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The need for electrical energy has increased considerably due to technological developments. Reducing 

costs and losses, especially in the supply of electrical energy, is among the goals of energy companies. 

Photovoltaic energy has been an important alternative in reducing energy costs. However, there are 

significant power quality problems in transferring the generated photovoltaic energy to the grid. 

Therefore, the generated photovoltaic energy needs to be accurately estimated to be transferred to the 

grid smoothly. In the literature, many forecasting models have been used for photovoltaic power 

forecasting. Each of these forecasting models has estimated photovoltaic power using different input 

parameters, different estimation intervals, and different estimation algorithms. This paper was conducted 

using the Teaching-Learning Based Optimization (TLBO) algorithm as an alternative approach to 

photovoltaic power forecasting models. According to the forecasting results, the root mean square error 

(RMSE) for the test subset was obtained as 270.32 kW, and the mean absolute percentage error (MAPE) 

was found to be 3.87%. These results indicate that the TLBO algorithm demonstrates high accuracy for 

photovoltaic power forecasting and provides an effective alternative model in this field. 
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1. INTRODUCTION 

With the escalation of the energy crisis, renewable energy sources like photovoltaic (PV) power, wind energy, 

and hydropower have garnered significant interest from numerous nations globally. Photovoltaic (PV) 

electricity is a significant contributor to the continuous, steady, and cost-effective functioning of power 

networks among the most prevalent renewable energy sources (Lin et al., 2022). In reaction to the growing 

need for renewable energy, photovoltaic power generation is consistently rising. The International Renewable 

Energy Agency (IRENA, 2024) projects that global renewable energy capacity will attain 3870 GW by the 

conclusion of 2023. Solar energy has the largest share in the global total with 1419 GW of capacity. 

Hydropower and wind power accounted for most of the rest, with total capacities of 1268 GW and 1017 GW, 

respectively (IRENA, 2024). Renewable energy capacity by source is shown in Figure 1. 

Renewable energy capacity increased by 473 GW in 2023. Solar power continued to lead capacity growth with 

a large increase of 346 GW, followed by wind power with 116 GW. Solar and wind continued to dominate 

renewable capacity growth, together accounting for 97.6% of all net renewable capacity additions in 2023. The 

expansion of wind and solar energy has resulted in the highest annual increase in renewable generation 

capacity, as well as the highest percentage growth on record (IRENA, 2024). However, due to the randomness, 

uncertainty, and variability in photovoltaic power generation, there are significant challenges in connecting 

large-scale photovoltaic systems to the grid (Maghami et al., 2016). The fluctuation and intermittency of 
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photovoltaic power can cause unexpected losses in existing electricity systems (Liu et al., 2018). In addition, 

the unstable nature of photovoltaic power systems can lead to power outages, voltage fluctuations, and grid 

inefficiency. It is therefore evident that research into accurate prediction of photovoltaic power output and the 

facilitation of integration of photovoltaic power into the grid represents a significant and growing area of 

interest within the field of photovoltaic power generation (Saber et al., 2014). This is because the impact of 

power quality problems caused by photovoltaic systems can be reduced or completely eliminated by predicting 

the photovoltaic power to be generated. Figure 2 shows the increase in renewable energy capacity. 

 

Figure 1. Renewable energy capacity by energy source (IRENA, 2024) 
 

 

Figure 2. Renewable energy capacity growth (IRENA, 2024) 

As a result of advances in artificial intelligence technology, photovoltaic power forecasting is performed in 

very short-term, short-term, medium-term, and long-term periods (Li et al., 2020). The four different time 

horizons used for photovoltaic power forecasting and their purposes can be explained as follows (Kleissl, 2013; 

Elsinga & Van Sark, 2017): The very short-term period covers forecasts of up to 15 minutes for load following, 

reserve capacity planning, and power quality. The short-term period includes forecasts between 15 minutes 

and 1 hour for market bidding, load following, and reserve capacity planning. The medium-term period covers 

forecasts from 1 hour to 1 day for baseload planning and market bidding. The long-term period includes 

forecasts beyond 1 day for energy management, power capacity dispatch, and market bidding. The different 

time horizons and purposes used in photovoltaic power forecasting are shown in Table 1. 
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Table 1. Applicability of photovoltaic power estimation at different times 

Horizons Period Purposes 

Ultra-short-term One second to 15 minutes Load following, reserve capacity planning, power quality 

Short-term 15 minutes to one hour Market bidding, load following, reserve capacity planning 

Medium-term One hour to one day Base-load planning, market bidding 

Long-term Prediction after one day Energy management, distribution of power capacity, market bidding 

Photovoltaic power estimation can be categorized under three main headings: physical models, statistical 

methods, and machine learning models (Das et al., 2018). Physical models use the mathematical relationship 

between solar radiation and photovoltaic power output. These models are calculated based on numerical 

weather forecasts or satellite data. Statistical methods allow us to infer correlation and variation patterns based 

on statistical principles by analyzing historical data. However, since they focus on historical data, they usually 

neglect weather conditions (Tang et al., 2022). Machine learning methods, on the other hand, can learn the 

relationships between data by training large data sets. Therefore, they require less input than physical models 

(Dosdoğru & İpek, 2022). It is therefore possible to make direct predictions about future PV power by utilising 

historical data on PV power and meteorological variables. 

The development of effective solar energy forecasting methods is of great significance in ensuring the optimal 

utilisation of renewable energy sources. In this context, the primary objective of the present study is to devise 

an alternative and efficacious model for solar energy forecasting. In this forecasting study, conducted using 

current data, particulate matter (PM10), one of the air pollution parameters, was included as an input variable 

alongside commonly used input data. This approach represents a pivotal contribution of the study. 

2. PHOTOVOLTAIC POWER PREDICTION 

A review of similar studies in the literature reveals the diversity of research on photovoltaic power forecasting 

and the difference in the methods used. Comparisons on the input data used for each forecasting model, 

forecasting models, forecasting period, forecasting accuracy, and the results obtained form the basis of the 

research in the literature. The studies in the literature generally cover very short, short, medium, and long-term 

periods. The literature review based on these periods is presented in detail in Table 2 to Table 5. While there 

is a range of estimates for photovoltaic power in the literature, the estimates in Table 1 are used as a reference 

for Table 2 through Table 5. 

Table 2. Photovoltaic power predicted methods based on a very short-term period 

Ref. Input data Prediction models 
Prediction 

periods 

Prediction 

accuracies 
Prediction results 

(Amarasinghe & 

Abeygunawardane, 

2018) 

Air temperature, global 

horizontal radiation, 

solar radiation, wind 

speed, global diffuse 

radiation”  

Artificial neural 

network (ANN) 

1-min 

RMSE=0,035 

MAE=0,0117 

ANN>SP 

Smart persistence (SP) 
RMSE=0,1015 

MAE=0,048 

(Han et al., 2019) 

Wind speed, solar 

radiation, humidity, 

temperature  

Kernel density 

estimation (KDE) 
15-min 

MAE(W)=1,88 

RMSE(W)=4,19 
KDE 

(VanDeventer et al., 

2019) 

Photovoltaic power, 

ambient temperature, 

solar radiation 

Genetic-algorithm-

based support vector 

macihine (GASVM) 
15-min 

RMSE(W)=100,47 

MAPE(%)=1,7 

GASVM>SVM 
Suport vector machine 

(SVM) RMSE(W)=680,85 

MAPE(%)=11,22 

 

https://doi.org/10.54287/gujsa.1581828


783 
O. TAŞDEMİR  

GU J Sci, Part A 11(4) 780-791 (2024) 10.54287/gujsa.1581828  
 

 

Table 3. Photovoltaic power predicted methods based on short-term periods 

Ref. Input data Prediction models 
Prediction 

periods 

Prediction 

accuracies 
Prediction results 

(Das, 2021) Photovoltaic power 

Auto-regressive 

integrated moving 

average (ARIMA) 
30-min 

MAE=699,9 

RMSE(W)=821,6 

ARIMA>AM 
Analytical method 

(AM) MAE=39117,2 

RMSE(W)=39300,7 

(Korkmaz, 2021) 

Solar radiation, 

temperature, 

photovoltaic power 

Convolutional neural 

network (CNN) 
1-h 

R2=0,9871 

RMSE(kW)=0,309 

MAE(kW)=0,175 

CNN 

(Cheng et al., 2019) 

Surface solar radiation, 

solar radiation, relative 

humidity, surface 

temperature, average 

temperature, wind speed 

at 10m 

Improved grey wolf 

optimizer algorithm 

(IMGWO) 
1-h 

RMSE=0,065 

IMGWO>SPGP 

Sparse Gaussian 

process (SPGP) 
RMSE=0,069 

(Theocharides et al., 

2020) 

Photovoltaic power, 

meteorological data, 

numerical weather 

forecast data 

Artificial neural 

network (ANN) 
1-h 

nRMSE(%)=6,11 

MAPE(%)=4,7 
ANN 

 

Table 4. Photovoltaic power predicted methods based on medium-term period 

Ref. Input data Prediction models 
Prediction 

periods 

Prediction 

accuracies 
Prediction results 

(Ma & Zhang, 

2022) 

Solar radiation, 

temperature, relative 

humidity 

Modified Firefly 

Algorithm (MFA) 

Elman artificial neural 

network (Elman) 

1-day 

MAE(kW)=1,12 

MSE(kW)=1,69 

RMSE(kW)=1,30 

MFA-Elman> FA-

Elman> Elman 

Firefly-based Elman 

neuronal network (FA-

Elman) 

MAE(kW)=1,56 

MSE(kW)=2,98 

RMSE(kW)=1,73 

Elman neural network 

(Elman) 

MAE(kW)=2,36 

MSE(kW)=7,84 

RMSE(kW)=2,80 

(Irmak et al., 2023) 

Solar radiation, power 

output, temperature, 

relative humidity Artificial neural 

network (ANN) 
1-day 

RMSE(kW)=2178,1 

MAPE(%)=3,83 

ANN 
Solar radiation, power 

output, PM10, 

temperature 

RMSE(kW)=984,7 

MAPE(%)=1,86 

(Irmak et al., 2024) 

Temperature, power 

output, PM10, solar 

radiation  

Artificial neural 

network based on the 

JAYA algorithm 

(JAYA-ANN) 1-day 

RMSE(kW)=650,44 

MAPE(%)=2,72 

JAYA-ANN> ANN 

Artificial neural 

network (ANN) 

RMSE(kW)=841,90 

MAPE(%)=3,93 

(Qu et al., 2021) Photovoltaic power 

Single gated recurrent 

unit (SGRU) 

1-day 

NRMSE(%)=18,31 

NMAE(%)=13,67 

GRUP>MGRU> 

SGRU 

Gated recurrent unit 

pool (GRUP) 

NRMSE(%)=6,83 

NMAE(%)=4,12 

Multiple gated 

recurrent unit (MGRU) 

NRMSE(%)=14,5 

NMAE(%)=11,18 
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Table 5. Photovoltaic power predicted methods based on long-term period 

Ref. Input data Prediction models 
Prediction 

periods 

Prediction 

accuracies 
Prediction results 

(Moreira et al., 

2021) 

Relative humidity, 

rainfall, ambient 

temperature, sunshine 

duration, cloudiness 

Artificial neural 

network (ANN) 
1-week MAPE(%)=4,70 ANN 

(Dandıl & Gürgen, 

2019) 
Current, voltage 

Clonal selection 

algorithm (CSA) 

1-month 

 

MAPE(%)=1,629    

RMSE=1,96 

PSO>BP>CSA 
Back-propagation 

neural network (BP) 

MAPE(%)=0,398    

RMSE=0,520 

Particle swarm 

optimization (PSO) 

MAPE(%)=0,206 

RMSE=0,270 

(Liang et al., 2023) 

Air pressure, humidity, 

temperature, solar 

radiation, wind speed 

and direction  

Fast outlier culling 

algorithm based 

decision trees-Improved 

whale bat optimisation 

algorithm-Least squares 

support vector 

regression (FCDT-

IWBOA-LSSVR) 

1-month 

R2=0,983 

MSE(kW)=1,913 

RMSE(kW)=1,383 

MAE(kW)=0,625 

FCDT-IWBOA-

LSSVR 

As a result of the review of studies on photovoltaic power forecasting, the following useful conclusions can be 

drawn: 

• Air temperature, solar radiation, and photovoltaic power parameters are the main parameters used for 

forecasting. Besides these primary parameters, secondary parameters such as relative humidity and 

wind speed are also important. However, some input parameters are less commonly used. For example, 

variables such as air pressure, rainfall, cloud cover, sunshine duration, and sky index are among these 

parameters. 

• Artificial neural networks are one of the most widely used methods for the prediction of the power 

output of photovoltaic systems. After neural networks, other methods such as support vector machines, 

support vector regression, and autoregressive integrated moving averages come next and offer 

alternative approaches for photovoltaic power forecasting. However, collective learning aims to 

achieve more accurate results by combining different forecasting models. Exogenous variable-driven 

autoregressive modeling forecasts by taking into account the effects of exogenous variables (e.g. 

cloudiness, wind speed, etc.) on solar power generation. Radial basis functions allow the modeling of 

complex relationships by transforming input data. Recurrent neural networks and multilayer 

perceptrons are used to analyze time series data. 

• Time intervals have an important role in the photovoltaic power forecasting process and are usually 

categorized according to specific periods. These time intervals affect the accuracy and precision of the 

forecasting methods. Studies generally cover very short-term, short-term, and mid-term forecasting 

periods. In particular, 15 minutes (very short term), 1 hour (short term), and 1 day (medium term) are 

the time intervals used for forecasting. 

• Error measures are an essential component in the evaluation of photovoltaic power forecasts, as they 

provide insight into the discrepancies between predicted power values and actual observations. 

Commonly employed metrics for assessing the accuracy, precision, and reliability of prediction 

models include the mean absolute error, normalised root mean square error, mean absolute percentage 

error, and root mean square error. 

• The breadth of the data input area in photovoltaic power forecasting can substantially influence the 

accuracy of the predictions. This indicates that an extensive data input area enables the forecasting 

model to utilize a broader array of information, hence enhancing prediction accuracy. Moreover, an 

extensive input data space enables the model to learn from a greater volume of data and to evaluate 
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the interrelationships among this data with enhanced precision. This enables the forecasting algorithm 

to generate more consistent and dependable forecasts. 

• During seasons when weather variables change less, solar power systems exhibit a more constant 

performance. This makes it easier for forecasting models to more accurately predict future power 

generation based on historical data. Especially in summer, solar radiation and air temperature are 

generally more stable, which can contribute to more consistent results from forecasting models. 

• In photovoltaic power forecasts, it is observed that forecast accuracy increases with decreasing forecast 

time. This suggests that forecasts with shorter time intervals may provide more reliable results. 

However, each forecast interval and method should be evaluated depending on specific conditions and 

requirements. For example, while short-term forecasts may be appropriate for maintaining the supply-

demand balance on the power side, long-term forecasting is required to assess the economic situation. 

Therefore, a delicate balance must be maintained when determining the right forecasting strategies. 

• In photovoltaic power forecasting, it was observed that the success rate of the forecasting model 

increased when the sampling time was reduced, i.e. in scenarios where data was collected more 

frequently and forecasts were updated more frequently. This suggests that more frequent data 

collection can improve forecast accuracy by enabling faster adaptation to current conditions. However, 

more frequent sampling and updating can increase data collection and processing costs. Furthermore, 

forecasts that are updated too frequently indicate that systems need to be constantly monitored and 

managed, which can increase operational burdens. 

• The types of panels used in photovoltaic power estimation are an important factor that can affect the 

accuracy of the estimation. The different characteristics of these panels can cause differences in the 

perception and estimation of the factors affecting solar power generation. 

• Hybrid models used in photovoltaic power forecasting, i.e. models that combine more than one 

forecasting method or model, have generally shown better performance. This success of hybrid models 

can be attributed to the fact that they combine the strengths of different forecasting methods to 

compensate for weaknesses and improve forecasting accuracy. However, building and optimizing 

hybrid models is often complex and requires a precise modeling and evaluation process. 

• An important aspect is often overlooked in the literature, especially about the reliability and accuracy 

of forecasts: forecast intervals and forecast errors. In many studies, forecast intervals and forecast 

errors are not specified. This makes it difficult for researchers to assess the reliability of estimates and 

prevents monitoring changes over time. To increase the quality of studies and the credibility and 

transparency of the scientific knowledge production process, estimation intervals and errors should be 

specified. 

• Photovoltaic power forecasts are critical to improve the efficiency of solar systems and optimize 

energy management. However, it would be useful to present commonly used error scales to assess the 

accuracy of these forecasts, as well as improvement percentages concerning the continuity reference 

model to enable appropriate benchmarking tests. 

3. TEACHING LEARNING BASED OPTIMIZATION ALGORITHM 

TLBO is a meta-heuristic algorithm that simulates the educational impact of an instructor on students in a 

classroom environment. This algorithm operates in two main stages: the teacher phase and the student phase. 

During the teacher phase, the instructor conveys knowledge to students, facilitating their progress. Conversely, 

the student phase models peer-to-peer learning, where students interact to share knowledge among themselves. 

Within the algorithm, the population represents the students and teacher, with the individual yielding the best 

solution taking the role of the class teacher. Initially, a random population is generated, and the individual with 

the highest objective function value is assigned as the teacher. In the teacher phase, this teacher attempts to 

raise the knowledge level of other individuals to match their own. In the student phase, the algorithm models 

student interactions, enabling mutual learning and improvement. This iterative process aims to enhance the 

solution quality generated by the algorithm (Rao et al., 2012; Rao & Patel, 2013). 

• Teacher phase: In this phase, the teacher instructs the students and improves the current average result in the 

nth iteration. The difference in average results is calculated as shown in Equation 1. 
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 ∆𝑀𝑅𝑛 = 𝑟𝑎𝑛𝑑[(𝑁𝑀𝑛) − (𝑇𝐹𝑛 × 𝑀𝑅𝑛)] 𝑤ℎ𝑒𝑟𝑒   𝑇𝐹𝑛 = (
𝑀𝑅𝑛

𝑁𝑀𝑛

) (1) 

Here, NMn represents the new mean, MRn denotes the mean results, and TFn stands for the teaching factor. 

Based on the obtained difference in mean results, the current solution is updated according to Equation 2. 

 𝑋𝑛𝑒𝑤𝑛 = 𝑋𝑜𝑙𝑑𝑛 + ∆𝑀𝑅𝑛 (2) 

Xnewn, given in Equation 2, is the updated value of Xoldn, and all Xnewn values are stored and passed as input 

to the student phase. 

• Student phase: The knowledge of any student increases through interaction with other students, and the 

students' knowledge is updated according to Equations 3 and 4. 

 𝑋𝑛𝑒𝑤𝑛 = 𝑋𝑜𝑙𝑑𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑘 − 𝑋𝑚),   𝑖𝑓 𝑓(𝑋𝑘) < 𝑓(𝑋𝑚) (3) 

 𝑋𝑛𝑒𝑤𝑛 = 𝑋𝑜𝑙𝑑𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚 − 𝑋𝑘),   𝑖𝑓 𝑓(𝑋𝑚) < 𝑓(𝑋𝑘) (4) 

Here, Xk and Xm are randomly selected students, and the updated student value with the better fitness value is 

retained. The flow diagram of the TLBO method is given in Figure 3. 

4. RESULTS OF THE PREDICTION OF THE PHOTOVOLTAIC POWER WITH THE TLBO 

ALGORITHM 

In this study, solar radiation, particulate matter (PM10), ambient temperature, and historical power data were 

used for daily photovoltaic power forecasting. The dataset used in the study consists of daily recorded data 

over a three-month period. The TLBO algorithm was applied in the forecasting process, and the forecast results 

were analyzed separately for the training and test subsets. To evaluate the accuracy of the forecasting model, 

mean absolute percentage error (MAPE) and root mean square error (RMSE) metrics were employed. The 

MAPE value was calculated using Equation 5, while the RMSE value was calculated using Equation 6. 

 MAPE =
1

𝑛
∑ (

𝑡i − 𝑝i

𝑡i

)

𝑛

i=1

× 100 (5) 

 RMSE = √
1

𝑛
∑(𝑡i − 𝑝i)

2

𝑛

i=1

 (6) 

In the aforementioned equations, ti signifies the actual measured value, pi symbolizes the anticipated value, 

and n represents the total number of data points. The forecasting model was trained on a dataset consisting of 

70% of the total data and evaluated on a test dataset comprising the remaining 30%. 

Using the dataset, the MAPE values for the TLBO-based forecasting study were found to be 7.20% and 3.87% 

for the training and test subsets, respectively, while the RMSE values were 325.64 kW and 270.32 kW. The 

TLBO predictions and actual power production for the training and test subsets are shown in Figure 4. 

For the forecast made using the entire dataset with the TLBO model, the MAPE value was found to be 6.18%, 

and the RMSE value was 241.02 kW. Figure 5 presents the actual power production and the TLBO model's 

forecast results for the complete dataset. 
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Figure 3. TLBO flow diagram  
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(a) 

 
(b) 

Figure 4. a) Training subset, b) Test subset 
 

 

Figure 5. TLBO prediction and actual power generation 
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The proposed TLBO forecasting model has yielded highly successful results in photovoltaic power forecasting. 

The MAPE and RMSE values obtained from the forecast are presented in Table 6. 

Table 6. MAPE and RMSE values 

 MAPE (%) RMSE (kW) 

Data Set (training) 7.20 325.64 

Data Set (test) 3.87 270.32 

Data Set (all) 6.18 241.02 

5. CONCLUSION 

The objective of this study is to develop a TLBO model for the purpose of forecasting photovoltaic power 

generation. The developed TLBO model demonstrated highly successful performance in photovoltaic power 

forecasting, as evidenced by a MAPE of 3.87% and a RMSE of 270.32 kW obtained for the test subset. These 

performance results indicate that the TLBO algorithm makes a significant contribution, particularly in 

supporting day-ahead planning and ensuring the stability of power systems. By enabling the prediction of 

fluctuations in solar energy-based power generation, the model contributes to maintaining grid balance more 

effectively. In addition, the proposed TLBO model has enabled more accurate and stable results in photovoltaic 

power forecasting, establishing itself as an alternative method to other forecasting models in the literature. 

Future studies are encouraged to examine the performance of the TLBO model in more detail by considering 

different forecasting horizons, seasonal variations, and diverse input data. In this context, comparing the model 

under various climate conditions and with different data sources is deemed essential to assess its 

generalizability and potential for broader application. 
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