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Abstract: In this work, almost contact B-metric manifolds and almost complex manifolds with Norden

metric are considered. Almost complex manifolds with a Norden metric are obtained by the product of

almost contact B-metric manifolds with R , where almost complex structure and metric on the product

manifold depend on two functions of R . The relations between two classes of almost contact manifolds

with B-metric (the classes F4 and F5 ) and classes of almost complex manifolds with a Norden metric are

investigated.
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1. Introduction

Differentiable manifolds having special tensors are an object of interest in differential geometry.

There are several studies on this area, for example, see [2, 4–8, 10, 11, 13–16, 19–21]. Differ-

ential manifolds having special tensor structure have been classified by considering the covariant

derivative of their tensor structure [2, 4–8, 10, 11, 13, 21].

Manifolds with B-metric have been studied in the last 30 years by various researchers

[7, 9, 10, 16, 20]. Recently, many differential geometers and theoretical physicists have been

investigating Ricci solitons and η -Ricci solitons on manifolds with special structures, such as

almost contact metric manifolds, almost paracontact metric manifolds, manifolds with B-metric,

Norden manifolds, etc. [1, 3, 12, 17, 18]. In this investigations, classes of almost contact B-metric

manifolds and almost complex manifolds with a Norden metric also gain importance.

In this study, we obtain an infinite number of Kaehlerian manifolds with a Norden metric

in Theorem 3.3 and complex manifolds with a Norden metric (the class W1⊕W2 ) in Thoerem 3.5.

In particular, we consider the classification of almost contact manifolds with B-metric and almost

complex manifolds with a Norden metric given by [6, 7], respectively. We generalize the metric and
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the complex structure on the product manifold given in [9] by considering two functions. In [9],

Sasaki-like manifolds which are subclasses of F4 of almost contact B-metric manifolds are studied.

In this work, almost complex Norden metric manifolds are obtained from almost contact manifolds

with B-metric M with product of R and an almost complex structure and a metric are defined

on the product manifold M × R depending on two functions σ and µ which are functions of t .

Some relations between classes of almost complex manifolds with a Norden metric and the classes

F4 and F5 of almost contact manifolds with B-metric are obtained.

2. Preliminaries

First, we introduce almost contact B-metric manifolds. A manifold M with odd dimension has an

almost contact structure (φ, ξ, η) , if it admits a vector field ξ , a map φ , and a 1-form η satisifying

the following relations:

η(ξ) = 1, φ2
= −I + η ⊗ ξ. (1)

Here I is identity map. From (1),

φ(ξ) = 0, η ○ φ = 0 (2)

follow. In addition to an almost contact structure (φ, ξ, η) , if there is a metric tensor g satisfying

g(φ(a), φ(b)) = −g(a, b) + η(a)η(b) (3)

for all vector fields a, b , then M is said to be an almost contact manifold with B-metric. The

Equation (3) yields

g(a, ξ) = η(a), g (φ(a), b) = g (a,φ(b)) . (4)

Assume ∇ is the Levi-Civita covariant derivative of g . We denote

Γ(a, b, c) = g ((∇aφ) b, c) . (5)

Γ has the following properties:

Γ(a, b, c) = Γ(a, c, b),
Γ(a,φ(b), φ(c)) = Γ(a, b, c) − η(b)Γ(a, ξ, c) − η(c)Γ(a, b, ξ),

Γ(a, ξ, ξ) = 0
(6)

for all a, b, c vector fields. The 1-forms θ , θ∗ and ω related with Γ are introduced as

θ(a) = gijΓ(fi, fj , a), θ∗(a) = gijΓ(fi, φ(fj), a), ω(a) = Γ(ξ, ξ, a). (7)

Here {f1,⋯, f2n, ξ} is a local frame, the inverse matrix of (gij) is denoted by (gij) and a ∈ χ(M)

[7].

Using properties (6), the space of Levi-Civita connections of the endomorphism φ are defined
as
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F = {Γ ∈ ⊗0
3 ∶ Γ(a, b, c) = Γ(a, c, b)

= Γ(a,φ(b), φ(c)) + η(b)Γ(a, ξ, c) + η(c)Γ(a, b, ξ)} .

The space F is decomposed as

F = F1 ⊕⋯⊕F11.

The subspaces Fi are invariant and orthogonal with respect to the action of G × I , where

G = GL(n,C)∩O(n,n) , i.e., G is the group of real matrices (
A B
−B A

) which belong to O(n,n) ,

A and B are n × n matrices [7].

Any almost contact manifold with B-metric belongs to a subclass Fi1 ⊕⋯⊕Fik for 1 ≤ i1 ≤

⋯ ≤ ik ≤ 11 of F . The defining rules of classes we use are [7]:

F4 ∶ Γ(a, b, c) = −
θ(ξ)

2n
(η(b)g(φ(a), φ(c)) + η(c)g(φ(a), φ(b))) , (8)

F5 ∶ Γ(a, b, c) = −
θ∗(ξ)
2n
(η(b)g(φ(a), c) + η(c)g(φ(a), b)) . (9)

An even-dimensional semi-Riemannian manifold N having an almost complex structure J

and a semi-Riemannian metric h such that h(J(a), J(b)) = −h(a, b) is called an almost complex

manifold with a Norden metric. G = GL(n,C) ∩ O(n,n) is the structure group of N , where

GL(n,C) ∩O(n,n) is the group of real matrices

(
A B
−B A

)

which are in O(n,n) (A and B are n × n matrices) [6].

Almost complex manifolds with Norden metric are classified by considering the Levi-Civita

connection ∇J of J . The following notation is used

Υ(a, b, c) ∶= h ((∇aJ) b, c) .

Υ satisfies

Υ(a, b, c) = Υ(a, c, b) and Υ(a, J(b), J(c)) = Υ(a, b, c).

The 1-form Θ related with Υ is given by

Θ(a) = hijΥ(fi, fj , a) (10)
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for all a ∈ χ(N) , where {f1, f2,⋯, f2n} is a local frame on N and (hij
) is the inverse matrix of

h . The tensor Υ belongs to the space

W = {Υ ∈ ⊗0
3 ∶ Υ(a, b, c) = Υ(a, c, b) = Υ(a, J(b), J(c))} ,

which splits into a direct sum of three subspaces Wi , i = 1,2,3 [5]. Defining relations of almost

complex manifolds with a Norden metric are:

1. Kaehlerian Norden metric manifolds: Υ(a, b, c) = 0 for all a, b, c ∈ χ(N) .

2. Class W1 (Conformally Kaehlerian manifolds with a Norden metric):

Υ(a, b, c) =
1

2n
(h(a, b)Θ(c) + h(a, c)Θ(b) (11)

+h(a, J(b))Θ(J(c)) + h(a, J(c))Θ(J(b))) .

3. Class W2 (Special complex manifolds with a Norden metric):

Υ(a, b, J(c)) +Υ(b, c, J(a)) +Υ(c, a, J(b)) = 0, (12)

Θ = 0. (13)

4. Class W3 (Quasi-Kaehlerian manifolds with a Norden metric):

Υ(a, b, c) +Υ(b, c, a) +Υ(c, a, b) = 0. (14)

5. Class W1 ⊕W2 (Complex manifolds with a Norden metric):

Υ(a, b, J(c)) +Υ(b, c, J(a)) +Υ(c, a, J(b)) = 0.

6. Class W1 ⊕W3 :

Υ(a, b, c) +Υ(b, c, a) +Υ(c, a, b) =
1

n
(h(a, b)Θ(c) + h(a, c)Θ(b) (15)

+ h(b, c)Θ(a) + h(a, J(b))Θ(J(c))

+ h(b, J(c))Θ(J(a)) + h(c, J(a))Θ(J(b)))

7. Class W2 ⊕W3 (Semi-Kaehlerian manifolds with a Norden metric):

Θ = 0.

8. Class W1 ⊕W2 ⊕W3 (No relation):

Any Υ ∈W can be written as Υ = Υ1 +Υ2 +Υ3 ∈W , where Υi ∈Wi . The projections Υi

are given below [6]:

Υ1(a, b, c) =
1

2n
(h(a, b)Θ(c) + h(a, c)Θ(b) (16)

+h(a, J(b))Θ(J(c)) + h(a, J(c))Θ(J(b))) ,
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Υ2(a, b, c) = −
1

2n
(h(a, b)Θ(c) + h(a, c)Θ(b) (17)

+h(a, J(b))Θ(J(c)) + h(a, J(c))Θ(J(b)))

+
1

4
(2Υ(a, b, c) +Υ(b, c, a) +Υ(c, a, b)

−Υ(J(b), c, J(a)) +Υ(J(c), a, J(b))) ,

Υ3(a, b, c) =
1

4
(2Υ(a, b, c) −Υ(b, c, a) −Υ(c, a, b) (18)

+Υ(J(b), c, J(a)) −Υ(J(c), a, J(b))) .

3. Almost Complex Manifolds with Norden Metric from Almost Contact Manifolds

with B-Metric

Let (M,φ, ξ, η, g) be an almost contact manifold with B-metric, dimM = 2n+1. Consider a vector

field (a,α d
dt
) on M ×R , where a is a vector field on M , t is the coordinate of R and α is a C∞

function on M ×R . On M ×R we define an almost complex structure with a Norden metric (J̃ , h̃)

with respect to the functions σ and µ on M ×R , where σ and µ depend only on t as

J̃ (a,α
d

dt
) ∶= (φ(a) − αe−(σ+µ)ξ, e(σ+µ)η(a)

d

dt
) , (19)

h̃((a,α
d

dt
) ,(b, β

d

dt
)) ∶= e2σg (a, b) + e2σ(e2µ − 1)η(a)η(b) − αβ. (20)

In this study, we use the notation a, b, c for vector fields on M . In addition, we use A,B,C

to denote vector fields on M such that A,B,C ∈Kerη .

Using the Kozsul formula, we evaluate the components of Levi-Civita covariant derivative

∇̃ of h̃ which are different than zero as

h̃(∇̃AB,C) = e2σg(∇AB,C),

h̃(∇̃AB, ξ) = e2σg(∇AB, ξ) − e2σ(e2µ − 1)dη(A,B),

h̃(∇̃AB,
d

dt
) = −e2σ

dσ

dt
g(A,B),

h̃(∇̃Aξ,C) = e2σg(∇Aξ,C) + e
2σ
(e2µ − 1)dη(A,C),

h̃(∇̃A
d
dt
,C) = e2σ

dσ

dt
g(A,C),

h̃(∇̃ξB,C) = e2σg(∇ξB,C) + e2σ(e2µ − 1)dη(B,C),

h̃(∇̃ξB, ξ) = e2(σ+µ)g(∇ξB, ξ),

h̃(∇̃ξξ,C) = e2(σ+µ)g(∇ξξ,C),

h̃(∇̃ξξ,
d

dt
) = −e2(σ+µ)(

dσ

dt
+
dµ

dt
),

h̃(∇̃ξ
d
dt
, ξ) = e2(σ+µ)(

dσ

dt
+
dµ

dt
),

h̃(∇̃ d
dt
B,C) = e2σ

dσ

dt
g(B,C),

h̃(∇̃ d
dt
ξ, ξ) = e2(σ+µ)(

dσ

dt
+
dµ

dt
).
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Then, we write down the non-zero components of ∇̃J̃ as

h̃((∇̃AJ̃)(B),C) = e
2σg((∇Aφ)(B),C), (21)

h̃((∇̃AJ̃)(B), ξ) = e2σ (g(∇Aφ(B), ξ) + e
σ+µ dσ

dt
g(A,B) (22)

−(e2µ − 1)dη(A,φ(B))) ,

h̃((∇̃AJ̃)(B),
d

dt
) = −e2σ

dσ

dt
g(A,φ(B)) + eσ−µg(∇AB, ξ) (23)

−eσ−µ(e2µ − 1)dη(A,B),

h̃((∇̃AJ̃)(ξ),C) = e3σ+µ
dσ

dt
g(A,C) − e2σg(∇Aξ,φ(C)) (24)

−e2σ(e2µ − 1)dη(A,φ(C)),

h̃((∇̃AJ̃)(
d

dt
),C) = −eσ−µg(∇Aξ,C) − e

σ−µ
(e2µ − 1)dη(A,C) (25)

−e2σ
dσ

dt
g(A,φ(C)),

h̃((∇̃ξJ̃)(B),C) = e2σg((∇ξφ)(B),C)
+e2σ(e2µ − 1) (dη(φ(B),C) − dη(B,φ(C))) ,

(26)

h̃((∇̃ξJ̃)(B), ξ) = e2(σ+µ)g(∇ξφ(B), ξ), (27)

h̃((∇̃ξJ̃)(B),
d

dt
) = eσ+µg(∇ξB, ξ), (28)

h̃((∇̃ξJ̃)(ξ),C) = e2(σ+µ)g(∇ξξ,φ(C)), (29)

h̃((∇̃ξJ̃)(
d

dt
),C) = −eσ+µg(∇ξξ,C), (30)

h̃((∇̃ξJ̃)(ξ), ξ) = 2e3(σ+µ) (
dσ

dt
+
dµ

dt
) , (31)

h̃((∇̃ξJ̃) (
d

dt
) ,

d

dt
) = 2eσ+µ (

dσ

dt
+
dµ

dt
) , (32)

h̃((∇̃ d
dt
J̃)(ξ),

d

dt
) = eσ+µ (

dσ

dt
+
dµ

dt
) , (33)

h̃((∇̃ d
dt
J̃)(

d

dt
), ξ) = −eσ+µ (

dσ

dt
+
dµ

dt
) . (34)

Then, we have the Theorem 3.1.
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Theorem 3.1 ∇̃J̃ = 0 if and only if relations below are satisfied

Γ(A,B,C) = Γ(ξ, ξ,C) = 0, (35)

dσ

dt
+
dµ

dt
= 0, (36)

Γ(ξ,B,C) = 0, (37)

Γ(A,B, ξ) = −eσ+µ
dσ

dt
g(A,B) (38)

for all A,B,C ∈Kerη .

Proof Let ∇̃J̃ = 0. From Equations (21), (27)-(34), we get Equations (35), (36) and ∇̃ξξ = 0.

Also, from Equation (25), we obtain

g (∇Aξ,C) = −(e
2µ
− 1)dη(A,C) − eσ+µ

dσ

dt
g(A,φ(C)). (39)

Then, Equation (39) implies dη = 0. In addition, from Equation (26), we obtain β(ξ,B,C) = 0.

Also, Equation (22) gives the relation (38). The converse of proof is clear. ◻

Now, we state Theorem 3.2 which is used to prove Theorem 3.3.

Theorem 3.2 Assume (M,φ, ξ, η, g) is an almost contact manifold with B-metric. The followings

are equivalent:

(i) (M,φ, ξ, η, g) satisfies the Equations (35), (37) and (38).

(ii) (M,φ, ξ, η, g) satisfies

Γ(a, b, c) = eσ+µ
dσ

dt
(η(b)g(φ(a), φ(c)) + η(c)g(φ(a), φ(b))) (40)

for all a, b, c ∈ χ(M) .

Proof Let (M,φ, ξ, η, g) satisfy (35), (37) and (38). Take

a = a − η(a)ξ + η(a)ξ = A + η(a)ξ, A = a − η(a)ξ
b = b − η(b)ξ + η(b)ξ = B + η(b)ξ, B = b − η(b)ξ
c = c − η(c)ξ + η(c)ξ = C + η(c)ξ, C = c − η(c)ξ,

where A,B,C ∈Kerη . Then, we obtain

Γ(a, b, c) = Γ (A + η(a)ξ,B + η(b)ξ,C + η(c)ξ)
= Γ(A,B,C) + η(c)Γ(A,B, ξ) + η(b)Γ(B,C, ξ)

η(a)Γ(ξ,B,C) + η(a)η(c)Γ(ξ, ξ,B) + η(a)η(b)Γ(ξ, ξ,C)
= η(c)Γ(A,B, ξ) + η(b)Γ(A,C, ξ)

= −eσ+µ dσ
dt
(η(c)g(A,B) + η(b)g(A,C))

= eσ+µ dσ
dt
(η(c)g(φ(a), φ(b)) + η(b)g(φ(a), φ(c))) .

(41)
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The proof of converse is trivial. ◻

Consider the defining relation of F4 of almost contact manifold with B-metric

Γ(a, b, c) = −
θ(ξ)

2n
(η(b)g(φ(a), φ(c)) + η(c)g(φ(a), φ(b))) .

Choose functions σ and µ so that

−
θ(ξ)

2n
= eσ+µ

dσ

dt
. (42)

Then, M is in F4 . However, the Equation (42) has a solution if θ(ξ) is a constant real number.

Consequently, the Theorem 3.3 is stated.

Theorem 3.3 Let (M,φ, ξ, η, g) be an almost contact manifold with B-metric. (M × R, J̃ , h̃) is

Kaehlerian manifold with Norden metric iff the manifold M is of the class F4 , θ(ξ) is a real

number and following equalities are satisfied

eσ+µ
dσ

dt
= −

θ(ξ)

2n
,

dσ

dt
+
dµ

dt
= 0. (43)

Proof If M ×R is a Kaehlerian Norden metric manifold, from Theorem 3.1, we have Equations

(35) - (38). Also from Theorem 3.2, we get the Equation (40). If functions σ and µ are chosen to

satisfy

eσ+µ
dσ

dt
= −

θ(ξ)

2n
,

then M is of the class F4 since θ(ξ) is constant.

On the contrary, if M is of the class F4 , θ(ξ) is constant and Equation (43) holds, then we

have

σ(t) + µ(t) = c, c ∈ R.

In addition, the differential equation eσ+µ dσ
dt
= −

θ(ξ)
2n

has the solutions

σ(t) = −
θ(ξ)

2n
e−ct + c1, µ(t) = c +

θ(ξ)

2n
e−ct − c1, c1 ∈ R. (44)

If σ and µ are chosen as in (44), then (M ×R, J̃ , h̃) is in trivial class. In fact, we obtain an infinite

number of Kaehlerian manifolds with a Norden metric depending on c and c1 . ◻

Example 3.4 Assume G is a five dimensional Lie group, take a basis {x0, x1, x2, x3, x4} of left-

invariant vector fields such that the non-zero Lie brackets are

[x0, x1] = λx2 + x3 + µx4, [x0, x2] = −λx1 − µx3 + x4,
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[x0, x3] = −x1 − µx2 + λx4, [x0, x4] = µx1 − x2 − λx3,

where λ and µ are constants. Let g be the metric satisfying

g(x0, x0) = g(x1, x1) = g(x2, x2) = 1, g(x3, x3) = g(x4, x4) = −1,

g(xi, xj) = 0, i, j ∈ {0,1,⋯,4}, i ≠ j.

If we take ξ = x0 , φ(x1) = x3 and φ(x2) = x4 , then (ξ, η,φ, g) is an almost contact structure

with B-metric, where η is dual 1-form of x0 . From the Kozsul formula, we evaluate the non-zero

Levi-Civita covariant derivative as

∇x0x1 = λx2 + µx4, ∇x0x2 = −λx1 − µx3,

∇x0x3 = −µx2 + λx4, ∇x0x4 = µx1 − λx3,

λx1x0 = −x3, λx2x0 = −x4, λx3x0 = x1, λx4x0 = x2,

λx1x3 = λx2x4 = λx3x1 = λx4x2 = −x0.

(G,φ, ξ, η, g) is of class F4 with θ(ξ) = −2n [9]. If we take σ(t) = e−ct + c1 , µ(t) = c − e−ct − c1 ,

where c and c1 are arbitrary real numbers, then G × R is a Kaehlerian manifold with a Norden

metric.

Let {f1,⋯, fn, φ(f1),⋯, φ(fn), ξ} be an orthonormal frame on open set U of M such that

g(fi, fi) = 1, g(φ(fi), φ(fi)) = −1, g(ξ, ξ) = 1, 1 ≤ i ≤ n,

g(fi, fj) = g(φ(fi), φ(fj)) = g(fi, φ(fj)) = 0 for i ≠ j, 1 ≤ i, j ≤ n.

Then,

{(e−σf1,0) , (e−σf2,0) ,⋯, (e−σfn,0) , (e−σφ(f1),0) ,⋯, (e−σφ(fn),0) , (e−(σ+µ)ξ,0) ,(0,
d

dt
)}

is an orthonormal frame of h̃ on the open subset U ×R of M ×R . By using this frame, Θ̃ (a,α d
dt
)

is obtained by direct calculation:

Θ̃(a,α
d

dt
) = θ(a) − αe−(σ+µ)θ∗(ξ) + 2neσ+µη(a)

dσ

dt
(45)

+3eσ+µ (
dσ

dt
+
dµ

dt
)η(a) + g (∇ξξ,φ(a)) .

Let M be in F5 . We investigate the class of M ×R .
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Theorem 3.5 If (M,φ, ξ, η, g) is in F5 and dσ
dt
+

dµ
dt
= 0 , then (M ×R, J̃ , h̃) belongs to W1⊕W2 .

Proof Since M is in F5 , Equation (9) is satisfied. In the class F5 , we have

∇aξ = −
θ∗(ξ)
2n

φ2
(a), dη = 0.

In addition, since dσ
dt
+

dµ
dt
= 0, the only components of Levi-Civita covariant derivative of J̃ which

do not vanish are

g̃ ((∇̃AJ)(B), ξ) = −e2σ (
θ∗(ξ)
2n

g(A,φ(B)) − eσ+µ
dσ

dt
g(A,B)) ,

g̃ ((∇̃AJ)(B),
d

dt
) = −e2σ (

dσ

dt
g(A,φ(B)) + e−(σ+µ)

θ∗(ξ)
2n

g(A,B)) ,

g̃ ((∇̃AJ)(ξ),C) = e2σ (eσ+µ
dσ

dt
g(A,C) −

θ∗(ξ)
2n

g(A,φ(C))) ,

g̃ ((∇̃AJ) (
d

dt
) ,C) = −e2σ (e−(σ+µ)

θ∗(ξ)
2n

g(A,C) +
dσ

dt
g(A,φ(C))) .

Also, by direct calculation we have

Θ̃(a,α
d

dt
) = −αe−(σ+µ)θ∗(ξ) + 2neσ+µη(a)

dσ

dt
. (46)

In addition, since

Υ1 ((0,
d

dt
) , (ξ,0) , (ξ,0)) =

1

n
eσ+µθ∗(ξ) ≠ 0 (47)

and

Υ2 ((0,
d

dt
) , (ξ,0) , (ξ,0)) = −

1

n
eσ+µθ∗(ξ) ≠ 0, (48)

the projections α1, α2 are non-zero. By direct calculation

Υ3 ((a,α
d

dt
) ,(b, β

d

dt
) ,(c, γ

d

dt
)) = 0. (49)

Hence, M ×R is of the class W1 ⊕W2 . ◻

Example 3.6 Let R2n+2
= {(a1,⋯, an+1, b1,⋯, bn+1) ∶ ai, bi ∈ R} . Consider the canonical complex

structure

J (
∂

∂ai
) =

∂

∂bi
, J (

∂

∂bi
) = −

∂

∂ai
, 1 ≤ i ≤ n + 1
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and

g(u,u) = −δijxixj + δijyiyj ,

where u = xi
∂

∂ai
+ yi

∂
∂bi

. Identify the point p = (a1,⋯, an+1, b1,⋯, bn+1) in R2n+2 with its position

vector P . Let M be the hypersurface of R2n+2 determined by

M = {P ∈ R2n+2
∶ g(P,J(P )) = 0, g(P,P ) > 0} .

Define vector field ξ as

ξ = −
1

cosh t
P,

where t ∈ (−π/2, π/2) . For any vector field u , we can define φ with regard to the unique decompo-

sition

J(u) = φ(u) +
1

cosh t
η(u)J(P ).

(M,φ, ξ, η, g) is in F5 [7]. From the Theorem 3.5, by choosing the functions σ and µ to satisfy

dσ
dt
+

dµ
dt
= 0 , M ×R is of the class W1 ⊕W2 .
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