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Abstract − In this study, we utilize the concept of I-statistical convergence for double sequences to establish a
general approximation theorem of Korovkin-type for double sequences of positive linear operators (P LOs) mapping
from Hω (X) to CB (X) where X = [0, ∞) × [0, ∞) . We then present an example that demonstrates the applicability
of our new main result in cases where classical and statistical approaches are not sufficient. Furthermore, we compute
the convergence rate of these double sequences of positive linear operators by employing the modulus of smoothness.
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1. Introduction

The investigation of the approximation properties exhibited by positive linear operators has emerged as
a critical area of research that continues to capture the interest of scholars working in functional analysis
and approximation theory. These operators play a pivotal role in extending classical results related
to approximation theory and have proven to be precious tools across a wide range of mathematical
disciplines. This includes computational mathematics, stochastic analysis, and studying abstract
function spaces. One of the most notable contributions in this area is the development of Korovkin-type
approximation theorems, which provide a robust and elegant framework for establishing criteria for
convergence [1–13]. These theorems have become essential instruments in studying the behavior of
sequences and families of operators, offering deep insights into the structural features of different
function spaces and their topological properties.

The field of approximation theory has experienced considerable growth, particularly with the in-
troduction of more sophisticated convergence concepts. Among these advancements is the rise of
statistical convergence and, more recently, the generalization of this notion known as I-statistical
convergence. These newer frameworks provide a more comprehensive and flexible foundation for
analyzing convergence phenomena, particularly in scenarios where traditional convergence methods
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may not be applicable. The strength of I-statistical convergence lies in its ability to handle situations
where classical forms of convergence fail to offer useful results. Given this enhanced flexibility in
analysis, we explore the approximation properties of double sequences generated by positive linear
operators through the lens of I-statistical convergence. Specifically, we establish a novel Korovkin-type
approximation theorem tailored to operators that map functions from the weighted space Hω(X) to the
space CB(X) of bounded continuous functions. Here, X denotes the unbounded domain [0, ∞)× [0, ∞),
which provides the context for our study.

This study extends Korovkin-type approximation theorems to the domain of double sequences via I-
statistical convergence, establishing convergence properties beyond the scope of classical and statistical
approaches. We present an analysis of convergence rates for these operators through the modulus
of smoothness approximation technique. To demonstrate the practical significance of our theoretical
results, we construct an illustrative example that highlights the effectiveness of the I-statistical
framework, particularly in cases where traditional methods are insufficient.

2. Preliminaries

This section provides some basic notions to be needed in the following sections. Revisit the concepts
of convergence in the sense of Pringsheim, statistical convergence, and I-statistical convergence for
double sequences.

Throughout this paper, let u = {umn} be a double sequence with real terms.

Definition 2.1. [14] A sequence u = {umn} is called to be convergent in Pringsheim’s sense if, for
every ϵ > 0, there exists M = M(ϵ) ∈ N such that for all m, n > M, the inequality |umn − ℓ| < ϵ holds,
where ℓ is referred as the Pringsheim limit of the sequence, denoted by P − lim umn = ℓ.

We shall refer to such a u as P -convergent for brevity. A double sequence is termed bounded if there is
a positive constant N such that |umn| ≤ N for every (m, n) ∈ N2 = N × N. It is important to highlight
that, on the contrary, single sequences, a convergent double sequence is not necessarily bounded.

Definition 2.2. [15] If G ⊆ N2, then Gjk denotes the set {(m, n) ∈ G : m ≤ j, n ≤ k} . The double
natural density of G is defined as

δ2(G) := P − lim
j,k

1
jk

|Gjk|

if it exists and assume that the symbol |.| indicates the cardinality of the set. The sequence u =
{umn} is statistically convergent to ℓ on the condition that for all ϵ > 0, the set G := Gϵ :=
{m ≤ j, n ≤ k : |umn − ℓ| ≥ ϵ} has natural density zero; i.e.,

P − lim
j,k

1
jk

|{m ≤ j, n ≤ k : |umn − ℓ| ≥ ϵ}| = 0

in this case we indicate with st2 − lim umn = ℓ.

Kostyrko et al. have defined I-convergence using the ideal I [16]. This type of convergence can be
seen as a general form of statistical convergence.

Definition 2.3. [16] Let a class I of subsets of U, a non-empty set, is called an ideal in U iff (i)
∅ ∈ I, (ii) E, F ∈ I implies E ∪ F ∈ I (additive) and (iii) for each E ∈ I and F ⊆ E we have F ∈ I
(hereditary).

If {u} ∈ I for each u ∈ U then an ideal called admissible. If I is a non-trivial ideal in U (i.e. U /∈ I,

I ≠ {∅}) then the family of sets F = {X ⊆ U : (∃E ∈ I) (X = U \ E)} is a filter in U and we call
such a filter, the filter linking with the ideal I. A non-trivial ideal I2 of N2 is called strongly admissible



Dirik et al. / JAUIST / 5(2) (2024) 79-87 81

if {j} × N and N × {j} belong to I2 for every j ∈ N. It seems obvious that a strongly admissible ideal
is also admissible. Let

I0
2 =

{
F ⊆ N2 : (∃m (F ) ∈ N) (j, k ≥ m (F ) ⇒ (j, k) /∈ F )

}
then I0

2 is a non-trivial strongly admissible ideal [17] and clearly I2 is strongly admissible iff I0
2 ⊆ I2.

Remark 2.4. Note that if I2 is the ideal I0
2 then I2-convergence coincides with Pringsheim convergence

and if we take Iδ
2 :=

{
G ⊆ N2 : δ2(G) = 0

}
then Iδ

2 -convergence becomes statistical convergence.

Definition 2.5. [18] A sequence u = {um} is called I−statistically convergent to L ∈ X, if for every
ϵ > 0, and every η > 0, {

j ∈ N : 1
j

|{m ≤ j : |um − L| ≥ ϵ}| ≥ η

}
∈ I

Definition 2.6. [2] A sequence u is called I2-statistically convergent to θ if for all ϵ > 0 and η > 0,{
(j, k) ∈ N2 : 1

jk
|{m ≤ j, n ≤ k : |umn − θ| ≥ ϵ}| ≥ η

}
∈ I2

symbolically, I2
stat− lim u = θ.

For the remainder of the paper, we will denote I2 as a non-trivial strongly admissible ideal on N2.

3. New Approximation Theorem

In this part, we provide an approximation theorem of Korovkin-type for double sequences of PLOs
acting on two variables, mapping from Hω (X) to CB (X) over the domain X = [0, ∞) × [0, ∞) via
I2-statistical convergence. Furthermore, we provide an illustrative example demonstrating that our
new main result holds in cases where its classical and statistical counterparts are inapplicable.

We show by CB (X) the space of all bounded and continuous real-valued functions on X. This space is
equipped with the supremum norm

∥f∥X = sup
(x,y)∈X

|f (x, y)| , (f ∈ CB (X))

Consider the space Hω (X) consisting of all real valued functions g on X and providing

|g (u, t) − g (x, y)| ≤ ω

(∣∣∣∣ u

1 + u
− x

1 + x

∣∣∣∣ , ∣∣∣∣ t

1 + t
− y

1 + y

∣∣∣∣)
In this context, ω represents a function of the modulus of continuity type, as it fulfil the conditions,
for δ, δ1, δ2 > 0, as follows:

i. ω is nonnegative, increasing function on X with regard to δ1, δ2

ii. ω (δ, δ1 + δ2) ≤ ω (δ, δ1) + ω (δ, δ2)

iii. ω (δ1 + δ2, δ) ≤ ω (δ1, δ) + ω (δ2, δ)

iv. lim
δ1,δ2→0

ω (δ1, δ2) = 0

Then, it is clear from (iv) that all functions belonging to Hω (X) are continuous on X. Moreover, all
functions g ∈ Hω (X) fulfil the inequality

|g (u, t)| ≤ |g (0, 0)| + ω (1, 1) , x, y ≥ 0

and hence the function g is bounded on X. As a result, Hω (X) ⊆ CB (X) .
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Furthermore, we use the test functions below

g0(u, t) = 1, g1(u, t) = u

1 + u
, g2(u, t) = t

1 + t
and g3(u, t) =

(
u

1 + u

)2
+
(

t

1 + t

)2

The main result of the relevant section is given in the following theorem:

Theorem 3.1. Let {Smn} be a double sequence of PLOs moving from Hω (X) into CB (X) . Suppose
that the following conditions are valid:

I2
stat− lim ∥Smn (gl) − gl∥X = 0, l ∈ {0, 1, 2, 3} (3.1)

Then, for any g ∈ Hω (X) ,

I2
stat− lim ∥Smn (g) − g∥X = 0 (3.2)

Proof. Suppose that (3.1) holds. Let g ∈ Hω (X) and (x, y) ∈ X be fixed. Since g ∈ Hω (X) , for all
(u, t) ∈ X, we write

|g (u, t) − g (x, y)| ≤ ϵ + 2K

δ2

{(
u

1 + u
− x

1 + x

)2
+
(

t

1 + t
− y

1 + y

)2
}

where K := ∥g∥X . After some easy calculations, since Smn, is PLOs, we obtain

|Smn (g; x, y) − g (x, y)| ≤ ϵ + τ {|Smn (g0; x, y) − g0 (x, y)|
+ |Smn (g1; x, y) − g1 (x, y)| + |Smn (g2; x, y) − g2 (x, y)|
+ |Smn (g3; x, y) − g3 (x, y)|}

where τ := max
{

ϵ + K + 2K
δ2 , 4K

δ2 , 2K
δ2

}
. Now, taking supremum over (x, y) ∈ X we have

∥Smn (g) − g∥X ≤ ϵ + τ
3∑

l=0
∥Smn (gl) − gl∥X (3.3)

For a given β > 0, choose ϵ > 0 such that ϵ < β. Then, setting

U := {m ≤ j, n ≤ k : ∥Smn (g) − g∥X ≥ β}

Ul :=
{

m ≤ j, n ≤ k : ∥Smn (gl) − gl∥X ≥ β − ϵ

4τ

}
, l ∈ {0, 1, 2, 3}

From (3.3), we obtain

U ⊆
3⋃

l=0
Ul

which gives
|U |
jk

≤
3∑

l=0

|Ul|
jk

For every δ > 0, we have{
(m, n) :

∣∣{m ≤ j, n ≤ k : ∥Smn (g) − g∥X ≥ β
}∣∣

jk
≥ δ

}
⊆

3⋃
l=0

{
(m, n) :

∣∣{m ≤ j, n ≤ k : ∥Smn (gl) − gl∥X ≥ β−ϵ
4τ

}∣∣
jk

≥
δ

3

}
Since the ideal I2 possesses the properties of additivity and heredity, the proof of the theorem is
thereby completed.

By making appropriate choices, as indicated in Remark 2.4, we derive the following statistical of
Theorem 3.1.

Corollary 3.2. Let {Smn} be a double sequence of PLOs moving from Hω (X) into CB (X) . Suppose
that the following conditions apply:



Dirik et al. / JAUIST / 5(2) (2024) 79-87 83

st2 − lim ∥Smn (gl) − gl∥X = 0, l ∈ {0, 1, 2, 3}

Then, for any g ∈ Hω (X) ,

st2 − lim ∥Smn (g) − g∥X = 0

4. Application of Approximation Theorem

In the present section, we construct a sequence of PLOs that demonstrates the power of Theorem 3.1.
Specifically, this sequence satisfies the hypotheses of Theorem 3.1 while failing to satisfy the conditions
required by Corollary 3.2.

Example 4.1. Let us take the following Bleimann-Butzer-Hahn operators of two variables [10]:

Lmn(g; x, y) = 1
(1 + x)m (1 + y)n

m∑
k=0

n∑
s=0

f

(
k

m − k + 1 ,
s

n − s + 1

)(
m

k

)(
n

s

)
xkys (4.1)

where g ∈ Hω (X) , and X = [0, ∞) × [0, ∞) . It is known that

Lmn(g0; x, y) = 1

Lmn(g1; x, y) = m

m + 1
x

1 + x

Lmn(g2; x, y) = n

n + 1
y

1 + y

Lmn(g3; x, y) = m (m − 1)
(m + 1)2

(
x

1 + x

)2
+ m

(m + 1)2
x

1 + x
+ n (n − 1)

(n + 1)2

(
y

1 + y

)2
+ n

(n + 1)2
y

1 + y

Besides, let E ∈ I2 be infinite set and define u = {umn} by

umn =


1

mn , j −
√

j + 1 ≤ m ≤ j, k −
√

k + 1 ≤ n ≤ k, (j, k) /∈ E

mn, 1 ≤ m ≤ j, 1 ≤ n ≤ k, (j, k) ∈ E

0, otherwise
(4.2)

For every ϵ > 0 , since vjk := 1
jk |{(m, n) : |umn − 0| ≥ ϵ}| ≤

√
j
√

k
jk tends to zero in Pringsheim’s sense

and (j, k) /∈ E, so for every δ > 0, we get

{(i, j) : vjk ≥ δ} ⊆ E ∪
{(

N2\E
)

∩ (({1, 2, ..., j1} × N) ∪ (N × {1, 2, ..., j1}))
}

∈ I2

for some j1 ∈ N. Hence, we obtain I2
stat − lim u = 0. Note that, {umn} is neither statistically convergent

nor classically convergent to zero. Using (4.1) and (4.2), we now define the following PLOs on Hω (X) :

Smn (g; x, y) = (1 + umn) Lmn (g; x, y) (4.3)

Since I2
stat − lim u = 0, we can show that the sequence {Smn} , as defined by (4.3) satisfies all conditions

of Theorem 3.1. Consequently, for all g ∈ Hω (X) , we have

I2
stat− lim ∥Smn (g) − g∥X = 0

Since u is neither classically convergent nor statistically convergent to zero, the sequence {Smn(g)}
cannot convergence to g on X in the usual or statistical sense.

5. Rate of I2-statistical Convergence

The rate of convergence for double sequences of PLOs, in terms of I2-statistical convergence, is
described by the modulus of smoothness. Define the following modulus of smoothness for the bivariate



Dirik et al. / JAUIST / 5(2) (2024) 79-87 84

case, similarly to the one in [19], (see [20]):

ω2(g; δ1, δ2) = sup
{

|g (u, t) − g (x, y)| : (u, t) , (x, y) ∈ X and
∣∣∣∣ u

1 + u
− x

1 + x

∣∣∣∣ ≤ δ1,

∣∣∣∣ t

1 + t
− y

1 + y

∣∣∣∣ ≤ δ2

}
(5.1)

where δ1, δ2 > 0. It is clear that if g ∈ Hω (K) then, we have

i. lim
δ1,δ2→0

ω̄2(g; δ1, δ2) = 0

ii. |g (u, t) − g (x, y)| ≤ ω̄2(g; δ1, δ2)
(

1 + | u
1+u

− x
1+x |

δ1

)(
1 +

∣∣ t
1+t

− y
1+y

∣∣
δ2

)
Theorem 5.1. Let {Smn} be a double sequence of PLOs moving from Hω (X) into CB (X) . Suppose
that the following conditions are valid:

i. I2
stat − lim ∥Smn (g0) − g0∥X = 0

ii. I2
stat − lim ω̄2(g; γmn, ηmn) = 0

where γmn :=
√∥∥∥∥Smn

((
u

1+u − ·
1+·

)2
)∥∥∥∥

X
and ηmn :=

√∥∥∥∥Smn

((
v

1+v − ·
1+·

)2
)∥∥∥∥

X

Then, for any g ∈ Hω (X) ,

I2
stat − lim ∥Smn (g) − g∥X = 0

Proof. Let g ∈ Hω (X) and (x, y) ∈ X be fixed. Since Smn is linear and positive and also, thanks to
(5.1),

|Smn (g; x, y) − g (x, y)| ≤ τ |Smn (g0; x, y) − g0 (x, y)| + Smn(|g (u, t) − g (x, y)| ; x)

where τ := ∥g∥X . We get, with the help of the Cauchy-Schwartz inequality,

|Smn (g; x, y) − g (x, y)| ≤ τ |Smn (g0; x, y) − g0 (x, y)|

+Smn

(
ω̄2(g; δ1, δ2)

(
1 +

∣∣ u
1+u

− x
1+x

∣∣
δ1

)(
1 +

∣∣ t
1+t

− y
1+y

∣∣
δ2

)
; x, y

)
≤ τ |Smn (g0; x, y) − g0 (x, y)|

+ω̄2(g; δ1, δ2)
{

Smn (g0; x, y) + 1
δ1

Smn

(∣∣∣ u

1 + u
− x

1 + x

∣∣∣ ; x, y
)

+ 1
δ2

Smn

(∣∣∣∣ t

1 + t
− y

1 + y

∣∣∣∣ ; x, y

)

+ 1
δ1δ2

Smn

(∣∣∣ u

1 + u
− x

1 + x

∣∣∣ ∣∣∣∣ t

1 + t
− y

1 + y

∣∣∣∣ ; x, y

)}

≤ ω̄2(g; δ1, δ2)

{
Smn (g0; x, y) + 1

δ1

√
Smn

((
u

1 + u
− x

1 + x

)2
; x, y

)√
Smn (g0; x, y)

}

+ 1
δ2

√√√√Smn

((
t

1 + t
− y

1 + y

)2

; x, y

)√
Smn (g0; x, y)

+ 1
δ1δ2

√
Smn

((
u

1 + u
− x

1 + x

)2
; x, y

)√√√√Smn

((
t

1 + t
− y

1 + y

)2

; x, y

)

+τ |Smn (g0; x, y) − g0 (x, y)|



Dirik et al. / JAUIST / 5(2) (2024) 79-87 85

Taking supremum over (x, y) ∈ X, we obtain

∥Smn (g) − g ∥X ≤ ω̄2(f ; δ1, δ2) ∥Sm,n (g0) − g0 ∥X

+ω̄2(f ; δ1, δ2) 1
δ1

√√√√∥∥∥∥∥Smn

((
u

1 + u
− ·

1 + ·

)2
)∥∥∥∥∥

X

√
∥Smn (g0)∥X

+ω̄2(f ; δ1, δ2) 1
δ2

√√√√∥∥∥∥∥Smn

((
v

1 + v
− ·

1 + ·

)2
)∥∥∥∥∥

X

√
∥Smn (g0)∥X

+ω̄2(f ; δ1, δ2) 1
δ1δ2

√√√√∥∥∥∥∥Smn

((
u

1 + u
− ·

1 + ·

)2
)∥∥∥∥∥

X

√√√√∥∥∥∥∥Smn

((
v

1 + v
− ·

1 + ·

)2
)∥∥∥∥∥

X

+τ ∥Smn (g0) − g0 ∥X + ω̄2(f ; δ1, δ2)

Let δ1 := γmn :=
√∥∥∥∥Smn

((
u

1+u − ·
1+·

)2
)∥∥∥∥

X
and δ2 := ηmn :=

√∥∥∥∥Smn

((
v

1+v − ·
1+·

)2
)∥∥∥∥

X
. Thus,

∥Smn (g) − g∥X ≤ ω̄2(f ; δ1, δ2) ∥Smn (g0) − g0∥X

+2ω̄2(f ; δ1, δ2)
√

∥Smn (g0)∥X

+τ ∥Smn (g0) − g0∥X + 2ω̄2(f ; δ1, δ2)

As a result, by the conditions of the theorem, for any g ∈ Hω (X) ,

I2
stat − lim ∥Smn (g) − g∥X = 0

6. Conclusion

This paper introduces a novel perspective on Korovkin-type approximation in Hω (X). We develop
a new approximation theorem by combining I-statistical convergence with test functions such as
g0(u, v) = 1, g1(u, v) = u

1+u , g2(u, v) = v
1+v and g3(u, v) =

(
u

1+u

)2
+
(

v
1+v

)2
. This approach significantly

improves over conventional methods, particularly in its enhanced ability to handle approximations
in unbounded domains. The theoretical advancements are further demonstrated through a concrete
example, highlighting the practical relevance of the proposed framework. Later, we focus on the speed
of convergence, utilizing the modulus of smoothness to achieve this. Our findings suggest that this
method opens new avenues for approximation theory, potentially expanding the reach of Korovkin-type
theorems and facilitating their application to more complex operators and diverse settings. Future
research could build on these results by exploring the method’s applicability to a broader range of
function spaces and examining its impact in other areas of analysis.
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[11] M. A. Özarslan, New Korovkin Type Theorem for Non-Tensor Meyer-Konig and Zeller Operators,
Results in Mathematics 69 (2016) 327–343.
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