
B o z o k  J  E n g  A r c h ,  2 0 2 4 ;  3 ( 2 )  7 8 - 8 6  

D O I :  1 0 . 7 0 7 0 0 / b j e a . 1 5 8 1 7 9 1  

 

Bozok  

Journal of Engineering and Architecture 
 

e-ISSN: 3023-4298 

Research Article 

 

ORCID ID: Fatih Furkan ARSLAN: 0000-0001-7887-7951, Önder DİNCEL: 0000-0002-5373-8338 

 

*Corresponding author: Yozgat Bozok Üniversitesi Mühendislik-Mimarlık Fakültesi Elektrik-Elektronik Mühendisliği Bölümü, Yozgat 

Phone:+90 354 2421001. 

Fax: +90 354 2421005. 

E-mail:f.furkan.arslan@yobu.edu.tr 

 

To cite this article: Arslan F.F., Dincel Ö., “Simulation of infant suction vacuum pressure using WGAN”, Bozok Journal of Engineering and Architecture, vol. 3, no. 2, pp. 78-86, 2024. 
 

 

 

Simulation of infant suction vacuum pressure using WGAN 

Fatih Furkan ARSLAN1 *, Önder DİNCEL1 

1 Yozgat Bozok University, Faculty of Engineering and Architecture, Department of Electrical and Electronics Engineering, Yozgat, Türkiye 

A R T I C L E  I N F O    A B S T R A C T  

Article history: 

 

Received 

08.11.2024 

Accepted 

18.11.2024 

Published 

31.12.2024 

 In this study, it is aimed to simulate infant suction vacuums by replicating infant suction vacuum 

pressures with the Wasserstein Generative Adversarial Network (WGAN) model. To understand 

the physiology of infants' feeding behaviour, it is very important to understand the physiology of 

sucking. One of the most important elements of feeding physiology is the infant suction vacuum. 

In this context, the infant suction vacuum pressure produced by the WGAN model was 

successfully simulated. Data preprocessing and hyperparameter optimization were performed to 

ensure the most accurate simulation of the WGAN model used in the study. As a result, the low 

RMSE and high R2 value between the real data and the generated data show that the model 

works successfully. This method is promising in terms of better understanding the sucking 

behaviour of infants and contributing to solving problems in the field of infant feeding. In the 

future, infant sucking simulation will be more successful if the model is supported with larger 

data and other elements of infant sucking physiology such as swallowing and respiration are 

considered. This kind of simulation will pave the way for new applications in the fields of infant 

feeding and breastfeeding. 
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WGAN ile bebek emme vakum basıncının simülasyonu 

M A K A L E  B İ L G İ S İ    Ö Z E T   

Makale Tarihleri: 

 

Geliş tarihi 

08.11.2024 

Kabul tarihi 

18.11.2024 

Yayın tarihi 

31.12.2024 

 Bu çalışmada, bebeklerin emme vakum basınçlarının Wasserstein Generative Adversarial 

Network (WGAN) modeli ile çoğaltılarak bebek emme vakumlarının benzetiminin yapılması 

amaçlanmıştır. Bebeklerin beslenme davranışlarını fizyolojisini anlamak için emme fizyolojisini 

kavramak oldukça önemlidir. Beslenme fizyolojisinin en önemli unsurlarından bir tanesi bebek 

emme vakumudur. Bu bağlamda, WGAN modelinin ile üretilen bebek emme vakum basıncı 

başarıyla taklit edilmiştir. Çalışmada kullanılan WGAN modelinin en doğru benzetimi 

yapabilmesi için veri ön işleme yapılmış ve hiperparametre optimizasyonu yapılmıştır. Sonuç 

olarak, gerçek verilerle üretilen veriler arasındaki düşük RMSE ve yüksek R2 değeri modelin 

başarılı çalıştığını göstermektedir. Bu yöntem ile bebeklerin emme davranışlarının daha iyi 

anlaşılması ve bebek beslenmesi alanındaki sorunların çözülmesine katkı sağlaması açısından 

umut vadetmektedir. Gelecekte, modelin daha geniş verilerle desteklenmesi ve bebek emme 

fizyolojisinin diğer unsurları olan yutma ve solunum gibi unsurlarında ele alınmasıyla bebek 

emme benzetim daha başarılı bir şekilde yapılabilecektir. Bu tür bir benzetim ile bebek 

beslenmesi ve anne sütü sağımı alanlarında yeni uygulamalara zemin hazırlayacaktır. 

 

Anahtar Kelimeler: 

 

Bebek Emme Vakumu 

WGAN 

Benzetim 

Emme Fizyolojisi 

 

1. INTRODUCTION 

The feeding behaviour exhibited by infants constitutes a multifaceted activity that needs various aspects of physiologic functions, 

such as sucking, swallowing, and breathing, to be harmonized [1]. In this regard, a better understanding of the stretch and patterns 

of infant sucking behaviour is critical in the identification and management of feeding problems and also in the designing of 

appropriate feeding dynamics [2]. This subject has been the focus of several previous works. For instance, one such study analysed 

the suction pressure, milk expression, and the period of lactation deprivation in infants [3]. Similar to this study, the pattern of 
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tongue movement during sucking was assessed using an ultrasound, and it was correlated to the flow of milk and the pressure inside 

the mouth [4]. Similarly, this study emphasizes the importance of coordination of sucking, swallowing and breathing during the 

breastfeeding process and argues for more research by pointing out the gaps in existing research and the limitations of clinical 

management strategies. It also provides an important source of information for care providers by describing the sucking and 

breathing abilities of infants[5]. Another study analysed normal feeder sucking behaviour in detail, demonstrating how sucking 

frequency, pressure and consumption rate vary according to the age of the infants. Thanks to the objective measurement devices 

used in the study, the data obtained provide a basis for the clinical evaluation of abnormal sucking behaviour in preterm infants and 

other infants at risk of neuromuscular disorders or swallowing difficulties[6]. Newborn sucking patterns have been studied using 

various techniques using devices that allow for the analysis of sucking in terms of complete and partial closure of the suction system 

[7]. Another study seeks to analyse and detail the sucking dynamics in preterm breastfeeding infants through the use of advanced 

techniques, including synchronized ultrasound imaging and intra-oral vacuum measurements. This method aims to offer a more 

comprehensive understanding of the sucking patterns in preterm infants, and it shows how they may differ from those of term 

infants[8]. 

 

With the objective of ascertaining feeding abilities and evaluating infant health, new devices have been designed to assess non-

nutritive sucking by measuring intra-oral and lip expression pressures of infants [9]. Likewise, the sucking-feeding coupling of the 

infant’s non-nutritive sucking response has also been done using specific described devices, which take into account the supply of 

nutrients as per the performance of the components [9][10]. Similarly, another article introduces a non-nutritive suckling (NNS) 

system that measures intraoral vacuum profiles in real time in newborns, providing an analysis of objective sucking characteristics. 

By presenting quantitative data of sucking behaviors, the study provides a framework for future research that will contribute to the 

assessment of oromotor dysfunctions[11]. Ultrasound imaging was also employed to assess the dynamics of sucking of infants 

during breastfeeding, showing the presence of nutrition and non-nutrition sucking [12]. In another study, he developed an innovative 

tool that simulates breastfeeding mechanics in a laboratory setting, providing reliable data and contributing to the understanding of 

breastfeeding dynamics with measurements consistent with clinical data. This study has elucidated breastfeeding biomechanics with 

advanced measurement techniques and laid the foundation for the development of future breastfeeding devices[13]. 
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Figure 1. Flow chart of the process.   

Our goal is to make the mechanical baby sucking simulation mentioned above with artificial intelligence a more natural and realistic 

milking process for the mother. To achieve this a novel approach to mimicking the suction derived from an infant's mouth using a 

Wasserstein Generative Adversarial Network (WGAN). In generative modelling techniques, the WGAN is viewed as a sophisticated 

one since it can comprehend and internalize the data characteristics of suction vacuum pressure samples obtained from infants. In 

contrast to traditional GAN frameworks, the WGAN paradigm incorporates the Wasserstein distance as a cost, allowing for more 

consistent output and broader usability [14][15].  

 

To this end, the accrual of data on infant suction vacuum pressure from existing literature and data washing will be discussed first. 

Next, we present the WGAN model and its implementation, the training process, and the model evaluation metrics. Eventually, the 

findings of the simulation are presented along with the generated suction vacuum pressure data, the performance of the model with 

regard to generated data and actual data, and the trends of generator and critic loss over the training iterations, as illustrated in Figure 

(3). The flowchart of the whole process is given in Figure (1).  

2. MATERIALS and METHODS 

2.1. Data Collection and Preprocessing 

This study utilized data stemming from the lactational practice of nutritional sucking. This included time series data on the suction 

vacuum pressure of babies during suckling. The data is a mean vacuum pressure plot concerning time for six mother-infant pairs 

[7]. The following measures were taken during data processing; 

 OpenCV transforms the image from a graphics form to a greyscale [16]. 

 The plot data points are then extracted from the greyscale image after binarization is performed using a threshold value 

[16]. 

 The subsequent step involves digitizing the obtained data points to numerically represent the suction vacuum pressure and 

the related time intervals. 

 In addition, the data is further adjusted for use in the WGAN training purpose. 

2.2. WGAN 

According to [17], two neural networks make up Generative Adversarial Networks (GANs) – Generator (G) and Discriminator (D). 

The generator, G, accepts an input of random noise, which enables it to learn the features of actual data samples. Conversely, the 

discriminator, D, takes as an input a mixture of actual data as well as generated data and attempts to tell the difference between the 

two and to indicate what data is actual and what is generated out of G. The loss functions that enable G and D to operate within the 

framework of GANs are given in the Equation (1) below: 

{
𝐿𝑜𝑠𝑠𝐺 = 𝐸𝑧⊂𝑃𝑧

[𝐷(𝐺(𝑧))]

𝐿𝑜𝑠𝑠𝐷 = −𝐸𝑥⊂𝑃𝑥
[𝐷(𝑥)] + 𝐸𝑧⊂𝑃𝑧

[𝐷(𝐺(𝑧))]
 (1) 

In this setting, it is the case that  𝐿𝑜𝑠𝑠𝐺  and 𝐿𝑜𝑠𝑠𝐷 refer to the loss function in turns for the Generator and the Discriminator, 

respectively. The purpose of the generator is to generate samples 𝐺(𝑧) that when 𝑧 is in the latent space, closely approximates the 

image data 𝑥. On the contrary, the task of the discriminator is to tell the difference between the actual data 𝑥 and the generated image 

data 𝐺(𝑧). 

In the case of WGAN, the similarity between two distributions is quantified using the concept of Wasserstein distance. According 

to [15], in contrast with Jensen-Shannon and Kullback-Leibler divergence measurements, the Wasserstein distance has a continuous 

and valuable gradient. This property helps to alleviate the mode collapse problem that is usually associated with GAN training 

relying on JS divergence. The Wasserstein distance is represented in the Equation (2) below: 

 𝑊(𝑃𝑥 , 𝑃𝑧) = 𝑠𝑢𝑝𝐿≤1(𝐸𝑥⊂𝑃𝑥
[𝐷(𝑥)] − 𝐸𝑧⊂𝑃𝑧

[𝐷(𝐺(𝑧))]) (2) 



A r s l a n  a n d  D i n c e l  B o z o k  J  o f  E n g  A r c h ,  2 0 2 4 ;  3 ( 2 )  7 8 - 8 6  

 

81 

 

In this context, the notation 𝑊(𝑃𝑥  , 𝑃𝑧) is reserved for the Wasserstein distance between two probability distributions. The first  

distribution 𝑃𝑥 refers to the true data distribution while the second distribution 𝑃𝑧 denotes the distribution of the data generated in 

the model. The constant 𝐿  (where 𝐿 ≤ 1) acts as a bound on the difference in expectation that can be achieved under the 1-Lipschitz 

assumption to guarantee safe gradient optimization in the network. 

2.3. Model Components 

Two networks make up the WGAN model, which competes in two components – the generator and the critic: 

 

The Generator tries to produce samples that correspond closely with the actual ones from a given random vector. During training, 

the generator, which is built as a stack of fully connected layers, receives not only a latent vector (random noise) but also an extra 

Gaussian-distributed noise, as temporal information. As a result, the model is capable of generating data samples that are reasonably 

and temporally dynamic in nature, changing with time. The first layer inputs the latent dimension. The following layers consist of  

512, 1024, and 2048 neurons, thus endowing the model with the ability to comprehend and produce intricate patterns. The last layer 

presents the sequence length as an output, the same as the arrangement of the target data. Each layer uses the Leaky ReLU activation 

function [18], which assists in avoiding information loss in negative ranges, leading to a more realistic distribution. The output layer 

employs Tanh [19] which constricts the output values to the range of [-1, 1]. Furthermore, the layers employ dropout regularization 

to mitigate overfitting, with a dropout rate corresponding to the fixed value named dropout rate, enhancing generalization and 

performance [20]. 

 

The Critic is a model that is capable of telling the difference between actual data and fake data. In contrast to a Discriminator in the 

classical sense, the function of the loss for the Critic is more straightforward and, therefore, leads to more equal and stable training 

of the model. The Critic network includes four layers of fully connected networks: the first one has 1024 neurons, the second 512, 

the third 256, and the last one produces a single scalar output with one neuron. Input data is sequential. Therefore, input tensors are 

unrolled in a manner of a view, preferably before the Critic. The first three layers are composed of ReLU activation [21]and a wok 

returns a single scalar. ReLU function is utilized due to its positive range linearity, which minimizes information loss and fastens 

training. As illustrated in Figure (2), the model architecture is presented in detail. 

 

Figure 2. Block diagram of the model.   
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2.4. Training Process and Hyperparameters 

The process of training the WGAN model was methodically structured so that learning could proceed in a stable manner, and the 

quality of the generated data was good. By emphasizing the adjustment of hyperparameters and the use of special training regimes, 

the model managed to perform well and precisely reproduced realistic patterns of baby-sucking vacuum. 

 

The design of the model and the settings of the hyperparameters were customized to suit the baby-sucking vacuum data. Some of 

the primary hyperparameters were as follows: 

 Latent Dimension: The latent dimension, which is fixed at 200, indicates the length of the noise vector fed into the 

Generator. This dimension was chosen in order to strike a balance on the degree of complexity required to model variations 

in the data while ensuring the computational costs are kept at a reasonable level. 

 Sequence Length: Set to 992, the sequence length is half the length of the complete data set. This technique helps the 

model’s ability to create plausible incomplete sequences, which, when put together, form a coherent whole of sucking 

vacuum data. 

 Batch Size: The batch size of 128 was employed as it enhances the stability of the gradients and helps in faster convergence. 

The application of multiple samples at once allowed for effective parameter updates. 

 Critic Training Frequency: The Critic was subjected to 10 training sessions for every Generator update, which was more 

effective in learning the nuanced textures of the real and fake samples. This update frequency allows for better feedback 

from the generator and, therefore, improves the quality and convincement of the generated data. 

 Weight Clipping: A clipping threshold of 0.01 was imposed on the weights of the Critic, which is useful in restraining the 

excessive growth of weights as well as stabilizing the Wasserstein loss, which is important for training purposes. 

 Weight Decay: Given a value of 0.0001, weight decay is one of the techniques used to prevent overfitting by discouraging 

large weights in the Generator and Critic networks, thereby encouraging less complex and more general learning. 

 Patience for Early Stopping: We found it suitable to apply a patience setting of 15 epochs in early stopping in order to 

cease the training whenever no improvement was recorded in the loss of the Generator in order to prevent overfitting. 

 Rate of Dropout: In both models, a dropout rate of 0.3 was used, reducing overfitting through random shutdown of a certain 

percentage of neurons during each training step. 

 MSE Threshold: An MSE threshold of 25 was established as the acceptable level for the fidelity of generated data. Training 

would be stopped if this level was achieved or surpassed. They were indicating that the model was able to reproduce the 

real data closely. 

To enhance both the efficiency and stability of the training, early stopping and an adaptive learning rate scheduler were also 

incorporated into the training regime. Early stopping was applied, considering there is no improvement in the Generator’s loss for 

15 epochs, thus minimizing the unnecessary computational burden and overfitting windows. Furthermore, since the performance 

was observed to have plateaued, the learning rate was tailored down by a ReduceLROnPlateau. In cases of aggressive training, when 

performance did not improve, the learning rate was decreased by a factor of 0.5. This ensured that the model avoided retraining in 

the local minima, enabling optimally updating parameters during the model's convergence. 

 

The training regime was implemented to provide progressive and focused updates to both the generator and the critic. The Critic 

received ten updates for each update of the Generator, allowing enough training to learn the difference between actual samples and 

generated samples. In every Practicum update, real and generated samples were tested and paired to measure the Wasserstein loss 

metric, corresponding to the difference between actual and generated samples in mean scores the Practicum gave. This way, the 

Critic learned to approximate the Wasserstein distance between two distributions, producing better gradients for optimizing the 

generator. 

 

The generator was then updated by decreasing the Critic’s score for the artificial samples. This enhanced the Generator's ability to 

produce realistic-looking data by shrinking the Wasserstein distance between the actual images and their generated counterparts. 

This sort of feedback loop enabled the model to create more and more realistic pictures over time. 

2.5. Evaluation Metrics 

The Critic and Generator losses were supervised throughout the training process. These losses also illuminated the convergence and 

balance of the model. Moreover, extreme differences between the Critique and Generator losses were considered signs of instability, 
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and thus, such parameters and training strategies were adjusted accordingly, as depicted in Figure (4). Furthermore, evaluation of 

the quality of data generated through the network against the original data also took place at the end of every epoch, focusing on 

metrics such as the mean squared error (MSE), the coefficient of determination (R²), and mean absolute deviation (madAE). The  

value of MSE, which was set at the threshold of 25, was considered the target objective. When this cue was reached, training was 

stopped, and indicating that the model had produced realistic data. Through this approach and with the appropriate selection of the 

hyperparameters, the WGAN model was able to create realistic sequential data relevant to the simulation of baby-sucking pressure 

patterns. 

3. RESULTS and DISCUSSION  

Figure (3) shows the infant sucking vacuum pressure data in both raw and filtered forms for a duration of 120 seconds. The red line 

illustrates the original pressure data, while the data after filtering is presented as a green line. A close observation of the image 

shows that the filtered line is very close to the initial one while preserving the significant shifts and minimizing the noise; thus, it 

proves the adequacy of the filtering method employed. 

 

Throughout the period, the pressure exhibits oscillation-like behavior, with sharp increases and decreases in values, typical of an 

infant sucking. This compatibility of the initial pressure vacuum signal with the filtered one illustrates the efficiency of the filtered 

data in replicating the pressure vacuum profile. Such precision is essential in ensuring that accurate models are developed as well 

as analyzing infant sucking patterns, which is one of the objectives of this research concerning the representation of data. 

 

Figure 3. Original and generated sucking vacuum pressure.   

 

Figure (4) presents the losses for both the generator and the critic throughout 30 epochs. In this context, the generator loss is 

illustrated with a green line, while the critical loss is shown in gray. In the first few epochs, both losses are exceptionally high and 

vary greatly, suggesting that the model is still in the process of ‘fine-tuning’ itself to the data. 

 

With increased training, these fluctuations also decrease, and the losses begin to steady out, indicating that the training is reaching 

its airport. The trends of the loss curve for the generator in the later epochs show relatively smoother trends than in the earlier cycles, 

meaning that the device is progressively learning how to generate target data. On the other hand, the losses of the critic show the 

same trend; hence, the output of his network is adequate enough for the generator. This relationship between the generator and the 

critic plays a vital role in the WGAN replicating the infant-sucking vacuum pattern. 
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Figure 4. Generated and critic loss per epoch. 

 

The evaluation metrics for the model’s performance in simulating infant sucking vacuum pressure are illustrated in Table 1: 

 Root Mean Squared Error (RMSE): 4.86. This is the model's mean square error for pressure values. The low MSE 

suggests that the model accurately captures the pressure variations without significant error. 

 R – Squared Score (R²): 0.93, which implies that the application of the model accounts for 93% of the variability in the 

data. This very high value of R² indicates that the predicted values from the model are closely aligned with the observed 

values from the experiment. 

 Mean Absolute Deviation of Absolute Error (madAE):3.92, which provides an average absolute error deviation close to 

4. This low madAE value is advantageous because it shows how close the model's predictions are to the actual values, 

proving its credibility. 

Based on these parameters, the model delivers high accuracy in reproducing beating patterns of specific vacuum pressures relevant 

to infant-sucking simulations. 

 

Table 1. Performance Metrics  

RMSE R2  madAE 

4.86 0.93 3.92 

 

4. CONCLUSIONS 

In this research, we illustrated how a Wasserstein Generative Adversarial Network (WGAN) was successfully employed in 

synthesizing infant suction vacuum pressure, a multi-dimensional complex behaviour associated with an infant’s feeding ability. 

The WGAN paradigm provides a novel means of creating consistent time series data on the weights of physiologically relevant 

images by searching for the rhythm and oscillations seen during the pressure changes in sucking. The beauty of this model is not 

just limited to how well the real data features are reproduced but also includes the ability to create realistic-looking samples of the 

infant sucking that is evidenced by low MSE and high R2 values. 

In this case, the main benefit of using the WGAN model comes from the fact that it does not suffer from the weaknesses of ordinary 

GANs, especially mode collapse, because of employing the Wasserstein metric as a loss. This is very important for generating 

physiological data as there is a lot of variation that should be preserved within each generated sequence. The stable and consistent 

performance of the model is evidenced by the convergence behaviours of the generator and critic loss trends, which suggests that 

training was successful and there was meaningful interaction between the generator and critic networks. Therefore, the WGAN 

model is useful for appropriately simulating physiology processes that change over time, such as the infant sucking vacuum pressure. 

The ability of the model to produce pressure data corresponding to infant feeding could offer considerable advantages in clinical 

and developmental studies. This method, for example, could be useful in designing devices for non-invasive observation of a 

subject’s feeding activity and diagnosing abnormalities in this activity. As the model continues to be perfected, this data could 
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become the gold standard for what normal sucking looks like versus deviations from this normality, which is helpful in diagnosing 

feeding problems and is useful for clinicians. 

Even so, it is important to highlight some areas for improvement in this research. The corpus of data employed for the model's 

training had a relatively low sample size, which may affect the ability to generalize the findings to a bigger sample of infants. 

Furthermore, the model considers only the suction pressure and neglects to assess vital parameters of feeding behaviour, such as 

swallowing or breathing, which all take place during the process of feeding. Future work seeking to build on this analysis should 

focus on improving the model by enriching its database and using different types of data. 

To sum up, the current research highlights the efficacy of WGAN in creating artificial time-sequenced data for various physiological 

simulations focusing on infant feeding. This method provides a basis for reliable and cost-effective modelling of vacuum suction 

pressure, which positively impacts neonatal healthcare by introducing new ways of understanding and treating infant-feeding 

dynamics. In the long run, such a WGAN model could embody significant advancements in the knowledge of heightened interest 

in the feeding capabilities of infants and the improvement of the health systems for children. 

LIMITATION 

The availability of infant suction data for this study is perhaps the most limiting factor. This is primarily because the process of 

feeding a mother and her child is highly sensitive therefore data collecting becomes difficult. In addition to this, the field has little 

interest in the past research, which means there are fewer datasets that have been made available to the public or recorded 

scientifically. Generalizability of the findings is hindered by insufficient data and present simulation has limited realism. To 

overcome this problem, it will be necessary for the current research to find new, and responsible ways of gathering fuller information 

on how infants feed, possibly by observing but not disturbing those being studied. 

AUTHOR CONTRIBUTIONS  

The authors contributed equally at every stage of the article. 

CONFLICT OF INTEREST 

There is no conflict of interest. 

ETHICS  

There is no ethical problem in the publication of this article. 

ACKNOWLEDGMENT 

A significant part of this paper includes the Master Thesis data of Fatih Furkan ARSLAN. 

REFERENCES 

[1] M. Martell, G. Martínez, M. González, and J. L. D. Rosselló, “Suction patterns in preterm infants,” J Perinat Med, vol. 21, 

no. 5, pp. 363–369, 1993, doi: https://doi.org/10.1515/jpme.1993.21.5.363. 
[2] A. M. Cannon, V. S. Sakalidis, C. T. Lai, S. L. Perrella, and D. T. Geddes, “Vacuum characteristics of the sucking cycle 

and relationships with milk removal from the breast in term infants,” Early Hum Dev, vol. 96, pp. 1–6, 2016, doi: 

https://doi.org/10.1016/j.earlhumdev.2016.02.003. 

[3] C. Prieto, H. Cardenas, A. Salvatierra, C. Boza, C. Montes, and H. Croxatto, “Sucking pressure and its relationship to milk 

transfer during breastfeeding in humans,” Bioscientifica Ltd, vol. 108, no. 1, pp. 69–74, Nov. 1996, doi: 

https://doi.org/10.1530/jrf.0.1080069. 

[4] D. T. Geddes, J. C. Kent, L. R. Mitoulas, and P. E. Hartmann, “Tongue movement and intra-oral vacuum in breastfeeding 

infants,” Early Hum Dev, vol. 84, no. 7, pp. 471–477, 2008, doi: https://doi.org/10.1016/j.earlhumdev.2007.12.008. 

[5] D. T. Geddes and V. S. Sakalidis, “Breastfeeding: how do they do it? Infant sucking, swallowing and breathing,” Infant, 

vol. 11, no. 5, pp. 146–150, 2015. 

[6] J. S. McGowan, R. R. Marsh, S. M. Fowler, S. E. Levy, and V. A. Stallings, “DEVELOPMENTAL PATTERNS OF 

NORMAL NUTRITIVE SUCKING IN INFANTS,” Dev Med Child Neurol, vol. 33, no. 10, pp. 891–897, 1991, doi: 

https://doi.org/10.1111/j.1469-8749.1991.tb14798.x. 



A r s l a n  a n d  D i n c e l  B o z o k  J  o f  E n g  A r c h ,  2 0 2 4 ;  3 ( 2 )  7 8 - 8 6  

 

86 

 

[7] L. Chen, R. F. Lucas, and B. Feng, “A Novel System to Measure Infants’ Nutritive Sucking During Breastfeeding: the 

Breastfeeding Diagnostic Device (BDD),” IEEE J Transl Eng Health Med, vol. 6, pp. 1–8, 2018, doi: 

10.1109/JTEHM.2018.2838139. 

[8] D. T. Geddes, K. Chooi, K. Nancarrow, A. R. Hepworth, H. Gardner, and K. Simmer, “Characterisation of sucking dynamics 

of breastfeeding preterm infants: a cross sectional study,” BMC Pregnancy Childbirth, vol. 17, no. 1, Nov. 2017, doi: 

https://doi.org/10.1186/s12884-017-1574-3. 

[9] S. Akbarzadeh et al., “Evaluation of Apgar Scores and Non-Nutritive Sucking Skills in Infants Using a Novel Sensitized 

Non-Nutritive Sucking System,” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & 

Biology Society (EMBC), pp. 4282–4285, 2020, doi: 10.1109/EMBC44109.2020.9176146. 

[10] A. J. Sameroff, “An apparatus for recording sucking and controlling feeding in the first days of life,” Psychon Sci, vol. 2, 

no. 1, pp. 355–356, 1965. 

[11] P. Truong, E. Walsh, V. P. Scott, T. Coleman, G. Tilvawala, and J. Friend, “Non-Nutritive Suckling System for Real-Time 

Characterization of Intraoral Vacuum Profile in Full Term Neonates,” IEEE J Transl Eng Health Med, vol. 11, pp. 107–

115, 2023, doi: 10.1109/JTEHM.2022.3231788. 

[12] V. S. Sakalidis et al., “Ultrasound Imaging of Infant Sucking Dynamics during the Establishment of Lactation,” Journal of 

Human Lactation, vol. 29, no. 2, pp. 205–213, 2013, doi: 10.1177/0890334412452933. 

[13] L. Jiang and F. Hassanipour, “Bio-Inspired Breastfeeding Simulator (BIBS): A Tool for Studying the Infant Feeding 

Mechanism,” IEEE Trans Biomed Eng, vol. 67, no. 11, pp. 3242–3252, 2020, doi: 10.1109/TBME.2020.2980545. 

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved Training of Wasserstein GANs,” in 

Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. 

Vishwanathan, and R. Garnett, Eds., Curran Associates, Inc., 2017. [Online]. Available: 

https://proceedings.neurips.cc/paper_files/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf 

[15] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Adversarial Networks,” in Proceedings of the 34th 

International Conference on Machine Learning, D. Precup and Y. W. Teh, Eds., in Proceedings of Machine Learning 

Research, vol. 70. PMLR, Nov. 2017, pp. 214–223. [Online]. Available: 

https://proceedings.mlr.press/v70/arjovsky17a.html 

[16] S. Brahmbhatt, Practical OpenCV, no. 2. Apress, 2013. 

[17] I. Goodfellow et al., “Generative adversarial networks,” Commun ACM, vol. 63, no. 11, pp. 139–144, 2020. 

[18] J. Xu, Z. Li, B. Du, M. Zhang, and J. Liu, “Reluplex made more practical: Leaky ReLU,” in 2020 IEEE Symposium on 

Computers and Communications (ISCC), 2020, pp. 1–7. doi: 10.1109/ISCC50000.2020.9219587. 

[19] M. M. Lau and K. Hann Lim, “Review of Adaptive Activation Function in Deep Neural Network,” in 2018 IEEE-EMBS 

Conference on Biomedical Engineering and Sciences (IECBES), 2018, pp. 686–690. doi: 10.1109/IECBES.2018.8626714. 

[20] P. Baldi and P. J. Sadowski, “Understanding Dropout,” in Advances in Neural Information Processing Systems, C. J. Burges, 

L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2013. [Online]. Available: 

https://proceedings.neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf 

[21] A. D. Rasamoelina, F. Adjailia, and P. Sinčák, “A Review of Activation Function for Artificial Neural Network,” in 2020 

IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), 2020, pp. 281–286. doi: 

10.1109/SAMI48414.2020.9108717. 

  


