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1. Introduction 
The Frenet frame has not always been sufficient for 

solving all problems in studies involving curves and 

surfaces. Therefore, alternative frames have been 

developed to address such issues. While the Serret-

Frenet frame is a useful tool for the analysis of curves, it 

cannot be defined at points where the second derivative 

of the curve is zero. Moreover, at these points, the 

principal normal vector may exhibit discontinuities, 

making computations more challenging. To address these 

problems, Sasai introduced the modified orthogonal 

frame as an alternative to the Frenet frame. In this frame, 

the curvature function is used to multiply each Frenet 

vector, resulting in a new set of vectors. This approach 

allows the application of a new formula corresponding to 

the Frenet differentiation equations for the 

aforementioned cases (Sasai, 1984). 

In computer-aided design (CAGD), the envelope of a 

moving sphere with a changeable radius is called a canal 

surface, and it is commonly used for surface and solid 

modeling. The combination of the spheres that are 

determined by the radius function 𝑟(𝑠) and the center 

curve 𝛼(𝑠) yields the canal surface 𝜓(𝑠, 𝛳). ψ canal 

surface can be parameterized as follows (equation 1): 
 

𝜓(𝑠, 𝛳)

= 𝛼(𝑠) − 𝑟′(𝑠)𝑟(𝑠)𝑡(𝑠) 
(1) 

±𝑟(𝑠)√1− 𝑟′(𝑠)2(cos𝛳𝑛(𝑠) + sin𝛳𝑏(𝑠)) 

where 𝛼(𝑠) is a unit speed curve parameterized by arc-

lenght s. {𝑡, 𝑛, 𝑏} is the Frenet frame of 𝛼(𝑠) (Xu et al., 

2006 ). These canal surfaces are known as tubular 

surfaces if the radius function 𝑟(𝑠) = 𝑟. In addition, it is 

useful for reconstructing shapes, planning robot motion, 

creating blending surfaces, and observing long, thin 

things like pipes, ropes, poles, even living intestines. 

Research on tube surfaces in various frames and spaces 

can be found in (Karacan et al., 2006; Karacan and Yayli, 

2008; Yüksel et al., 2011; Karacan and Tuncer, 2013; 

Saad et al., 2024). 

The theory of curves has been one of the main fields of 

study in differential geometry (Bükçü and Karacan, 2016; 

Mazlum et al., 2022; Yüksel et al., 2022). Involute-evolute 

curves, adjoint curves, Bertrand curves, Manheimm 

curves, and helices have been the most common 

intersecting curves in recent years. As stated in (Kühnel 

and Hunt, 2005), an adjoint curve is the integral of a 

binormal vector of a curve 𝛼(𝑠) with any parameter s. In 

numerous applications, including number theory, coding 

theory, algebraic geometry, etc., the adjoint curves are 

crucial. Moreover, adjoint curves are the subject of 

numerous investigations in (Nurkan et al., 2019; Arıkan 

and Nurkan, 2020; Cakmak and Şahin, 2022; Nurkan and 

Güven, 2022). 

This study examines tubular surfaces whose centers are 

adjoint curves defined with respect to the modified 
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orthogonal frame in E. First, the modified orthogonal 

frame is used to create the adjoint curve and establish 

the link between the Frenet vectors (Arıkan and Nurkan, 

2020). Next, the geometric properties of these surfaces 

are obtained, along with some significant findings. 

Finally, using an example, we demonstrate the 

visualizations of provided surfaces and tubular surfaces. 

 

2. Materials and Methods 
The mathematical definitions for the curvature and 

torsion of a curve in 𝐸3are provided in (O’Neill, 1996). To 

begin, let us consider unit-speed curves. A key element in 

the differential geometry of a curve is the use of the 

Frenet frame field {𝑡, 𝑛, 𝑏}. The Frenet differentiation 

formulas, constructed using these vectors, are expressed 

as follows: 

𝑡′ = 𝜅𝑛, 𝑛′ = −𝜅t + 𝜏𝑏, 𝑏′ = −𝜏𝑛, 

where κ, 𝜏  represent the first and second curvature of 

the curve, respectively. 

Let 𝛼: 𝐼 → 𝐸3 be a space curve. We assume that the 

curvature κ of α is not identically zero. As a result, the 

modified orthogonal frame {𝑇, 𝑁, 𝐵} with the curvature κ 

of the curve α can be defined. Now we define the 

modified orthogonal frame {𝑇, 𝑁, 𝐵} as follows:  

𝑇 =
𝑑𝛼

𝑑𝑠
 , 𝑁 =

𝑑𝑇

𝑑𝑠
 , 𝐵 = 𝑇 ∧ 𝑁. 

The following represents the relationships between the 

modified orthogonal frame {𝑇, 𝑁, 𝐵} and Frenet frame 

{𝑡, 𝑛, 𝑏}
 
at non-zero positions of κ  

𝑇 = 𝑡, 𝑁 = 𝜅𝑛,𝐵 = 𝜅𝑏. 

The modified orthogonal frame {𝑇, 𝑁,𝐵} satisfies the 

below relations 

〈𝑁, 𝑇〉 = 〈𝐵, 𝑇〉 = 〈𝐵,𝑁〉 = 0, 

〈𝑇, 𝑇〉 = 1, 〈𝑁,𝑁〉 = 〈𝐵, 𝐵〉 = 𝜅2, 

where ,   is the inner product. Due to these equations, 

the derivative equations of the modified orthogonal 

frame {𝑇,𝑁, 𝐵} are given as  

𝑇′ = 𝑁, 

𝑁′ = −𝜅2𝑇 +
𝜅′

𝜅
𝑁 + 𝜏𝐵, 

𝐵′ = −𝜏𝑁 +
𝜅′

𝜅
𝐵 , 

where 𝜏 =
𝑑𝑒𝑡(𝛼′,𝛼′′,𝛼′′′)

𝜅2
 is the torsion of α (Bükçü and 

Karacan, 2016). 

Now let's talk about the modified orthogonal modified 

frame with torsion. 

The following represents the relationships between the 

modified orthogonal frame with torsion {𝑇, 𝑁, 𝐵} and 

Frenet frame {𝑡, 𝑛, 𝑏}
 
at non-zero positions of  

𝑇 = 𝑡, 𝑁 = 𝜏𝑛, 𝐵 = 𝜏𝑏  

where  

〈𝑁, 𝑇〉 = 〈𝐵, 𝑇〉 = 〈𝐵,𝑁〉 = 0, 

〈𝑇, 𝑇〉 = 1, 〈𝑁,𝑁〉 = 〈𝐵, 𝐵〉 = 𝜏2. 

In this case, the following modified orthogonal frame 

with torsion hold: 

𝑇′ =
𝜅

𝜏
𝑁, 

𝑁′ = −𝜅𝜏𝑇 +
𝜏′

𝜏
𝑁 + 𝜏𝐵, 

𝐵′ = −𝜏𝑁 +
𝜏′

𝜏
𝐵 (Bükçü and Karacan, 2016). 

Let 𝜓(𝑠, 𝛳) a surface in E and 𝑈(𝑠, 𝛳) be the typical unit 

normal vector field on 𝜓(𝑠, 𝛳) defined by 𝑈 =
𝜓𝑠×𝜓𝛳
‖𝜓𝑠×𝜓𝛳‖

 

where 𝜓𝑠 =
𝜕𝜓

𝜕𝑠
 and 𝜓𝛳 =

𝜕𝜓

𝜕𝛳
 are the tangent vectors of 

𝜓(𝑠,𝛳). Then, the first fundamental form I of 𝜓(𝑠, 𝛳) is 

defined by 
𝐼 = 𝑔11𝑑𝑠

2 + 2𝑔12𝑑𝑠𝑑𝛳 + 𝑔22𝑑𝛳
2 

where 

𝑔11 = 〈𝜓𝑠 , 𝜓𝑠〉,  𝑔12 = 〈𝜓𝑠 , 𝜓𝛳〉, 𝑔22 = 〈𝜓𝛳 , 𝜓𝛳〉. 

The second fundamental form of 𝜓(𝑠, 𝛳) can be defined 

as follows: 

𝐼𝐼 = ℎ11𝑑𝑠
2 + 2ℎ12𝑑𝑠𝑑𝛳 + ℎ22𝑑𝛳

2  

where 

ℎ11 = 〈𝜓𝑠𝑠 , 𝑈〉,  ℎ12 = 〈𝜓𝑠 , 𝑈〉, 𝑔22 = 〈𝜓𝛳𝛳, 𝑈〉 

The mean curvature H and the Gaussian curvature K are 

both represented as follows: 

𝐾 =
ℎ11ℎ22−ℎ12

2

𝑔11𝑔22−𝑔12
2  , 𝐻 =

ℎ11𝑔22−2𝑔12ℎ12+𝑔11ℎ22

2(𝑔11𝑔22−𝑔12
2 )

 .                          (1) 

Definition 1; Let 𝛼 be a unit speed curve in 𝐸3 with 𝜏 ≠ 0 

and the Frenet frame of 𝛼 be {𝑇𝛼  , 𝑁𝛼 , 𝐵𝛼}. The adjoint 

curve of α is defined in as 

𝛽(𝑠) = ∫ 𝐵𝛼
𝑠

𝑠0
(𝑠)𝑑𝑠 (Kühnel and Hunt, 2005). 

Theorem 1; Let α be a curve with an arc length parameter 

s and β be the adjoint curve of α. If the Frenet vectors of α 

and β are {𝑇𝛼  , 𝑁𝛼 , 𝐵𝛼} and {𝑇𝛽 , 𝑁𝛽 , 𝐵𝛽} the curvature and 

torsion are {𝜅𝛼  , 𝜏𝛼} and {𝜅𝛽  , 𝜏𝛽} respectively, then the 

following relations hold (Arıkan and Nurkan, 2020): 

{

𝑇𝛽 = 𝐵𝛼 ,

𝑁𝛽 = −𝑁𝛼
𝐵𝛽 = 𝑇𝛼 ,

 , 𝜅𝛽 = 𝜏𝛼 , 𝜏𝛽 = 𝜅𝛼 .  

Theorem 2; Let α be a unit speed regular curve in 𝐸3 and 

β is the adjoint curve of α according to the modified 

orthogonal frame with curvature. If the modified 

orthogonal frames of α and β are {𝑇𝛼  ,𝑁𝛼 , 𝐵𝛼} and 

{𝑇𝛽  , 𝑁𝛽 , 𝐵𝛽} , the curvature and torsion are {𝜅𝛼  , 𝜏𝛼} and 

{𝜅𝛽  , 𝜏𝛽} respectively, the following relations hold (Arıkan 

and Nurkan, 2020): 

{
 
 

 
 𝑇𝛽 = (

1

𝜅𝛼
)𝐵𝛼 ,

𝑁𝛽 = −(
𝜏𝛼
𝜅𝛼
2)𝑁𝛼

𝐵𝛽 = (
𝜏𝛼
𝜅𝛼
) 𝑇𝛼 ,

 , 𝜅𝛽 =
𝜏𝛼

𝜅𝛼
 , 𝜏𝛽 = 1. 

Theorem 3; Let 𝛼 be a unit speed regular curve in 𝐸3 and 

𝛽 is the adjoint curve of the modified orthogonal frame 

with torsion. If the modified orthogonal frames of 𝛼 and 

𝛽 are {𝑇𝛼 , 𝑁𝛼 , 𝐵𝛼} and  {𝑇𝛽, 𝑁𝛽 , 𝐵𝛽} the curvature and 

torsion are {𝜅𝛼 , 𝜏𝛼} and {𝜅𝛽 , 𝜏𝛽} respectively, 

consequently, the following relationships exist (Arıkan 

and Nurkan, 2020): 
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{
  
 

  
 𝑇𝛽 = (

1

𝜏𝛼
)𝐵𝛼

𝑁𝛼 = −(
𝜅𝛼

𝜏𝛼
2)𝑁𝛼 ,

𝐵𝛼 = (
𝜅𝛼
𝜏𝛼
) ,

 𝜅𝛽 = 1, 𝜏𝛽 =
𝜅𝛼
𝜏𝛼
.   

Definition 2; If Փ(𝑋,𝑌) = 0 , where the Jacobi function 

Փ is defined as 𝑋𝑆𝑌𝛳 − 𝑌𝑆𝑋𝛳 = 0 then the pair 

(𝑋, 𝑌), 𝑋 ≠ 𝑌 of the curvatures K, H of a tubular surface 

𝜓(𝑠,𝛳) is said to be a (𝑋, 𝑌)-Weingarten surface (Kim et 

al., 2016). 

Definition 3; If 𝜓(𝑠,𝛳) satisfies the following relation, 

then the pair (𝑋, 𝑌), 𝑋 ≠ 𝑌 of the curvatures K, H of the 

tubular surface 𝜓(𝑠, 𝛳) is said to be a (𝑋, 𝑌)-linear 

Weingarten surface: 

𝑎1𝑋 + 𝑎2𝑌 = 𝑎3 

where 𝑎1, 𝑎2, 𝑎3  ∈  ℝ and ( 𝑎1, 𝑎2, 𝑎3) ≠ (0,0,0) (López, 

2009). 

3. Results 
3.1. Tubular Surfaces Whose Center Curve is an 

Adjoint Curve in a Modified Orthogonal Frame with 

Curvature 

The tubular surface whose center curve adjoint curve β of 

the α using to the modified orthogonal frame with 

curvature in 𝐸3 is examined in this section. Concerning 

the modified orthogonal frame, the parameterization of 

the tubular surface exists. 
 

𝜓(𝑠, 𝛳) = 𝛼(𝑠) +
𝑟

𝜅(𝑠)
(cos𝛳𝑁(𝑠) + sin 𝛳𝐵(𝑠)) (2) 

 

where 𝑟 = 𝑐𝑜𝑛𝑠𝑡. and 𝜅 ≠ 0 . The center curve β of the 

curve α is considered to be the adjoint curve of this 

surface. So from equation 2 we get 

𝜓(𝑠, 𝛳) = 𝛽(𝑠) +
𝑟

𝜅(𝑠)
(cos𝛳𝑁𝛽(𝑠) + sin 𝛳𝐵𝛽(𝑠)) 

 𝜓(𝑠,𝛳) = ∫ 𝐵𝛼
𝑠

𝑠0
(𝑠)𝑑𝑠 + 𝑟 (−

cos𝛳

𝜅𝛼(𝑠)
𝑁𝛼(𝑠) + sin𝛳𝑇𝛼(𝑠)).  

The derivatives according to s and θ concerning the 

tubular surface 𝜓(𝑠, 𝛳) are (equation 3) 

𝜓𝑠 = (𝑟𝜅𝛼 cos 𝛳)𝑇𝛼 + (𝑟 sin 𝛳)𝑁𝛼 + (1 −
𝑟𝜏𝛼

𝜅𝛼
cos𝛳)𝐵𝛼 , 

𝜓𝛳 = (𝑟 cos𝛳)𝑇𝛼 + (
𝑟

𝜅𝛼
sin 𝛳)𝑁𝛼  , 

 

𝜓𝑠𝑠 = (𝑟𝜅𝛼
′ cos𝛳 − 𝑟𝜅𝛼

2 sin𝛳)𝑇𝛼 

+((𝑟𝜅𝛼 cos 𝛳 + 𝑟
𝜅𝛼
′

𝜅𝛼
sin 𝛳) − (

𝜏𝛼
𝜅𝛼
) (𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳))𝑁𝛼  

+(
𝑟𝜏𝛼 sin𝛳+

𝑟 cos𝛳

𝜅𝛼
2
(𝜏𝛼𝜅𝛼′ − 𝜅𝛼𝜏𝛼′ ) 

+
𝜅𝛼
′

𝜅𝛼
2
(𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳)

)𝐵𝛼 , 

 

𝜓𝛳𝛳 = (−𝑟 sin𝛳)𝑇𝛼 + (
𝑟

𝜅𝛼
cos𝛳)𝑁𝛼 . 

(3) 

 

Hence we obtain 

𝑔11 = 𝑟
2𝜅𝛼

2 + 𝑟2𝜏𝛼
2 cos2𝛳 + 𝜅𝛼

2 − 2𝑟 𝜅𝛼𝜏𝛼 cos𝛳, 
𝑔12 = 𝑟

2𝜅𝛼  , 

𝑔12 = 𝑟
2, 

𝑔 = 𝑔11𝑔22−𝑔12
2 = 𝑟2(𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳)2 ≠ 0.  

The normal vector field the unit U is provided by 

(equation 4) 
 

𝑈(𝑠) = −sin𝛳𝑇𝛼 +
1

𝜅𝛼
cos𝛳𝑁𝛼  

(4) 

 

as well as the second fundamental form's coefficients, 

which are as follows: 

ℎ11 = 𝑟𝜅𝛼
2 − 𝜏𝛼 cos𝛳 (𝜅𝛼 − 𝑟𝜏𝛼 cos 𝛳), 

ℎ12 = 𝑟𝜅𝛼 , 

ℎ22 = 𝑟, 

from equation 1, the Gaussian and the mean curvatures 

are provided by (equations 5 and 6) 
 

𝐾 = −
𝜏𝛼 cos𝛳

𝑟(𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳)
 

(5) 

 

𝐻 =
𝜅𝛼 − 2𝑟𝜏𝛼 cos𝛳
2𝑟(𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳)

. 
(6) 

 

The mean curvature H and the Gaussian curvature K of 

tubular surface 𝜓(𝑠, 𝛳) satisfy the following relationship 

𝐻 =
1

2
(𝐾𝑟 +

1

𝑟
)                                                                            (7) 

it follows that, the principal curvatures of 𝜓(𝑠,𝛳) are 

obtained as follows: 

𝑘1 =
1

𝑟
 , 𝑘2 = 𝐾𝑟.   

Proposition 1; In Euclidean 3-space, let 𝜓(𝑠, 𝛳) be a 

tubular surface. 𝜓(𝑠, 𝛳) is not a flat surface in such case. 

Proof; We presume that 𝜓(𝑠,𝛳) is flat. In this case, 𝜅 = 0 

from equation 5, we get 

 −𝜏𝛼 cos 𝛳 = 0, since 𝜏𝛼 ≠ 0 from the definition of 

adjoint curve 𝜓(𝑠, 𝛳) the tube surface is not flat. 

Proposition 2; In Euclidean 3-space, let 𝜓(𝑠, 𝛳) be a 

tubular surface. Then 𝜓(𝑠, 𝛳) is minimal if and only if 

𝑟 =
𝜅𝛼

2𝜏𝛼 cos𝛳
 . 

Proof; Equation 6 provides the result immediately. 

Theorem 1; Let 𝜓(𝑠, 𝛳) be a tubular surface with a 

modified orthogonal frame in 𝐸3. Then 

i) Asymptotic curves are s-parameter curves of 

𝜓(𝑠,𝛳) if and only if 𝑟 =
𝜏𝛼 𝜅𝛼cos𝛳
𝜏𝛼
2 cos2𝛳+𝜅𝛼

2  .  

ii) Asymptotic curves cannot be 𝜃-parameter curves of  

𝜓(𝑠,𝛳). 

Proof; We can infer from the definition of asymptotic 

curves that  

〈𝜓𝑠𝑠 , 𝑈〉 = 0 , 〈𝜓𝛳𝛳 , 𝑈〉 = 0 

i) From equations 3 and 4, we can get 

ℎ11 = 𝑟𝜅𝛼
2 − 𝜏𝛼 cos𝛳 (𝜅𝛼 − 𝑟𝜏𝛼 cos 𝛳) = 0  

𝑟 =
𝜏𝛼 𝜅𝛼cos𝛳
𝜏𝛼
2 cos2𝛳+𝜅𝛼

2 .   

ii) Since ℎ22 ≠ 0, 𝜃-parameter curves of the 

𝜓(𝑠,𝛳) cannot be asymptotic. 

Theorem 2; In E, let 𝜓(𝑠,𝛳) be a tubular surface with a 

modified orthogonal frame. Then 

i) Geodesic curves cannot be s-parameter curves of  

𝜓(𝑠,𝛳). 

ii) The curves for the 𝜃 -parameter of 𝜓(𝑠,𝛳) 

are geodesic. 

Proof; In order to define the parameter curves s and, it is 

necessary to provide the values of 𝜓𝑠𝑠 × 𝑈 = 0 and 

𝜓𝛳𝛳 × 𝑈 = 0 for the geodesic curves. 
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i) According to equations 3 and 4, we obtain 

𝜓𝑠𝑠 × 𝑈 = (𝑟𝜏𝛼
′ cos2 𝛳 − 𝑟 cos𝛳 sin𝛳 𝜅𝛼𝜏𝛼 − 𝜅𝛼′ cos𝛳)𝑇𝛼 

+(𝑟 cos𝛳 sin𝛳
𝜏𝛼
′

𝜅𝛼
− 𝑟 sin2 𝛳𝜏𝛼−

𝜅𝛼
′

𝜅𝛼
sin𝛳)𝑁𝛼  

+(𝑟
𝜅𝛼
′

𝜅𝛼
− 𝜏𝛼 sin𝛳 + 𝑟 sin 𝛳 cos𝛳

𝜏𝛼
2

𝜅𝛼
)𝐵𝛼 . 

Since 𝑇𝛼  ,𝑁𝛼 and 𝐵𝛼 are linearly independent then, 

𝜓𝑠𝑠 × 𝑈 = 0 if and only if 𝜅𝛼 = 𝑐𝑜𝑛𝑠𝑡.𝜏𝛼 = 0. 

Nevertheless, given 𝜏𝛼 ≠ 0, 𝜓(𝑠,𝛳) cannot be a geodesic 

curve. 

ii) Furthermore, we obtain 𝜓𝛳𝛳 × 𝑈 = 0 from equations 

3 and 4. 𝜃-parameter curves are geodesic curves. 

We now define the mean curvature and the partial 

derivative of the Gaussian curvature of the tubular 

surface as follows: 

𝐾𝑠 = −
cos𝛳(𝜅𝛼𝜏𝛼

′ − 𝜏𝛼𝜅𝛼
′ )

𝑟(𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳)
2  , 

𝐻𝑠 = −
cos𝛳(𝜅𝛼𝜏𝛼

′ − 𝜏𝛼𝜅𝛼
′ )

2(𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳)
2 , 

𝐾𝛳 =
𝜅𝛼𝜏𝛼 sin𝛳

𝑟(𝜅𝛼−𝑟𝜏𝛼 cos𝛳)
2
 ,  

𝐻𝛳 =
𝜅𝛼𝜏𝛼 sin𝛳

2(𝜅𝛼−𝑟𝜏𝛼 cos𝛳)
2
 .                                                               (8) 

 

Theorem 3; Let 𝜓(𝑠, 𝛳) be a tubular surface with a 

modified orthogonal frame in E. The surface 𝜓(𝑠,𝛳) is a 

( 𝐾,𝐻 ) −Weingarten surface. 

Proof; If the derivatives of the mean curvature and the 

Gaussian curvature of the surface 𝜓(𝑠, 𝛳), given by 

equation 8, are substituted into the Jacobi equation  

𝐻𝑠𝐾𝛳−𝐻𝛳𝐾𝑠 = 0 

is obtained. Therefore, the surface 𝜓(𝑠, 𝛳) is a 

( 𝐾, 𝐻 ) −Weingarten surface. 

Theorem 4; Let 𝜓(𝑠, 𝛳) be a tubular surface in 𝔼3 

equipped with a modified orthogonal frame. If 𝜓 is 

( 𝐾,𝐻 ) -linear Weingarten surface, then for 𝑎3 = 1 , the 

following relations hold 𝑎1 = −3𝑟
2 and 𝑎2 = 2𝑟 , hold. 

Proof; Let us assume that ψ is a ( 𝐾,𝐻 ) -linear 

Weingarten surface. In this case, the following equation is 

satisfied  

𝑎1𝐾 + 𝑎2𝐻 = 1    

where  𝑎1, 𝑎2 ∈  ℝ 
and ( 𝑎1, 𝑎2) ≠ 0 . From equation 7, 

the following relations are derived  

2𝑟 − 𝑎2 =
−𝜏𝛼 cos𝛳

𝜅𝛼 − 𝑟𝜏𝛼 cos𝛳
(𝑎2𝑟 + 2𝑎1) 

and 

2𝜏𝛼 cos𝛳 (𝑟2 + 𝑎2𝑟 + 𝑎1) + 𝜅𝛼(2𝑟 − 𝑎2) = 0 . 

Consequently, 𝑎1 = −3𝑟
2 is obtained when 𝑎2 = 2𝑟. 

Example 1; The parametric equation of curve 𝛼1 is 

provided by 

𝛼1(𝑠) = (cos (
√7𝑠

4
) , sin(

√7𝑠

4
) ,
3𝑠

4
) . 

The parametric equation of the adjoint curve of α is given 

by 

𝛽1(𝑠) = (−
3√7

16
cos (

√7

4
𝑠) , −

3√7

16
 sin (

√7

4
𝑠) ,−

7√7

64
𝑠 ).  

The tube surface whose center curve is 𝛼1 according to 

the modified orthogonal frame with curvature is given by 

𝜓𝛼1(𝑠, 𝛳) = (
3

4
sin 𝛳 sin (

√7

4
𝑠) − cos𝛳 cos (

√7

4
𝑠) +

+cos(
√7

4
𝑠) , − cos𝛳 sin (

√7

4
𝑠) −

3

4
sin 𝛳 cos (

√7

4
𝑠) 

+sin (
√7

4
𝑠) , 

√7

4
sin 𝛳 +

3𝑠

4
) . 

The graph of the tube surface, whose center curve is 

according to the modified orthogonal frame with 

curvature, is illustrated in Figure 1. 

 

 
 

Figure 1 The tube surface, whose center curve is 𝛼1 
according to the modified orthogonal frame with curvature. 

 

The tube surface whose center curve is 𝛽1(𝑠) according 

to the modified orthogonal frame with curvature is given 

by 

𝜓𝛽1(𝑠)(𝑠, 𝛳) = (−
3√7

16
cos (

√7𝑠

4
) + cos 𝛳 cos (

√7𝑠

4
) 

−
√7

4
sin𝛳 sin (

√7𝑠

4
) , −

3√7

16
sin (

√7𝑠

4
) + cos𝛳 sin (

√7𝑠

4
) 
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+
√7

4
sin𝛳 cos(

√7𝑠

4
) ,
7√7

64
𝑠 +

3

4
sin𝛳) 

 

The graph of the tube surface 𝜓𝛽1(𝑠)(𝑠, 𝛳) whose center 

curve is 𝛽1(𝑠) according to the modified orthogonal 

frame with curvature is illustrated in Figure 2. 

 

 
 

Figure 2. The tube surface whose center curve is 𝛽1 

according to the modified orthogonal frame with 

curvature. 

 

3.2 Tubular Surfaces Whose Center Curve is Adjoint 

Curve in Modified Orthogonal Frame with Torsion 

This section is dedicated to the analysis of the tubular 

surface whose center curve is the adjoint curve   of the 

 , according to the modified orthogonal frame with 

torsion in 𝐸3. The parameterization of the tubular surface 

exists with respect to the modified orthogonal frame.

  𝑊(𝑠, 𝛳) = 𝛼(𝑠) +
𝑟

𝜏(𝑠)
(cos𝛳𝑁(𝑠) + sin 𝛳𝐵(𝑠))               (9) 

where 𝑟 = 𝑐𝑜𝑛𝑠𝑡. and 𝜏 ≠ 0 . The adjoint curve of this 

surface is defined as the center curve β of the curve α. 

Thus, we derive equation 9 and 

𝑊(𝑠, 𝛳) = 𝛽(𝑠) +
𝑟

𝜅𝛽
(cos𝛳 𝑁𝛽(𝑠) + sin𝛳𝐵𝛽(𝑠)), 

𝑊(𝑠, 𝛳) = ∫ 𝐵𝛼(𝑠)𝑑𝑠 + 𝑟 (−
cos𝛳

𝜏𝛼(𝑠)
𝑁𝛼(𝑠) + sin 𝛳𝑇𝛼(𝑠))

𝑠

𝑠0
, 

𝑊𝑠 = (𝑟𝜅𝛼 cos 𝛳)𝑇𝛼 + (
𝑟𝜅𝛼
𝜏𝛼

sin 𝜃)𝑁𝛼 + (1 − 𝑟 cos 𝜃)𝐵𝛼 , 

𝑊𝜃 = (𝑟 cos 𝜃)𝑇𝛼 + (
𝑟

𝜏𝛼
sin 𝜃)𝑁𝛼 , 

𝑊𝑠𝑠 = (𝑟𝜅𝛼
′ cos 𝜃 − 𝑟𝜅𝛼

2 sin 𝜃)𝑇𝛼 

+(
𝑟𝜅𝛼 cos 𝜃

𝜏𝛼
+
𝑟𝜅𝛼

′ sin 𝜃

𝜏𝛼
− 𝜏𝛼(1 − 𝑟 cos𝜃))𝑁𝛼  

+(𝑟𝜅𝛼
2 sin 𝜃 +

𝜏𝛼
′ (1 − 𝑟 cos𝜃)

𝜏𝛼
)𝐵𝛼  , 

𝑊𝜃𝜃 = (−𝑟 sin 𝜃)𝑇𝛼 + (
𝑟 cos𝜃

𝜏𝛼
)𝐵𝛼.                                      (10) 

Thus, we get at 

𝑔11 = 𝑟
2𝜅𝛼

2 + 𝑟2𝜏𝛼
2 cos2 𝜃 + 𝜏𝛼

2 − 2𝑟𝜏𝛼
2 cos𝜃, 

𝑔12 = 𝑟
2𝜅𝛼 ,   

𝑔22 = 𝑟
2, 

𝑔 = 𝑔11𝑔22 − 𝑔12
2 = 𝑟2𝜏𝛼

2(1 − 𝑟 cos 𝜃)2 ≠ 0. 

The unit normal vector field 𝑈∗ is given by, 

𝑈∗ = −sin𝜃 𝑇𝛼 +
cos𝜃

𝜏𝛼
𝑁𝛼 ,                                                    (11)  

ℎ11 = 𝑟𝜅𝛼
2 − 𝜏𝛼

2 cos 𝜃(1 − 𝑟 cos𝜃), 

ℎ12 = 𝑟𝜅𝛼 , 

ℎ22 = 𝑟.  

According to equations 5 and 6, the mean and the 

Gaussian curvatures are given, respectively, by 

𝐾 = −
cos𝜃

(1−𝑟 cos𝜃)
, 𝐻 =

1−2𝑟 cos𝜃

2𝑟(1−𝑟 cos𝜃)
 .                              (12) 

Proposition 3; In Euclidean 3-space, let 𝑊(𝑠, 𝛳)be a 

tubular surface. 𝑊(𝑠, 𝛳) is not a flat surface in such case. 

Proof; It is similar to Proof 1. 

Proposition 4; In Euclidean 3-space, let 𝑊(𝑠, 𝛳) be a 

tubular surface. Then 𝑊(𝑠, 𝛳) is minimal if and only if  

𝑟 =
1

2sec𝜃
 . 

Proof; Equation 12 provides the result explicitly. 

Theorem 4; Let 𝑊(𝑠, 𝛳) be a tubular surface with a 

modified orthogonal frame in 𝐸3. Then 

i) Asymptotic curves are s-parameter curves of  

𝑊(𝑠, 𝛳) if and only if 𝑟 =
𝜏𝛼
2 cos𝜃

𝜅𝛼
2+𝜏𝛼

2 cos𝜃
 . 

ii) Asymptotic curves cannot be  -parameter curves of  

𝑊(𝑠, 𝛳). 

Proof; We can infer from the definition of asymptotic 

curves that 〈𝑊𝑠𝑠 ,𝑈
∗〉 = 0 , 〈𝑊𝜃𝜃 , 𝑈

∗〉 = 0. 

i) From equations 10 and 11 we obtain results 

𝑟𝜅𝛼
2 − 𝜏𝛼

2 cos 𝜃 (1 − 𝑟 cos 𝜃) = 0  

and  

𝑟 =
𝜏𝛼
2 cos𝜃

𝜏𝛼
2 cos2𝜃+𝜅𝛼

2 . 

ii) Since 𝑟 ≠ 0, θ-parameter curves of the 𝑊(𝑠, 𝛳)  

cannot be asymptotic. 

Theorem 5; Let 𝑊(𝑠, 𝛳) be a tubular surface with 

modified orthogonal frame in 𝐸3 . Then 

i) s-parameter curves of 𝑊 (𝑠, 𝛳) cannot be geodesic  

curves. 

ii) θ- parameter curves of 𝑊(𝑠, 𝛳) are geodesic. 

Proof; According to the definition of the geodesic curve, 

the conditions 𝑊𝑠𝑠 × 𝑈 = 0 and 𝑊𝜃𝜃 × 𝑈 = 0 must be 

satisfied for the s - and θ - parameter curves. 

i) According to equations 10 and 11 we obtain 

𝑊𝑠𝑠 × 𝑈 = (−𝜏𝛼𝑟𝜅𝛼 sin 𝜃 − 𝜏𝛼
′ cos𝜃 (1 − 𝑟 cos 𝜃))𝑇𝛼 

+(
𝜏𝛼
′ (1 − 𝑟 cos 𝜃)

𝜏𝛼
− 𝑟𝜅𝛼 sin

2 𝜃)𝑁𝛼  

+(
𝑟𝜅𝛼

′

𝜏𝛼
− 𝜏𝛼(1− 𝑟 cos 𝜃) sin 𝜃) 𝐵𝛼 

Since 𝑇𝛼 ,𝑁𝛼  and 𝐵𝛼 are linearly independent then, 

𝑊𝑠𝑠 × 𝑈 = 0 
if and only if 𝜅𝛼 = 0, 𝜏𝛼 = 0. Nevertheless, 

given 𝜅𝛼 ≠ 0 , 𝜏𝛼 ≠ 0, 𝑊(𝑠, 𝛳) cannot be a geodesic 

curve. 

ii) Furthermore, we obtain 𝑊𝜃𝜃 × 𝑈 = 0 from  

equations 10 and 11. θ-parameter curves are hence 

geodesic curves. 

We now define the mean curvature 𝐻 and the partial 

derivative of the Gaussian curvature 𝐾 of the tubular 

surface 𝑊(𝑠, 𝛳) as follows 
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𝐾𝑠 = 0,  

𝐾𝜃 =
−sin𝜃

𝑟(1−𝑟 cos𝜃)2
 ,  

𝐻𝑠 = 0, 

𝐻𝜃 =
−sin𝜃

2(1−𝑟 cos𝜃)
  

(13) 

Theorem 6 ; Let 𝑊(𝑠, 𝛳) be a tubular surface with a 

modified orthogonal frame in 𝐸3. The surface 𝑊(𝑠,𝛳) is a 

( 𝐾,𝐻 ) −Weingarten surface. 

Proof; If the derivatives of the mean curvature and the 

Gaussian curvature of the surface 𝑊(𝑠, 𝛳), given by 

equation 13, are substituted into the Jacobi equation  

𝐻𝑠𝐾𝛳−𝐻𝛳𝐾𝑠 = 0 

is obtained. Therefore, the surface 𝑊(𝑠, 𝛳) is a 

( 𝐾, 𝐻 ) −Weingarten surface. 

Theorem 7; Let 𝑊(𝑠, 𝛳) be a tubular surface in 𝔼3 

equipped with a modified orthogonal frame If 𝑊 is 

( 𝐾,𝐻 ) -linear Weingarten surface, then for 𝑎3 = 1 , the 

following relations hold 𝑎1 = −𝑟
2 and 𝑎2 = 2𝑟 , hold. 

Proof; Let us assume that W is a ( 𝐾,𝐻 ) -linear 

Weingarten surface. In this case, the following equation is 

satisfied  

𝑎1𝐾 + 𝑎2𝐻 = 1 

where  𝑎1, 𝑎2 ∈  ℝ 
and ( 𝑎1, 𝑎2) ≠ 0 . From equation 12, 

we have the following relation 

2 cos 𝜃 (−𝑟2 + 𝑎𝑟𝑟 + 𝑎1) + (2𝑟 − 𝑎2) = 0. 

Consequently, 𝑎1 = −𝑟
2 is obtained when 𝑎2 = 2𝑟. 

Example 2; The parametric equation of the curve 𝛼2 is 

given by 

𝛼2(𝑠) = (2 cos (
𝑠

3
) , 2 sin (

𝑠

3
) ,

√5𝑠

3
)  

The parametric equation of the adjoint curve of 𝛼2 is 

given by 

𝛽2(𝑠) = (
5

27
cos (

𝑠

3
) , −

5

27
sin (

𝑠

3
) ,
2√5

27
𝑠) 

The tube surface whose center curve is 𝛼2 according to 

the modified orthogonal frame with torsion is given by 

𝑊𝛼2(𝑠, 𝛳) = (
√5

3
sin𝛳 sin (

𝑠

3
) − cos 𝜃 cos (

𝑠

3
) + 2cos (

𝑠

3
), 

 −cos𝛳 sin (
𝑠

3
) −

√5

3
sin 𝜃 cos (

𝑠

3
) + 2 sin

𝑠

3
, 

 
2

3
sin 𝜃 +

√5𝑠

3
) 

The graph of the tube surface that 𝑊𝛼2(𝑠, 𝛳) whose 

center curve is 𝛼2 according to the modified orthogonal 

frame with torsion is illustrated in Figure 3.  

The tube surface whose center curve is 𝛽2 according to 

the modified orthogonal frame with torsion is given by 

𝑊𝛽2(𝑠, 𝛳) = (−
5

9
cos (

𝑠

3
) + cos 𝜃 cos (

𝑠

3
) −

2

3
sin 𝜃 sin (

𝑠

3
), 

 −
5

9
sin (

𝑠

3
) + cos 𝜃 sin (

𝑠

3
) +

2

3
sin 𝜃 cos (

𝑠

3
), 

 
2√5

27
𝑠 +

√5

3
sin 𝜃) 

The graph of the tube surface that 𝑊𝛽2(𝑠, 𝛳) whose 

center curve is 𝛽2 according to the modified orthogonal 

frame with torsion is illustrated in Figure 4. 

 

 
 

Figure 3. The tube surface, whose center curve is 𝛼2 according to the modified orthogonal frame with torsion. 
 

 
 

Figure 4. The tube surface, whose center curve is 𝛽2 according to the modified orthogonal frame with torsion. 
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4. Discussion 
The geometry of tubular surfaces in a modified 

orthogonal frame was investigated in this work, with 

particular attention to situations in which the center 

curve in Euclidean 3-space is the adjoint curve of another 

curve. By using this method, we were able to determine 

important properties such as Gaussian and mean 

curvature, which showed that the geometric qualities of 

these surfaces, such as minimality and flatness, are 

dependent on certain center curve-related requirements. 

We discovered that the non-zero Gaussian curvature of 

these surfaces prevents them from being flat, and 

minimality is only achievable when the mean curvature is 

zero. Furthermore, we examined the behavior of 

asymptotic and geodesic curves, demonstrating that 

depending on how they relate to curvature and torsion, 

some parameter curves display asymptotic or geodesic 

characteristics. Ultimately, we expanded our knowledge 

of the structural and geometric behavior of these tubular 

surfaces by classifying them as Weingarten surfaces 

under particular circumstances. 

 

5. Conclusion  
In the modified orthogonal frame, tubular surfaces with 

center curves that are adjoint curves are thoroughly 

examined in this work. The importance of the modified 

orthogonal frame in comprehending the specifics of 

tubular surface geometry was highlighted when we 

discovered crucial geometric criteria for the flatness, 

minimality, asymptotic behavior, and geodesicity of these 

surfaces by exact mathematical deductions. Our findings 

show the usefulness of adjoint curves in creating a more 

comprehensive framework for describing tubular 

surfaces by exposing unique characteristics not seen in 

traditional frames. These results provide a more 

thorough understanding of tubular surface geometry, and 

the techniques discussed here could be used for 

additional research in differential geometry, especially in 

situations where the interplay between curvature and 

frame structures is essential. 
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