and |λ2| < 1 if and only if
F(−1) < 0.

3. |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and
Det(J(E∗)) > 1.

4. λ1 = −1 and |λ2| ̸= 1 if and only ifF(−1) = 0 and
Tr(J(E∗)) ̸= 0, 2.

5. λ1 and λ2 are a pair of conjugate complex roots with |λ1| =
|λ2| = 1 if and only if Tr(J(E∗))2 − 4Det(J(E∗)) < 0 and
Det(J(E∗)) = 1.

From the characteristics equation (14), we can show that

1. F(0) = 1 + Ψ1δ + Ψ2δ2,

2. F(1) = Ψ2δ2,

3. F(−1) = 4 + 2Ψ1δ + Ψ2δ2.

It is seen that if E∗ exists then j21 > 0 and therefore Ψ2 > 0.
Consequently, F(1) > 0 and we can apply the above rules to
evaluate the properties of λ1 and λ2. By analysing the values
of F(0) = Det(J(E∗)) and F(−1), and then implementing those
above rules, the fixed point E∗ has the following properties. Let
∆ = Ψ2

1 − 4Ψ2 and

δ̂0 = −Ψ1/Ψ2, δ̂1 =
−Ψ1 −

√
∆

Ψ2
, δ̂2 =

−Ψ1 +
√

∆
Ψ2

.

If E∗ exists and 1 − p < L∗ + ab
b−(c+q) , then E∗ is:

1. a sink if one of the following conditions holds

(a) ∆ < 0 and 0 < h < ĥ0, where ĥ0 = α

√
αΓ(α)δ̂0,

(b) ∆ ≥ 0 and 0 < h < ĥ1, where ĥ1 = α

√
αΓ(α)δ̂1;

2. a source if one of the following conditions holds

(a) ∆ > 0 and h > ĥ2, where ĥ2 = α

√
αΓ(α)δ̂2,

(b) ∆ ≤ 0 and h > ĥ0;

3. a saddle if ∆ > 0 and ĥ1 < h < ĥ2;

4. a non-hyperbolic if one of the following conditions holds

(a) ∆ > 0, h = ĥ1, and Tr(J(E∗)) = 2 + Ψ1δ ̸= 0,−2,

(b) ∆ > 0, h = ĥ2, and Tr(J(E∗)) = 2 + Ψ1δ ̸= 0,−2,

(c) ∆ < 0 and h = ĥ0.

BIFURCATION ANALYSIS

This section examines the flip and Neimark-Sacker (NS) bifurca-
tions at the fixed point E∗ = (x∗, y∗) of the model (7), utilizing
the parameter h as a bifurcation parameter. Since h = α

√
αΓ(α)δ, δ

can also be viewed as the bifurcation parameter. In this part, we
also assume that 1 − p < L∗ + ab

b−(c+q) and the order of fractional
derivative is α ∈ (0, 1).

Flip Bifurcation

We first define a set of parameter Ωj =

{
(a, b, c, p, q, δ, α) | ∆ >

0, δ = δ̂j, 2 + Ψ1δ ̸= 0,−2;
}

, j = 1, 2. Remark that δ = δ̂j ⇔ h =

ĥj, j = 1, 2. Based on the previous analysis, the Jacobian matrix
J(E∗) with (a, b, c, p, q, δ, α) ∈ Ωj, j = 1, 2 has eigenvalues λ1 = −1
and λ2 ̸= ±1; indicating that a flip (period-doubling) bifurca-
tion may occur from the fixed point E∗ whenever (a, b, c, p, q, δ, α)
crosses region Ωj, j = 1, 2. Here we perform a flip bifurcation anal-
ysis around Ω1. The flip bifurcation around Ω2 can be analyzed
analogously and is thus omitted. The flip bifurcation analysis
is started by introducing a small perturbation δ̄, |δ̄| ≪ 1 around
δ = δ̂1 such that model (7) becomes

xn+1 =xn + (δ̂1 + δ̄)

[
(1 − xn)xn − xnyn

a + xn
− pxn

]
yn+1 =yn + (δ̂1 + δ̄)

[
bxnyn

a + xn
− (c + q)yn

]
.

(15)

We translate the fixed point E∗ = (x∗, y∗) into the origin by using
un = xn − x∗ and vn = yn − y∗. The resulting system leads to,
after Taylor expansion,

un+1

vn+1

 =

a11 a12

a21 a22


un

vn

+

 f1(un, vn, δ̄)

f2(un, vn, δ̄)

 (16)

where

f1(un, vn, δ̄) =a13u2
n + a14unvn + a15v3

n + a16u2
nvn

+(b1un + b2vn + b3u2
n + b4v2

n)δ̄

f2(un, vn, δ̄) =a23u2
n + a24unvn + a25v3

n + a26u2
nvn

+(c1un + c2vn + c3u2
n + c4v2

n)δ̄
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with

a11 = 1 + δ̂1((1 − x∗ − p) c+q
b − x∗) b1 = (1 − x∗ − p) c+q

b − x∗

a12 = − δ̂1x∗

a+x∗ b2 = − x∗

a+x∗

a13 = δ̂1

(
y∗

(a+x∗)2 (1 − x∗

a+x∗ )− 1
)

b3 =
y∗

(a+x∗)2 (1 − x∗

a+x∗ )− 1

a14 = − b−(c+q)
b(a+x∗)

δ̂1 b4 = − b−(c+q)
b(a+x∗)

a15 = − δ̂1y∗

(a+x∗)3 a16 = δ̂1
(a+x∗)2 (1 − x∗

a+x∗ )

a21 =
by∗ δ̂1
a+x∗ (1 − x∗

a+x∗ ) c1 =
by∗

a+x∗ (1 − x∗

a+x∗ )

a22 = 1 c2 = 0

a23 = − by∗ δ̂1
(a+x∗)2 (1 − x∗

a+x∗ ) c3 = − by∗

(a+x∗)2 (1 − x∗

a+x∗ )

a24 = bδ̂1
a+x∗ (1 − x∗

a+x∗ ) c4 = b
a+x∗ (1 − x∗

a+x∗ )

a25 =
y∗ δ̂1

(a+x∗)3 a26 = bδ̂1
(a+x∗)2 (

x∗

a+x∗ − 1).
The eigenvalues of the linearized system of (16) are λ1 = −1

and λ2 = 3 + Ψ1δ̂1. λ2 is neither −1 nor 1 if δ̂1 ̸= −2/Ψ1 or
δ̂1 ̸= −4/Ψ1. By takingun

vn

 =

 a12 a12

−1 − a11 λ2 − a11


Mn

Nn

 ,

system (16) becomes

Mn+1

Nn+1

 =

−1 0

0 λ2


Mn

Nn

+

g1(un, vn, δ̄)

g2(un, vn, δ̄)


where

g1(un, vn, δ̄) =
λ2 − a11

a12(λ2 + 1)
f1(un, vn, δ̄)− 1

λ2 + 1
f2(un, vn, δ̄)

g2(un, vn, δ̄) =
1 + a11

a12(λ2 + 1)
f1(un, vn, δ̄) +

1
λ2 + 1

f2(un, vn, δ̄)

with

un = a12(Mn + Nn), vn = −(1 + a11)Mn + (λ2 − a11)Nn,

If the center manifold is supposed to have the form

φ(Mn, δ̄) = ν1 M2
n + ν2 Mn δ̄ +O((|Mn|+ |δ̄|)3), (17)

then function φ(Mn, δ̄) needs to fulfill

φ(−Mn+g1(Mn, φ(Mn, δ̄), δ̄), δ̄)− λ2 φ(Mn, δ̄)

−g2(Mn, φ(Mn, δ̄), δ̄) = 0.
(18)

When we solve equation (18), we get

ν1 =
a2

12 ((a11 + 1)a13 + a12a23)− a12(a11 + 1) ((a11 + 1)a14 + a12a24)

a12(1 − λ2
2)

ν2 =
−a12 ((a11 + 1)b1 + a12c1) + (a11 + 1)2b2

a12(λ2 + 1)2 .

(19)

The system (17) restricted in the center manifold can then be
written as

G(Mn, δ̄) =− Mn + φ1 M2
n + φ2 Mn δ̄ + φ3 M2

n δ̄ + φ4 Mn δ̄2

+φ5 M3
n +O((|Mn|+ |δ̄|)4)

(20)

where

φ1 =
a12(a11 + 1) ((λ2 − a11)a14 − a12a24)

a12(λ2 + 1)

− a12(a11 + 1) ((λ2 − a11)a14 − a12a24)

a12(λ2 + 1)

φ2 =
a12 ((λ2 − a11)b1 − a12c1)− b2(λ2 − a11)(a11 + 1)

a12(λ2 + 1)

φ3 =
2ν2a2

12(λ2 − a11a13 − a12a23)

a12(λ2 + 1)

+
ν2a12(λ2 − 2a11 − 1)((λ2 − a11)a14 − a12a24)

a12(λ2 + 1)

+
ν1
(
a12((λ2 − a11)b1 − a12c1) + (λ2 − a11)

2b2
)

a12(λ2 + 1)

+
a2

12((λ2 − a11)b3 − a12c3)

a12(λ2 + 1)

− a12(a11 + 1)((λ2 − a11)b4 − a12c4)

a12(λ2 + 1)

φ4 =
ν2a12((λ2 − a11)b1 − a12c1)

a12(λ2 + 1)

+
ν2(λ2 − a11)((λ2 − a11)b2 − a12c2)

a12(λ2 + 1)

φ5 =
2ν1a2

12((λ2 − a11)a13 − a12a23)

a12(λ2 + 1)

+
ν1a12(λ2 − 2a11 − 1)((λ2 − a11)a14 − a12a24)

a12(λ2 + 1)

+
a2

12((λ2 − a11)a15 − a12a25)

(λ2 + 1)
.

To achieve flip bifurcation, both discriminatory quantities (χ1 and
χ2) must be nonzero, where

χ1 =

(
∂2G

∂Mn∂δ̄
+

1
2

∂G
∂δ̄

∂2g
∂M2

n

)∣∣∣∣
(0,0)

= φ2,

χ2 =

(
1
6

∂3G
∂M3

n
+

(
1
2

∂2G
∂M2

n

)2)∣∣∣∣∣
(0,0)

= φ2
1 + φ5.

(21)

When the parameter δ varies slightly around δ̂1, the system
(7) undergoes a flip bifurcation at the fixed point E∗ = (x∗, y∗)
provided that χ2 ̸= 0. Additionally, the period-two orbits that
emerge from the fixed point are stable if χ2 > 0 and unstable if
χ2 < 0.

Neimark-Sacker Bifurcation
From the stability analysis of the fixed point E∗, it is known that
for all parameters in Ω3, where

Ω3 =

{
(α, a, b, c, p, q, δ) | ∆ < 0, δ = δ̂0

}
,

the Jacobian matrix (13) has two eigenvalues λ1,2 ∈ C with |λ1,2| =
1. This fact indicates that the discrete system (7) may experience a
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NS bifurcation if the parameters experience small perturbations
around Ω3. In this article, the bifurcation will be investigated by
introducing a small perturbation δ̃ ≪ 1 on the parameter δ around
δ = δ̂0 so that the system (7) can be written as

xn+1 = xn + (δ̂0 + δ̃)

[
(1 − xn)xn − xnyn

a + xn
− pxn

]
yn+1 = yn + (δ̂0 + δ̃)

[
bxnyn

a + xn
− (c + q)yn

]
.

(22)

By noticing that δ = δ̂0 ⇔ h = ĥ0, the perturbation of δ around
δ = δ̂0 can also be interpreted as a perturbation of h around h = ĥ0.
We now take a translation un = xn − x∗ and vn = yn − y∗ such
that the discrete system (22) can be written as

un+1 =un + (δ̂0 + δ̃) [(1 − (un + x∗))(un + x∗)]

− (δ̂0 + δ̃)

[
(un + x∗)(vn + y∗)

a + (un + x∗)
+ p(un + x∗)

]
vn+1 =vn + (δ̂0 + δ̃)

[
b(un + x∗)(vn + y∗)

a + (un + x∗)
− (c + q)(vn + y∗)

]
,

(23)

and the fixed point E∗ is shifted to the origin (0, 0). It can be
shown that the Jacobian matrix of system (23) around the origin
has a characteristics equation

λ2 + ρ(δ̃)λ + ϕ(δ̃) = 0, (24)

where

ρ(δ̃) = − 2 − (δ̂0 + δ̃)Ψ1,

ϕ(δ̃) = 1 + (δ̂0 + δ̃)Ψ1 + (δ̂0 + δ̃)2Ψ2.

The characteristics roots of equation (24) are

λ1,2 =
1
2
(−ρ(δ̃)±

√
ρ(δ̃)2 − 4ϕ(δ̃))

=
1
2
(−ρ(δ̃)± i

√
4ϕ(δ̃)− ρ(δ̃)2).

It can be shown that those characteristics roots satisfy

|λ1,2| =
√

ϕ(δ̃), and
d|λ1|

dδ̃

∣∣
δ̃=0 =

d|λ2|
dδ̃

∣∣
δ̃=0 = −Ψ1

2
> 0.

Clearly that if δ̃ = 0 then λm
1,2 ̸= 1, m = 1, 2, 3, 4 is equivalent

to condition ρ(0) ̸= −2, 0, 1, 2. From the previous analysis, it
was identified that, for all (a, b, c, p, q, δ) ∈ Ω, ϕ(0) = 1 + δ̂0Ψ1 +

δ̂0
2Ψ2 = 1, and therefore ρ(0)2 − 4ϕ(0) < 0 or ρ(0)2 < 4ϕ(0) = 4.

Consequently that ρ(0) ̸= ±2. Furthermore, we can also prove
that

ρ(0) = −2 − δ̂0Ψ1 = −2 −
(
−Ψ1

Ψ2
Ψ1

)
= −2 +

Ψ2
1

Ψ2
.

Thus, ρ(0) ̸= 0, 1 is achieved whenever Ψ2
1/Ψ2 ̸= 2, 3.

By denoting µ = Re(λ1,2
∣∣
δ̃=0) and γ = Im(λ1,2

∣∣
δ̃=0), i.e.,

µ = − ρ(0)
2

= 1 − δ̂0Ψ1
2

, γ =

√
4ϕ(0)− ρ(0)2

2
=

δ̂0
2

√
−∆,

We now form a normal form of system (23). Using a transformation un

vn

 =

 a12 0

µ − a11 −γ


 Mn

Nn

 ,

system (23) is transformed to Mn+1

Nn+1

 =

 µ −γ

γ µ


 Mn

Nn

+

 g̃1(Mn, Nn)

g̃2(Mn, Nn)

 , (25)

where

g̃1(Mn, Nn) =
1

a12

(
a13u2

n + a14unvn + a15u3
n + a16u2

nvn

)
+O((|Mn|+ |Nn|)4),

g̃2(Mn, Nn) =
1

a12γ
((µ − a11)a13 − a12a23) u2

n

+
1

a12γ
((µ − a11)a14 − a12a24) unvn

+
1

a12γ
((µ − a11)a15 − a12a25) u3

n

+
1

a12γ
((µ − a11)a16 − a12a26) u2

nvn

+O((|Mn|+ |Nn|)4),

(26)

with
un = a12 Mn, vn = (µ − a11)Mn + γNn.

aij, ∀i, j in equations (26) are the same as in (16), except that δ̂1 =

δ̂0 + δ̃. From equations (26), we have that

∂2 g̃1

∂M2
n
=2(a12a13 + (µ − a11)a14),

∂2 g̃1
∂Mn∂Nn

=− γa14,
∂2 g̃1

∂N2
n
= 0,

∂3 g̃1

∂M3
n
=(a2

12a15 + a12a16(µ − a11)),

∂3 g̃1

∂M2
n∂Nn

=− 2a12a16γ,

∂3 g̃1

∂Mn∂N2
n
=

∂3 g̃1

∂N3
n
= 0,

∂2 g̃2

∂M2
n
=

2
γ
[a12((µ − a11)a13 − a12a23)]

+
2
γ
[(µ − a11)((µ − a11)a14 − a12a24)] ,

∂2 g̃2
∂Mn∂Nn

=− (µ − a11)a14 + a12a24,

∂3 g̃2

∂N2
n
=0,

∂3 g̃2

∂M3
n
=

6
γ

[
a2

12((µ − a11)a15 − a12a25)
]

+
6
γ
[a12((µ − a11)a16 − a12a26)]

∂3 g̃2

∂M2
n∂Nn

=− 2a12 [((µ − a11)a16 − a12a26)] ,

∂3 g̃2

∂Mn∂N2
n
=

∂3 g̃2

∂N3
n
= 0.

The discrete system 7 will experiences a NS bifurcation if the quan-
tity χ∗ is nonzero, i.e.,

χ∗ = −Re
(
(1 − 2λ̄)λ̄2

1 − λ
ξ11ξ20

)
− 1

2
|ξ11|2 −|ξ02|2 +Re(λ̄ξ21) ̸= 0,
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where

ξ02 =
1
8

[
∂2 g̃1

∂M2
n
− ∂2 g̃1

∂N2
n
+ 2

∂2 g̃2
∂Mn∂Nn

+ i(
∂2 g̃2

∂M2
n
− ∂2 g̃2

∂N2
n
+ 2

∂2 g̃1
∂Mn∂Nn

)

]
,

ξ11 =
1
4

[
∂2 g̃1

∂M2
n
+

∂2 g̃1

∂N2
n
+ i(

∂2 g̃2

∂M2
n
+

∂2 g̃2

∂N2
n
)

]
,

ξ20 =
1
8

[
∂2 g̃1

∂M2
n
− ∂2 g̃1

∂N2
n
+ 2

∂2 g̃2
∂Mn∂Nn

+ i(
∂2 g̃2

∂M2
n
− ∂2 g̃2

∂N2
n
− 2

∂2 g̃1
∂Mn∂Nn

)

]
,

ξ21 =
1
16

[
∂3 g̃1

∂M3
n
+

∂3 g̃1

∂Mn∂N2
n
+

∂3 g̃2

∂M2
n∂Nn

+
∂3 g̃2

∂N3
n

]
+ i

1
16

[
∂3 g̃2

∂M3
n
+

∂3 g̃2

∂Mn∂N2
n
− ∂3 g̃1

∂M2
n∂Nn

− ∂3 g̃1

∂N3
n

]
.

Moreover, the NS bifurcation is supercritical (subcritical) if χ∗ <
0 (χ∗ > 0).

CHAOS CONTROL

A system with optimal performance and no chaos is always desired
in dynamic systems. The process of applying small perturbations
to a specific system in order to stabilize periodic orbits is known
as controlling chaos. The goal of chaos control strategies is to
stabilize and predict chaotic activity. There are numerous methods
for managing chaos in the discrete time model. Two forms of chaos
control — hybrid control and state feedback control — will be
implemented in this study.

Hybrid control strategy
By assuming that the model (7) experiences a flip or NS bifurcation
at a fixed point E∗, we follow (Panigoro et al. 2023; Ruan and Li
2024) to implement a hybrid control to the system (7) such that we
get

xn+1 = σ

(
xn + δ

(
(1 − xn)xn − xnyn

a + xn
− pxn

))
+ (1 − σ)xn

yn+1 = σ

(
yn + δ

(
bxnyn

a + xn
− (c + q)yn

))
+ (1 − σ)yn

(27)
with control parameter σ ∈ (0, 1). It is easily verified that model
(27) has exactly the same fixed points as uncontrol model (7). The
Jacobian matrix of system (27) at the fixed point E∗ is

Jc(E∗) =

1 + δσj11 δσj12

δσj21 1

 , (28)

where

j11 =
(c + q)

b(b − (c + q))
((1 − p)(b − (c + q))− a(b + c + q)),

j12 = − c + q
b

< 0,

j21 = (1 − p)(b − (c + q))− a(c + q).

The eigenvalues of Jacobian matrix (28) can be analyzed using
the same method as that of Jacobian matrix (13) since those two
matrices are very similar. In this way, we can show that if 1 − p <

L∗ + ab
b−(c+q) then the fixed point E∗ is asymptotically stable if one

of the following conditions holds:

1. ∆ < 0 and 0 < h < h̃0, where h̃0 = ĥ0
α
√

σ
=

α

√
αΓ(α)δ̂0

σ ; or

2. ∆ ≥ 0 and 0 < h < h̃1, where h̃1 = ĥ1
α
√

σ
=

α

√
αΓ(α)δ̂1

σ .

It can be seen that the fixed point E∗ of the system with hybrid
control (27) has a wider stability region compared to the uncontrol
system (7). Without hybrid control, the fixed point E∗ of model (7)
loses its stability when h passes ĥ0 (for the case of ∆ < 0) or ĥ1 (for
the case of ∆ > 0). On the other hand, the appearance of a hybrid
control in the system with control parameter σ leads to a shifting
of the critical value of h. Indeed, the fixed point E∗ of the control

system (27) is asymtotically stable if h < ĥ0
α
√

σ
(for the case of ∆ < 0)

or h < ĥ1
α
√

σ
(for the case of ∆ > 0), dengan 0 < σ < 1. Henceforth, if

the fixed point E∗ of model (7) with a specific time step h is unstable
and the system experiences chaotic behaviour then the chaos can
be controlled by implementing a hybrid control to the system with

control parameter σ ∈
(

0,− αΓ(α)A
hα B

)
(or σ ∈

(
0,− αΓ(α)(A+

√
∆)

hα B

)
)

if ∆ < 0 (or ∆ ≥ 0).

State Feedback Control
By following (Ruan and Li 2024; Khan et al. 2024; Li et al. 2024),
a state feedback control will be employed in this part to stabilize
chaotic orbits at a fixed point E∗ of unstable systems (7). With this
state feedback control, model (7) becomes

xn+1 = xn + δ

(
(1 − xn)xn − xnyn

a + xn
− pxn

)
+ zn

yn+1 = yn + δ

(
bxnyn

a + xn
− (c + q)yn

)
,

(29)

where zn = −ω1(xn − x∗)− ω2(yn − y∗) denotes the strength of
the feedback control, while ω1 and ω2 denote the feedback gain. It
is evident that the fixed points of the uncontrolled model (7) and
the (29) model are identical. At the fixed point E∗, the Jacobian
matrix of system (29) is

J f b(E∗) =

1 + δj11 − ω1 δj12 − ω2

δj21 1

 , (30)

where j11, j12 and j21 are exactly the same as in matrix (13).
The eigenvalues of the Jacobian matrix (30) can be determined

by solving the following characteristics equation

λ2 − Tr(J f b(E∗))λ + Det(J f b(E∗)) = 0 (31)

where

Tr(J f b(E∗)) = 2 + Ψ1δ − ω1,

Det(J f b(E∗)) = 1 + Ψ1δ + Ψ2δ2 − ω1 + ω2δj21,

and

Ψ1 = j11 and Ψ2 = −j12 j21.

Let λ1 and λ2 are the eigenvalues of matrix (30). Then,

λ1 + λ2 = 2 + Ψ1δ − ω1,

λ1λ2 = 1 + Ψ1δ + Ψ2δ2 − ω1 + ω2δj21.
(32)

It is necessary to solve equations λ1 = ±1 and λ1λ2 = 1 in order to
determine the marginal stability lines of the fixed E∗. The purpose
of this constraint is to guarantee that |λ1,2| < 1. Assuming λ1λ2 =
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1, the second part of equation (32) gives the first stability boundary
line as follows

L1 ≡ ω1 − ω2δj21 = Ψ1δ + Ψ2δ2. (33)

Next, the second stability boundary line can be generated by taking
λ1 = 1, which together with equation (32), yields

L2 ≡ ω2 = δj12. (34)

Finally we suppose that λ1 = −1. Then, by equation (32) we get

L3 ≡ 2ω1 − ω2δj21 = 4 + 2Ψ1δ + Ψ2δ2. (35)

We remark that if ω1 and ω2 lie in the triangular region bounded
by lines L1,L2 and L3, then the fixed point E∗ of the system (29)
is asymptotically stable.

NUMERICAL SIMULATIONS

In this section, we present several numerical simulations to demon-
strate and validate the earlier analytical findings. It should be
mentioned that since the real-life parameter values are unavailable,
we utilize the hypothetical ones. As an illustration, we initially
select the following parameters.

α = 0.7, a = 2, b = 1, c = 0.2, p = 0.1, q = 0.1, (36)

and vary the parameter h ∈ [2.5, 4.8]. The initial condition for
this simulation is x(0) = 0.2, y(0) = 0.1. In this particular case,
E∗(0.8571, 0.1224) is the interior fixed point of the system (7). Our
calculations outcomes show that ∆ = 0.6768 > 0, δ̂1 = 2.3996,
and ĥ1 = 3.0451. Thus, in the present situation, the parameter
(α, a, b, d, p, q) ∈ Ω1 leads to a flip (period-doubling) bifurcation.
More specifically, if h < ĥ1 then the fixed point E∗(0.8571, 0.1224)
is asymptotically stable; while if h exceeds ĥ1 then stability is lost.

The discriminatory quantities χ1 = −0.8335 and χ2 = −0.6074
are non-zero which indicate the occurrence of flip bifurcation. The
flip bifurcation is unstable since χ2 < 0. The bifurcation diagram
in the (h, x∗)–plane, shown in Figure 1.(a-b), provides a vivid il-
lustration of this bifurcation phenomena. Figure 1.(a) depicts that
after the bifurcation parameter (h) crosses the value of ĥ1, there
occurs a period-doubling cascade in orbits of period-2, 4, 8, and 16
as well quasi-periodic and even chaotic orbits for the solution xn.
However, such phenomenon is not observed in (h, y∗)-plane due to
yn always converges to 0 for h > ĥ1, see Figure 1.(b). The presence
of converging orbit (E∗ is asymptotically stable), period-doubling
orbits, chaotic regions is confirmed by the maximal Lyapunov ex-
ponents corresponding to Figure 1.(a-b) shown in Figure 1.(c). It
is seen that the maximum value of Lyapunov exponent are posi-
tive for some intervals of h, which characterizes the occurrence of
chaos. Figure 2 illustrates this point by displaying many temporal
solutions of xn for a range of h values. For h < ĥ1, it is seen that
the xn converges to x∗; however, for h > ĥ1, x may converge to the
orbits of period-2,-3,-4, -5, etc., or it may behave chaotically.

It is evident from Figures 1 and 2 that chaos may occur in the
model (7) with parameters (36). The model (7) can be subjected to
a hybrid control in attempt to control chaotic events. For instance,
Figure 3.(a-b) demonstrates that the fixed point E∗(0.8571, 0.1224)
of model (7) with h = 3.96 is unstable. In this case, a chaotic
orbit for xn is generated, while xn is convergent to 0. On the
other hand, if a hybrid control is applied as in the model (27),
then the eigenvalues of the Jacobian matrix (28) are in the stability
region (|λ1,2| < 1) if σ ∈ (0, 0.832). The graphs of xn and yn of
the controlled model (27) with σ = 0.8 and initial value x(0) =

Figure 1 Bifurcation diagrams in (a) (h, x∗)–plane, (b) (h, y∗)–
plane, and (c) the corresponding maximum Lyapunov exponent
(MLE) of system (7) with α = 0.7, a = 2, b = 1, c = 0.2, p = 0.1, q =
0.1, and h ∈ [2.5, 4.8].
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Figure 2 Temporal solution of xn for system (7) with α = 0.7, a =
2, b = 1, c = 0.2, p = 0.1, and q = 0.1 around t = 6000, for different
valus of h: (a) h = 2.8, (b) h = 3.5, (c) h = 3.75, (d) h = 3.96, (e)
h = 4.03, (f) h = 4.2, (g) h = 4.28, (h) h = 4.5, (i) h = 4.8.

0.2, y(0) = 0.8 are displayed in Figure 3.(c-d). It is clearly evident
that the fixed point E∗ is now asymptotically stable.

If the model (3) with parameters (36) is subjected to a state
feedback control as in the system (29), we obtain three boundary
lines for the stability region, namely

L1 ≡ −ω1 + 0.0865ω2 = 2.3601,

L2 ≡ ω2 = −0.8659,

L3 ≡ −2ω1 + 0.0865ω2 = 0.7950.

Figure 4 displays the stable triangular area in the (ω1, ω2)–plane
for the controlled system (29) that is bounded by the marginal
lines L1,L2 and L3. We have included a numerical simulation to
show how the feedback method operates and controls chaos in
unstable states. As in previous example, we take parameters (36)
and h = 3.96. The feedback gains are ω1 = −0.75 and ω2 = −0.7,
with the initial value being (x(0), y(0)) = (0.2, 0.8). The chaotic
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trajectory is now stabilized at the fixed point E∗(0.8571, 0.1224),
as shown in Figure 3.(e-f).
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Figure 3 Temporal solution for system (7) with α = 0.7, a =
2, b = 1, c = 0.2, p = 0.1, q = 0.1, h = 3.96; and initial value
(x(0), y(0)) = (0.2, 0.8). The first column depicts the solution
of xn, while the second column shows the solution of yn: (a-b)
without control, (c-d) with hybrid control where σ = 0.8, and (e-f)
with state feedback control where ω1 = −0.75 and ω2 = −0.7.

Figure 4 Stability region for system with state feedback control (29)
with α = 0.7, a = 2, b = 1, c = 0.2, p = 0.1, q = 0.1, and h = 3.96.

For the subsequent simulation, the following parameter values
are used:

α = 0.9, a = 1, b = 1, c = 0.2, p = 0.3, q = 0.05, (37)

and h ∈ [3.4, 5.2]. It is evident that the simulation’s parameters
fall into Ω3, where δ̂0 = 3.5151 and ∆ = −0.2166 < 0. We also
observe that h = ĥ0 is equivalent to δ = δ̂0. Here, the fixed point
E∗(0.3333, 0.4889) of the system (7) is stable if h < ĥ0 = 3.8707.
When the system (7) is linearized around a fixed point E∗, the
eigenvalues of the resulting Jacobian matrix are λ1,2 = µ ± γi
and |λ1,2| = 1, with µ = 0.57525 and γ = 0.81798. In addition,
it is found that ρ(0) = −1.1505 ̸= ±1 and χ∗ = −1.3642 < 0.
Therefore, the system (7) experiences a stable Neimark-Sacker bi-
furcation around E∗ when h passes h = ĥ0. This is indicated by
the appearance of closed invariant curves when h > ĥ0. This
phenomenon is clearly seen in the bifurcation diagrams in (h, x∗)–
plane and (h, y∗), see Figure 5.(a-b), as well as in the phase-portrait
in Figure 6. The system also experiences the chaos phenomena, as
evidenced by the positive value of the maximal Lyapunov expo-
nent shown in Figure 5.(c).

Figure 5 Bifurcation diagrams in (a) (h, x∗)–plane, (b) (h, y∗)–
plane, and (c) the corresponding maximum Lyapunov exponent
(MLE) of system (7) with α = 0.9, a = 1, b = 1, c = 0.2, p = 0.3, q =
0.05, and h ∈ [3.4, 5.2].
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Figure 6 Phase portrait for system (7) with α = 0.9, a = 1, b =
1, c = 0.2, p = 0.3, q = 0.05, and (a) h = 3.6, (b) h = 3.93, (c)
h = 4.2, (d) h = 4.44, (e) h = 4.5, (f) h = 4.6, (g) h = 4.93, (h) h = 5,
(i) h = 5.1.

It can be seen in Figures 5 and 6 that the model (7) with param-
eters (37) may lead to chaotic behavior. Similar to the previous
example, feedback control or hybrid control can be used to manage
this chaotic phenomenon. For instance, when h = 5.1, the model
(7) produces a chaotic orbit, see Figure 7).(a–b). If a hybrid control
is now implemented to the system (7), the fixed point E∗ will cer-
tainly be asymptotically stable if σ ∈ (0, 0.78). To illustrate this,
Figures 7.(c-d) depict the trajectories of xn and yn which converge
to the fixed point E∗ when σ = 0.75 is utilized. Alternatively, by
applying a state feedback control to the model (7) with parameters
(37) and h = 5.1 results in a triangle-stability region for the fixed
point E∗, see Figure 8. The marginal lines for the stability region
are as follows

L1 ≡ −ω1 + 1.2390ω2 = −0.3068,

L2 ≡ ω2 = −1.1264,

L3 ≡ −2ω1 + 1.2390ω2 = −3.2179.
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Figure 7 Temporal solution for system (7) with α = 0.9, a =
1, b = 1, c = 0.2, p = 0.3, q = 0.05, h = 5.1; and initial value
(x(0), y(0)) = (0.2, 0.8). The first column depicts the solution
of xn, while the second column shows the solution of yn: (a-b)
without control, (c-d) with hybrid control where σ = 0.75, and (e-f)
with state feedback control where ω1 = 1 and ω2 = 0.1.

Figure 8 Stability region for system with state feedback control
(29) with α = 0.9, a = 1, b = 1, c = 0.2, p = 0.3, q = 0.05, and
h = 5.1.

Hence, if ω1 and ω2 are chosen in the stability region, then the
fixed point E∗ is guaranteed to be asymptotically stable. As an
illustration, we plot in Figure 7.(e-f) the temporal solution of xn
and yn under the state feedback control with ω1 = 1 and ω2 = 0.1.
It is observed that the solution converges to E∗, confirming the
fixed point E∗ is asymptotically stable.

To see the influence of harvesting rate of prey population on
the dynamics of the model (7), a simulation was carried out by
taking fixed parameters α = 0.9, a = 1, c = 0.2, q = 0.05, h = 4,
and varying b ∈ [0.8, 1.2] for different value of p. We can clearly
observe in Figure 9 that p has a substantial effect on the dynamics
of predator-prey populations. The bifurcation diagrams illustrated
in Figure 9.(a-d) indicate that the predator-prey system experiences
a Neimark-Sacker bifurcation. It is important to note that p =

β
rm

where β represents the conversion rate of predation, r denotes the
intrinsic growth rate of prey, and m signifies the handling time
required to capture and consume the prey population.

A greater value of p can be achieved by increasing the value
of β or reducing the values of r or m. As long as 0 < p < 1, an
increase in p will cause the bifurcation threshold to move to a
higher critical value of b. With r and m held constant, this suggests
that raising the rate of prey harvesting will enhance the system’s

Figure 9 Bifurcation diagram in (b, x∗)–plane when (a) p = 0.2,
(b) p = 0.3, (c) p = 0.4, (d) p = 0.5; and (e-h) the correspond-
ing maximum Lyapunov exponent (MLE) of system (7) with
α = 0.9, a = 1, c = 0.2, q = 0.05, and h = 4.

stability and help avoid chaotic dynamics. This dynamic behavior
can also be observed in the graph of the maximum Lyapunov
exponent associated with the bifurcation diagram, see Figure 9.(e-
h). However, based on the existence and stability of the fixed
points described in the previous section, both prey and predator
populations will become extinct if p ≥ 1.

We have shown analytically and numerically that our proposed
discrete model (7) has complex dynamics. In this scenario, the
proposed model could reveal flip bifurcation, Neimark-Sacker bi-
furcation or chaotic behavior. Since the corresponding continuous
model, as demonstrated by Sarkar and Mondal (2023), does not
exhibit flip bifurcation or chaotic characteristics, this illustrates that
the discrete model possesses more complex dynamics compared
to its continuous counterpart. Consequently, the discrete model
may effectively capture ecological phenomena with a wider range
of applicability.

The fact that the discrete model can undergo flip bifurcation
suggests that the system can experience period-doubling or even
chaotic behavior, as shown in Figures 1 and 2. As mentioned by
Eskandari et al. (2024), period-doubling bifurcation can cause an
increase in the magnitude of population cycles, resulting in more
significant fluctuations in population numbers. This can have a
major impact on the balance of ecosystems, as increasing changes
in population size can increase competition for resources, increase
predation rates, and alter various ecological interactions. Apart
from that, the occurrence of a flip bifurcation can cause chaos in
the dynamics of the population cycle. Such unpredictable behavior
can trigger sudden transformations in ecosystems, hindering the
development of effective conservation and management strate-
gies. Besides that, the presence of chaos in this context signifies
that the predator-prey interaction represented by (7) is unstable.
Specifically, as shown by Figure 2, if the prey population falls into
a period-doubling state or a chaotic state, the predator species will
ultimately face extinction.

The predator-prey discrete model (7) demonstrates the presence
of the Neimark-Sacker bifurcation, which signifies the shift from a
stable interior point to behaviors that are periodic, quasi-periodic,
and even chaotic. Periodic behavior has significant ecological
consequences, particularly in terms of recurring population fluc-
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tuations between predators and prey about a certain level. Quasi-
periodic behavior reflects more intricate, non-repetitive ecological
cycles. In both scenarios, predators and prey can coexist while
sustaining their individual population densities. The pattern of
recurring population cycles simplifies the task of predicting and
managing their population dynamics. Conversely, non-repeating
population cycles, especially chaotic ones, can complicate predic-
tions of population size changes, thereby hindering the formula-
tion of effective conservation and management strategies.

CONCLUSION

We investigated the complex dynamics of a discrete-time predator-
prey model involving harvesting in both prey and predator popu-
lations that is constructed from the PWCA approach. The obtained
discrete-time model has three fixed points: the extinction of both
populations (E0), the extinction of the predator population (E1),
and the interior point (E∗). Every fixed point is under certain
conditions. Our investigation reveals that the discrete-time model
experiences flip bifurcation and Neimark-Sacker bifurcation, which
are determined by the step size of numerical integration (h). When
a flip bifurcation occurs, a period-doubling cascade emerges in or-
bits with periods of 2, 4, 8, and 16, as well as chaotic orbits around
the fixed point E∗ after the value of h crosses the critical value.
However, for the case of Neimark-Sacker bifurcation, periodic or
quasi-periodic orbits as well as chaotic orbits will present when h
is larger than the critical value. We showed that the hybrid control
or the state feedback control effectively suppresses the chaotic or
unstable behaviors. Several computer simulations have confirmed
those analytical findings. It is important to mention that the sim-
ulations conducted in this article rely on hypothetical parameter
values. For future research, it is advisable to examine the proposed
discrete model utilizing actual data from chosen ecological cases.
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