
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 1, February 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

1

Abstract—Functional Size Measurement (FSM) provides a

ground during software project life-cycle to estimate planning

parameters and track progress. Since it is time-consuming, costly,

and error-prone when functional size is measured manually,

automating the process of measurement has come to the fore. The

literature includes studies that automate FSM from software

artifacts such as requirements specifications, design models, and

software code. In this study we focus on automation of FSM from

software code, and share our experience towards developing a tool

called ‘COSMIC Solver’ for COSMIC FSM of Java Business

Applications (JBAs). The tool automates the following steps: (i)

Eliciting textual representations of UML sequence diagrams from

functional execution traces of a JBA, (ii) tagging of these textual

representations with the help of AspectJ technology to measure

COSMIC functional size, and (iii) calculating functional size of

user scenarios run in the JBA from the information on the tags

according to COSMIC FSM rules. In this paper we explain

features and measurement method of COSMIC Solver (v1.0), and

the share results obtained from functional sizing of an open source

JBA by using the tool.

Index Terms—Functional size, function points, automation, tool,

COSMIC FSM, software code, UML, sequence diagram, AspectJ.

I. INTRODUCTION

INCE ALBRECHT introduced the concept of ‘functional

size’ as a new dimension to size software products [1], it

has been favored important for estimating and tracking cost of

software projects [2, 3]. Widely known for its function point

(FP) metric, functional size can be measured earlier in project

life-cycle and as independent of design technology,

programming language, or developer skills. Because of these

properties, it provides a solid ground to estimate planning

parameters and track progress during software life-cycle. The

term Functional Size Measurement (FSM) has emerged and

been defined as “the process of measuring software’s functional

size derived by quantifying the functional user requirements

that describe what the software shall do in terms of tasks and

services” [4]. Several FSM methods that have been adopted as

ISO standards in the last two decades, which include Mk II FPA

 A. TARHAN, is with Department of Computer Engineering, Hacettepe

University, Ankara, Turkey, (e-mail: atarhan@hacettepe.edu.tr)

M.A. SAĞ, is with Turkish Academic Network and Information Center

(ULAKBIM) of the Scientific and Technological Research Council of Turkey

(TUBITAK), Ankara, Turkey, (e-mail: muhammetalisag@gmail.com)

Manuscript received August 9, 2017; accepted Dec 21, 2017.
DOI: 10.17694/bajece.401986

[5], NESMA FSM [6], FISMA FSM [7], IFPUG FSM [8], and

COSMIC FSM [9]. FSM can be useful to track software

development progress by using earned value based on

functional size [10–13]. Earned value enables software

practitioners to track the actual value achieved (earned) during

the project in comparison to the planned value [14]. Function

points, in this regard, is a valuable metric as the base to calculate

the planned and earned values as independent of programming

language or developer. The benefits of FSM is more prominent

in iterative development [15–17] or agile development [18–20],

where practitioners can identify the amount of functionality

delivered to customer by software releases and create or revise

work plans accordingly. FSM of completed products (e.g.,

software code) can also be useful for software organizations in

building their historical size databases, based on which project

estimations can be developed. Due to mentioned benefits, FSM

is useful for wider and cost-effective adoption of size-based

project management practices by software community.

Since it is significant that functional size be measured

correctly, timely, and practically, automating the process of

FSM has come to the fore as a solution. FSM automation is

claimed to minimize human errors and decrease costs [21–23].

A recent survey on FSM based on code [24] reveals that FSM

is considered an important tool for decision making in software

projects (with agreement of 87% of the respondents). The same

survey indicates that FSM automation is perceived as important

but difficult to realize, and that automating FSM directly from

source code can help measurement specialists and decision

makers. These findings show there is awareness in community

that FSM is a valuable practice but the means (e.g., methods

and tools) to apply it in a useful way, typically as part of daily

project routine, are not yet mature enough. Emerging research

on automated FSM might be helpful to create the base for

effective and efficient (i.e., target-oriented and resource-

economic) adoption of FSM, and narrow the gap between

software project management theory and practice.

The literature includes studies that automate FSM from early

software artifacts such as analysis and design models [25–29]

as well as the ones that automate FSM from software code [23,

30–33]. In this study, we focus on automation of FSM from

software code. In a previous work of ours [32] covered by a

thorough review of studies on this topic [34], we introduced an

automation prototype for COSMIC FSM [9] and evaluated its

accuracy on a toy application that we developed. In this paper

COSMIC Solver: A Tool for Functional Sizing

of Java Business Applications

A. Tarhan, and M.A. Sağ

S

http://www.bajece.com/
mailto:atarhan@hacettepe.edu.tr
mailto:muhammetalisag@gmail.com
https://orcid.org/0000-0003-1466-9605

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 1, February 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

2

we explain features and design of an improved version of the

prototype which has evolved into a tool called COSMIC Solver

(v1.0). We also elaborate on the results from functional sizing

of an open source Java Business Application (JBA) using the

tool, and from the evaluation of measurement accuracy of the

tool with respect to a verification protocol aimed for automated

FSM tools [35].

The remainder of this study is organized as follows. Section

2 provides background on COSMIC FSM and AspectJ. Section

3 summarizes related studies by claiming similarities and

contribution of our proposal in comparison to theirs. Section 4

explains attributes and user requirements of COSMIC Solver as

well as its measurement method and components. Section 5

overviews results from manual and automated functional sizing

of the open source JBA, evaluates the results, and highlights

opportunities for improving the tool. Finally, Section 6 closes

the study by providing general conclusions and plans for future

work.

II. BACKGROUND

A. COSMIC FSM method

ISO/IEC 19761 (COSMIC FSM) [9] defines principles and

rules to decompose a system into layers, and to size layered

software based on a generic software model identifying

functional processes, data groups, and data movements in

response to functional user requirements (FURs).

Functional processes can be defined as independent data

movements of a FUR. A functional process is a series of data

movements of four types:

 Entry (E) moves a data group from a functional user across

the boundary into a functional process;

 Exit (X) moves a data group from a functional process

across the boundary of the application to a functional user;

 Read (R) moves a data group from persistent storage

through a functional process; and

 Write (W) moves a data group lying inside a functional

process to persistent storage.

The COSMIC Function Points (CFP) measurement method

states that the number of data movements is proportional to

functional size of the measured software [36]. FURs are related

with data transfer, transformation, persistence, and data

retrieval. Functional process is the base component of a FUR

and is triggered by events (i.e., an Entry data movement) that

take place in user’s world. It then executes in response to the

triggering event. A functional process includes an Entry data

movement and either a Write or an Exit data movement – i.e.,

it includes at least two data movement types. Each data

movement in a functional process is counted as one CFP.

COSMIC FSM method [36] defines three measurement

phases as we explain in the following paragraphs.

(1) In Measurement Strategy Phase, the purpose and the

scope of measurement, functional users of the application to

measure, and the level of granularity of measurement are

specified. The purpose clarifies why the measurement is done

and for which reason its results will be used. Specification of

measurement purpose is also important for identifying the

scope and the functional users. Scope means the requirements

of the functional users who will be incorporated into the

measurement. Functional users are the users who receive or

send data for a software unit in the defined FURs. Finally, the

level of granularity indicates the detail level at which the

measurement will be done. Measurements should be made at

the same granularity level to compare with each other.

(2) In Mapping Phase, event masses (i.e., functional

processes) that are triggered by the user are identified. Then,

data groups and data qualifications related with these processes

are determined. A data group is the data that provides same

object of interest with a holistic view and that clusters for an ad

hoc query. If the query interacts with multiple object of

interests, number of all interacted object of interests will be

taken into account in calculating CFP.

(3) In Measurement Phase, data movements are detected for

all functional processes, the measurement function is

implemented, and the results are consolidated. Sub-processes

consist of data movements and data manipulations. Data

manipulations are not taken into account within the scope of

COSMIC FSM method. The total size is calculated by

consolidating the data movements. While calculating the

consolidated size; if the same level of granularity is used for

measurement, the values obtained on the basis of functional

processes are summed mathematically. Otherwise, they are

added after they are scaled to the same level.

B. Aspect-oriented programming and AspectJ

Typical enterprise and web applications today have to address

‘concerns’ as security, transactional behavior, and logging. The

subsystems that provide these services can be implemented in a

modular way. However, to use these services, the duplicate

code fragments must be inserted into various places in the

application to invoke them. For example, to produce logs for

certain operations in an application, log writing procedures

must be inserted into the beginning of every method as needed.

Aside from the redundancy issue, it would be difficult and

error-prone to modify or replace this logging approach later,

should that become necessary. In addition, the application code

is mixed up with the code for logging concern, which both

compromises clarity and makes it hard to reuse the code in

another context.

To solve mentioned problems, Aspect-Oriented Program-

ming (AOP) was proposed [37]. AOP addresses the ‘cross-

cutting concerns’ that compromise the modularity of object-

oriented systems by modularizing the concerns as aspects and

by providing mechanisms to combine aspect and object

modules to compose applications [37, 38]. Concerns (or

crosscutting concerns) like logging or authentication, typically

cut across a number of application module boundaries (e.g.,

classes). That is, the points of intersection are defined once, in

one place, making them more understandable, rectifiable, and

usable. The other modules require no modifications to be

advised by the aspects.

It is important to explain four terms in AOP [38] as the key to

our solution in this study:

http://www.bajece.com/

TARHAN AND SAĞ: COSMIC SOLVER – A TOOL FOR FUNCTIONAL SIZING OF JAVA BUSINESS APPLICATIONS

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

3

 Join point is a well-defined point in the execution of an

application.

 Pointcut is a way of specifying a join point by means of

configuration or code. Pointcuts allow a programmer to

specify join points (in the execution of a program like

method call, object instantiation, or variable access) in

program flow.

 Advice is a way of expressing a cross cutting action that

needs to occur. Advices allow a programmer to specify

code to run at a join point matched by a pointcut.

 Weaving consists of executing the aspect advice to

produce only a set of generated classes that have the aspect

implementation code woven into it [38].

The implementation of AOP in Java environment is enabled

by AspectJ as a seamless extension to Java. AspectJ is designed

to encapsulate the previously mentioned crosscutting concerns

and thereby restore overall system modularity. These concerns

or aspects are identified, modularized, independently

developed, and then combined with the main object model in a

structured way to compose the application through weaving

[39]. AspectJ performs weaving during program compilation or

load time. In our proposal, we use load-time weaving (LTW)

which presents an opportunity to work with byte code. As a

result, even though the source code is unreachable, we could

perform weaving operations with LTW. AspectJ LTW

technology is using ‘java agent’, which holds the key to

monitoring and profiling ‘Java Virtual Machine’, and is able to

modify Java classes dynamically as they are being loaded.

While weaving target application at runtime, ‘pointcuts’ catch

specified signature and ‘advices’ decide what to do after the

catch. AspectJ divides an advice into three sections according

to its runtime: The one that runs before its join point, the one

runs after its join point, and the one that runs in the exact place

of (or around) its join point. While generating sequence

diagrams, the use of ‘before’ and ‘after’ advices are sufficient

in our measurement method. In other words, the actions in

advices are being performed before and after the specified ‘join

point’. With qualified pointcuts, javaagent, and AspectJ

technology, we can catch and tag the candidate functional

processes at runtime.

III. RELATED WORK

In this section we summarize related studies that inspired our

proposal in certain features, and highlight similarities and

contribution of our proposal in comparison to theirs. Interested

readers may refer to [34] for a wider set of studies on FSM

automation from software code.

Kusumoto et al. [40] refer to traditional functional size

calculations and evaluate the possibility of automatic

calculation of function points from source code by applying

statistical analysis. By focusing on screen transitions, the

authors propose a method that counts data and transaction

functions of web applications. The study demonstrates the

feasibility of automated measurement of function points from

source code within IFPUG measurement program, and shows

that UML models can be successfully used for FSM. Bévo et

al. [25] map the concepts in UML class diagrams and use case

diagrams onto the abstractions of COSMIC FSM model to

measure functional size based on high-level specifications of

software. Jenner [41] discusses the granularity aspect of use

cases in the proposal of Bévo et al [25]. Each functional process

is represented by a sequence diagram as an adequate abstraction

level of a use case. Both of these proposals focus on finding an

appropriate mapping between UML model elements and FSM

concepts. Levesque et al. [26] also apply COSMIC FSM

method to measure functional size from use case diagrams and

sequence diagrams. The authors group functional processes in

two categories as data movement and manipulation types, and

focus on the deduction of COSMIC functional size by using

actor-object flow diagrams while considering UML message

exchanges.

In our proposal, we have been inspired by the studies of

Jenner [41] and Lévesque et al. [26], which show the feasibility

of mapping between sequence diagrams and COSMIC FSM

concepts. According to Lévesque et al. [26], data movements

can be mapped to messages in a UML sequence diagram and

consequently, it becomes easy to calculate the functional size

by aggregating all messages exchanged in the sequence

diagram.

Our proposal is also in parallel with Kusumoto et al.’s

proposal [40] that is considered successful yet having lack of

elasticity in being generic. We offer a more flexible and

adaptable method in getting the sequence diagrams with the

help of aspect-orientation and AspectJ technology.

Bévo et al. [25] and Jenner [41], on the other hand, provide

different interpretations of a functional process because the

concept of a ‘triggering event’ is not explicitly presented in

UML. Triggering event problem is widely known in UML

assisted FSM methods, and our proposal handles this problem

by finding and tagging the methods of user interface

components in the mapping phase of automated measurement.

In addition, source code or binary code of JBAs can be taken as

input to our proposal for calculating CFP.

IV. COSMIC SOLVER

COSMIC Solver is aimed to automate FSM from software

code of JBAs in accordance to COSMIC FSM method [9]. In

the following sub-sections, we provide an overview of

COSMIC Solver with respect to attributes and user

requirements that we see critical for automation, and explain the

details of automated measurement.

A. Attributes and User Requirements

In a recent study involving the first author [34], a set of

attributes have been proposed for automating COSMIC FSM

from software code based on previous experiences. The

proposed attributes are trigger handling, functional process

identification, external interface definition, data persistence

interface definition, data group identification, domain class

identification, scope identification, and technology

identification. These attributes are described in Table I together

with any support by the current implementation (v1.0) of

COSMIC Solver. Most of the attributes are supported by the

tool, and the only missing attribute is domain class

identification. In addition, functional process identification and

data group identification are embedded in automation software

and cannot be tailored by measurer.

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 1, February 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

4

TABLE I.

ATTRIBUTES OF COSMIC SOLVER FOR FSM AUTOMATION FROM SOFTWARE CODE

Attribute Description Support by COSMIC

Solver (v1.0)

Trigger handling The specific identification of triggering events that start functional processes. √

Functional process

identification

The identification of a functional process which is a unique, cohesive and

independently executable set of data movement types.
√

External interface (E/X)

definition

The identification of external interfaces where information is exchanged with

functional users, and which will be used to catch Entry and Exit data movements.
√

Data persistence (R/W)

interface definition

The identification of data persistence interfaces, which will be used to catch Read

and Write data movements.
√

Data group identification The identification of a data group that is a set of attributes that describe particular

aspect of an object of interest.
√

Domain class

identification

The identification of objects that are of interest to its functional users (i.e., domain

classes) and the exclusion of classes that are implemented for only design

purposes.

Scope identification The identification of measurement boundary and the selection of functional user

requirements to measure.
√

Technology identification The identification of specific architecture and technology of target applications. √

User requirements of COSMIC Solver to measure the

functional size of a JBA are shown in Fig. 1 by a UML use case

diagram that includes three main use cases: (1) Export

Pointcuts, (2) Compile and Run Pointcuts, and (3) Calculate

CFP. The last use case further includes four use cases, which

are Parse Sequence, Process Sequence, Find Duplicate

Sequences, and Find Conflicted Sequences, executed internally

by the tool. The ‘sequence’ here indicates a number of data

movements that make up a functional process. The first two use

cases, “Export Pointcuts” and “Compile and Run Pointcuts”,

serve for preparing the pointcuts for CFP calculation, and

should be carried out consecutively prior to execution of the

third use case “Calculate CFP”. In addition, while the third use

case is typically executed by a Standard User who wants to size

a JBA, the first two use cases should be carried out by a

Measurement Specialist who has knowledge about Java,

AspectJ, and COSMIC FSM method.

Fig. 1. User Requirements of COSMIC Solver by a UML Use Case Diagram

B. Measurement Method

We use black-box approach to automate FSM from source or

binary code of a two- or three-tier JBA without a need to modify

its code. A two- or three-tier architecture means a client-server

architecture in which the presentation, the application

processing and the data management are logically separate

processes. We identify and presume a constant mapping

between technology elements of the JBA and the COSMIC

FSM data movements, but we enable some degree of tailoring

for the measurer based on selected technologies.

The tool first elicits textual representations of user scenarios

from functional execution traces of a JBA, which correspond to

sequence diagrams in Unified Modeling Language (UML). It

then tags these textual representations of execution traces by

considering four data movement types (Entry, Exit, Read, and

Write) in COSMIC FSM method with the help of AOP

concepts, more specifically by using AspectJ technology. It

finally calculates functional size of the user scenarios executed

at runtime from their tagged representations.

The phases and components of the automated measurement

process are shown in Fig. 2. As it is seen from the figure,

COSMIC Solver has two components, which are Tracer and

Calculator. ‘Tracer’ component retrieves sequence diagrams

during dynamic execution of a JBA with the help of AspectJ.

‘Calculator’ component, on the other hand, applies COSMIC

FSM rules to calculate the function points.

Fig. 2. Phases of Automated Measurement Process

We use AspectJ technology and related concepts of pointcuts

and advices in order to set and observe the stated mappings, and

allow the measurer to revise the pointcuts which are indeed the

basic constructs for observing data movements in candidate

Export Pointcuts

Compile and Run

PointcutsMeasurement Specialist

Standard User

Calculate COSMIC

Function Points

Parse

Sequence

Process

Sequence

Find Duplicate

Sequences

Find Conflicted

Sequences

<< include >>

COSMIC Tracer

COSMIC Calculator

Mapping

Phase
Measurement

Phase

Tagged (textual)

representations of

sequence diagrams

Javaagent and

AspectJ pointcuts;

Java Business App.

Functional size of

Java Business App.

in COSMIC FP

http://www.bajece.com/

TARHAN AND SAĞ: COSMIC SOLVER – A TOOL FOR FUNCTIONAL SIZING OF JAVA BUSINESS APPLICATIONS

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

5

functional processes. The pointcuts are created statically in the

measuring software which then monitors the JBA and

calculates its functional size at runtime. AspectJ catches

execution traces of user scenarios and transform these traces

into behavioral specifications by tagging. Tagging is performed

to prepare the execution traces of the scenarios for measuring

CFP according to COSMIC FSM rules. Once the traces are

transformed into textual specifications, CFP is automatically

calculated at runtime for the executed user scenarios.

1) COSMIC Tracer

Tracer component provides a useful framework to capture

interactions (messages) between classes while executing

functional processes. To do that, it uses ‘before’ and ‘after’

advices and pre-defined ‘pointcuts’. Almost half of the

measurement operation is implemented via this component.

Tracer component captures all join point executions and calls,

in order to construct the structured text versions of sequence

diagrams. These executions and calls use some specific method

signatures to get neat and optimal sequence diagrams which do

not contain every system call and execution but include only

required ones that belong to developer space.

In order to get textual representations of sequence diagrams

with tags (e.g., SWING, DIALOG, JDBC) for specifying entry

points, dialog box operations, database calls, and etc., we use

specific method signatures and object references. For example,

to catch JDBC operations we use two pointcut patterns as:

execution(* java.sql.Statement.exec*(..))

call(* java.sql.Statement.exec*(..))

Apparently, a JBA can contain function types other than the

ones specified. To handle them, appropriate pointcuts should be

defined in Tracer component, which is possible by extending its

current implementation. Then, with the help of advices,

specified tags could be appended to support the identification

of data movement types; and a piece of code, which constitutes

an advice, runs at defined join point that is picked out by the

related pointcut.

Kind of an advice determines the behavior of the running

code, and how it interacts with the join point. Using these

advices before and after every call/execution, we can intercept

processes. Then, we call a specific function to write the method

signature as shown in Table II (a). These advices produce

output archetypes given in Table II (b).

TABLE II.

‘BEFORE’ & ‘AFTER’ ASPECT ADVICES AND TRACE LOG

(a
)

A
d

v
ic

es

 before() : jdbcCall() || jdbcExecution() {

 [Start:{tag}>] <print signature> }

 after() : jdbcCall() || jdbcExecution() {

 [End:{tag}>] <print signature> }

(b
)

T
ra

ce
 L

o
g

 <Start:tag>> returnType PackageName. ClassName.

MethodName([Parameters])

 [(if exist)SQL Statement]

 <End:tag>> returnType PackageName. ClassName.

MethodName([Parameters])

As a result, for every user interaction on target JBA, a textual

and tagged representation of a sequence diagram is generated

with the help of pointcuts and advices. The generated sequence

diagram has tree style; in which every node has ‘Start’ and

‘End’ tags and might contain another method call or execution.

This information is processed with Calculator component to

identify functional size in CFP.

2) COSMIC Calculator

Calculator component calculates functional size of the JBA

by applying COSMIC FSM rules to tagged (textual)

representations of UML sequence diagrams. The basic steps to

calculate CFP are (1) Analyze Candidate FURs, (2) Identify

Application Boundary, (3) Evaluate Functional Processes, and

(4) Calculate CFP. We explain the key points for each in the

following paragraphs.

(1) While generating sequence diagrams, there may be

multiple interactions with the same functional processes. This

brings out duplicate sequences that should be ignored.

Occasionally, some functional processes might have the same

trigger but different flows. This causes a more complicated

problem than duplication. If there is a situation like that the

functional size is measured by an approximation approach.

(2) Application boundary indicates the border between the

JBA being measured and external applications or user domain.

It determines which functions will be included or not in

counting the function points. To deal with ‘triggering event’

problem, we specify user interface components of the target

application and search for specific method signatures. For

example, if an application uses Swing or AWT libraries for user

interface, we define events via these interface components as

the starting points of functional processes.

(3) The COSMIC FSM method states that a FUR is

considered as a functional process if it is independently

executable and triggered by an event in the world of functional

users. Using the tags and COSMIC FSM rules, we identify if a

user operation initiates and leads to a functional process.

(4) For each functional process identified, data movement

types are also detected from the tags. CFP is then calculated by

summing the number of data movements for all functional

processes in all FURs.

V. FSM OF AN OPEN SOURCE JBA

Measurement validity of COSMIC Solver was initially tested

for its prototype on a toy (personnel and payment database)

application, and it was found that manual and automated

measurement results were very convergent with an error rate of

1/32 [32]. After the prototype has been evolved into a tool with

some generic features such as creating and compiling pointcuts,

we aimed to evaluate the performance of COSMIC Solver on

an open source JBA that meets measurement constraints of the

tool. Consequently, we performed a case study to answer the

following research questions (RQs):

 RQ-1: How effective is COSMIC Solver in measuring

CFP of an open source JBA?

 RQ-2: How efficient is COSMIC Solver in measuring CFP

of the JBA in comparison to manual measurement?

The steps that we followed to answer these RQs are

explained in the sub-sections below.

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 1, February 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

6

A. Application Selection and Information Gathering

We searched for JBAs in the open source software

repositories such as GitHub, SourceForge and Google Code,

and identified candidate applications that meet the measure-

ment constraints of COSMIC Solver.

More specifically, we checked the following criteria: The

application has been developed in Java programming language

and by using Java Platform, Standard Edition (Java SE) 1.5 or

later; the application has a two- or three-tier software

architecture; the user interface layer of the application has been

developed using Java Swing; the application is rich in Create,

Read, Update, Delete, and List (CRUDL) operations; the

libraries used by the application are compatible with the

standards of Java API for XML-based RPC (JAX-RPC), JPA,

and JDBC; and the application conforms to the principles of the

Software Context Model and Software Generic Model defined

in Appendix D of COSMIC FSM method [36].

TABLE III.

PROPERTIES OF NYAGUA AQUARIUM MANAGEMENT JBA

Operation Platform Runs on every O.S. that can run Java applications

Licence It has GNU GPL v.2 licence; it can be freely used.

Java Version Java SE 1.7

GUI Java Swing

Database SQLITE

JDBC/Persistence Native JDBC

JDBC URL jdbc:sqlite://localhost/<file>

Dev. Platform NetBeans Standard IDE

Libraries Used sqlite-jdbc-3.7; Jcalendar – 1.4; JDK 1.7

Among the candidate applications identified according to

these criteria, we selected ‘Nyagua Aquarium Management

Application’ in the SourceForge repository. General and

technical properties of the application, which best satisfied

expected criteria, are shown in Table III. The application has its

source code and no other documents in the repository.

Therefore, manual identification of functional processes and

CFP measurement were done by navigating use cases of the

application at runtime, and reviewing its source code.

B. Manual and Automated Measurement Results

To frame and equate the scopes of manual and automated

measurements, we navigated user interfaces of the Nyagua

Aquarium JBA prior to measurement, and identified use case

groups (FURs) and objects of interest candidate for COSMIC

FSM. As a result, we selected 12 FURs for functional sizing to

verify operational performance of COSMIC Solver.

An expert who succeeded COSMIC foundation examination

manually measured CFP of Nyagua Aquarium JBA in the

framed scope, and recorded manual measurement effort. Then,

we automatically measured CFP of the JBA for the same scope

by using COSMIC Solver, and recorded the duration of

automated measurement. Table IV summarizes manual and

automated measurement results. Manually measured size was

356 CFP regarding 76 functional processes identified in 12

FURs targeted for FSM, and duration of manual measurement

was 6 hours. For automated measurement, we ran 12 FURs in

the framed scope, and calculated COSMIC functional size as

273 CFP regarding 49 functional processes identified

automatically by COSMIC Solver in almost 30 minutes. The

duration of automated measurement included the time for

preparing the application for automated measurement (e.g.,

creating and compiling the pointcuts, and transforming the

application to include AspectJ features).

TABLE IV.

RESULTS OF MANUAL AND AUTOMATED MEASUREMENTS

 Manually Automated

FURs measured 12 FURs 12 FURs

Functional Processes identified 76 Func.Proc. 49 Func.Proc.

CFP measured 356 CFP 273 CFP

Duration of measurement 6 hours ½ hours

C. Evaluation of Results

We compared the results of manual and automated

measurements by following a verification protocol proposed by

Soubra et al. [35] for tools that automate COSMIC FSM method

[9]. The aim of the protocol is to ensure that the whole

measurement chain produces the right measurement results.

According to the protocol, measurement accuracy of a tool is

verified in three phases. Phase-1 requires a comparison of

measurement results (i.e., CFP) calculated by tool and obtained

manually. Phase-2 requires a detailed comparison of these

results (e.g., at levels of functional processes and data

movement types) to understand reasons of deviations, if any.

Phase-3 requires verification of automation tool and inputs to

determine which module of the tool is responsible for error.

In Phase 1 of the protocol, we compared the results of manual

and automated measurements. We found that in the former we

measured 356 CFP while in the latter COSMIC Solver

calculated 273 CFP, which resulted in an automation accuracy

rate of 77%. This is less than 94% in [23] and %92 in [31], both

requiring measurement code insertion into JBA, and 81% in

[33] that does not handle triggering events. Since our tool

measures CFP from the JBA as is without a need for code

insertion and handles the triggering events, we consider its rate

successful as an initial result on a third party JBA.

In Phase 2 of the protocol, we compared the number of

functional processes and data movements and found that neither

of them were identical. The number of functional processes

identified was 76 in manual measurement and 49 in automated

measurement. Table V shows the FURs and objects of interest

in the sample frame, together with numbers of functional

processes and CFP values that were measured manually and by

using the tool. As observed from the table, the manual and

automated numbers of functional processes or CFP values

showed deviation for each FUR.

In Phase-3 of the protocol, we investigated the reasons of

these deviations. From the logs of manual and automated

measurements it was clear that Tracer component was only

partially effective in tagging the manually identified functional

processes. This was mainly because: (i) we could not define all

pointcuts to handle the variety in the triggering events (e.g., for

retrieving hidden objects of interest), and (ii) Tracer component

could not identify different functional processes started by the

same triggering event. These findings indicated a need for

reviewing and improving the mapping phase of the automation,

especially for the pre-defined pointcuts.

http://www.bajece.com/

TARHAN AND SAĞ: COSMIC SOLVER – A TOOL FOR FUNCTIONAL SIZING OF JAVA BUSINESS APPLICATIONS

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

7

TABLE V.

USE CASE GROUPS, OBJECTS OF INTEREST, AND FUNCTIONAL PROCESSES FOR COSMIC FSM

Use case group

(FUR) No

Object of Interest # Functional Processes Calculated CFP Manually Calculated CFP for Automatically

Identified Functional Processes Manual Automated Manual Automated

1 Aquarium 4 4 18 18 15

2 Maintenance 6 4 29 21 21

3 FishBase 7 4 30 24 17

4 InvertBase 7 4 30 27 21

5 PlantBase 7 4 30 24 21

6 Fish 7 4 34 16 23

7 Plant 7 4 34 16 23

8 Inverts 7 4 34 16 23

9 Expense 6 4 49 30 24

10 Reading 5 4 22 16 19

11 Device 7 4 25 16 16

12 Schedule 6 5 21 37 15

TOTAL 76 49 356 273 238

To understand the reasons of deviations in the level of data

movement types, we also manually calculated CFP values in the

scope of automatically identified functional processes, as

shown in the rightmost column of Table V. The totals of

manually and automatically measured CFP values in this

narrowed scope were closer (238 and 273 with an automation

accuracy rate of %85) but still not equal. This finding implied

that there were also deviations in the types or numbers of the

data movements identified. When we checked the logs of

manual and automated measurements we noticed that for the

same functional processes, a greater number of Read and Exit

data movements were identified in some cases (e.g., for

retrieving objects of interest that were part of the main ones,

and returning error messages or reports) in manual measure-

ment. In some other cases, however, Calculator component

counted a greater number of Entry and Exit data movements,

which was led by redundant tagging via Tracer component.

 Based on the findings and related investigations mentioned

above, we identified the following opportunities for improving

COSMIC Solver at the end of the case study implementation:

 Pointcuts pre-defined in COSMIC Solver (SWING, JDBC,

JPA, DIALOG, JAX-RPC) should be revised and extended

to catch additional function types (e.g., standard file read/

write operations, and seldom used Swing components);

 Tracer component should be revised to handle: (i) different

functional processes initiated by the same triggering event,

(ii) hidden objects of interest that are part of the main ones

(e.g., aquarium image); and (iii) redundant tagging of

Entry/Exit data movements.

D. Potential Threats to Validity

There is a number of validity threads to discuss for the case

study implementation, as suggested by Yin [42]. Construct

validity is related to identifying correct operational measures

and avoiding subjective judgements. We followed COSMIC

FSM method [36] in measurements and used a three-stage

verification protocol [35] to cope with subjectivity. Internal

validity requires seeking to establish a causal relationship as

distinguished from a spurious one. The fact that the second

author who developed COSMIC Solver participated in the case

study can be considered an internal thread, and its effect on

evaluation was mitigated by supervision of the case study by

the first author and also by manual measurement of CFP by a

COSMIC FSM expert. External validity is about defining the

context to which a study’s findings can be generalized. We

cannot yet argue that COSMIC Solver would be effective and

efficient in FSM of other JBAs, and we plan further studies to

deal with this threat. As the last test, reliability is related to

repeatability of the operations in a case study, which is possible

by following the steps in sub-sections 5.A thru 5.C.

VI. CONCLUSION

The progressing state of FSM in software industry reveal the

utmost importance of its automation. Consequently, in this

article we focused on automated measurement of CFP from

software code of JBAs. We introduced a tool called COSMIC

Solver, presented the results of a case study on evaluating the

performance of the tool from sizing of an open source JBA, and

identified opportunities for improving the tool.

For the case study, we identified two research questions. RQ-

1 was related to the effectiveness of COSMIC Solver in

measuring CFP of the JBA. The evaluation results showed that

CFPs measured manually and automatically were convergent

by 77%. This indicated that COSMIC Solver was effective in

functional sizing of the JBA when compared to the features and

success rates of the previous proposals (e.g., [23], [31] and

[33]). The RQ-2 was related to the efficiency of the tool in

measuring CFP in comparison to manual measurement. The

durations recorded during manual and automated measure-

ments were 6 hours and 30 minutes, respectively. Therefore,

COSMIC Solver was 12 times more efficient than manual

measurement in functional sizing of the JBA.

In future work, we plan to revise the current version (1.0) of

the tool by considering improvement opportunities identified by

the case study, and the requirements of Automated Function

Points specification [43]. We also plan to perform further case

studies, especially to cope with the validity threads regarding

the generalizability of the automated measurement results and

the independence of the measurer.

ACKNOWLEDGMENT

The authors thank Onat Ege Adalı for manual functional

sizing of Nyagua Aquarium Management Application.

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 1, February 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

8

REFERENCES

1. Albrecht AJ (1979) Measuring application development productivity. In:

IBO Conf. Appl. Dev. pp 83–92

2. Jones C (2004) Project Management Practices : Success versus Failure.

Crosstalk 5–9.
3. Jorgensen M, Shepperd M (2007) A Systematic Review of Software

Development Cost Estimation Studies. IEEE Trans Softw Eng 33:33–53.

doi: 10.1109/TSE.2007.256943
4. ISO/IEC (2011) ISO/IEC 14143/1: Information technology – software

measurement – FSM. Part 1 Definition of concepts.

5. ISO/IEC (2002) ISO/IEC 20968: Software engineering - Mk II Function
Point Analysis - Counting Practices Manual.

6. ISO/IEC (2005) ISO/IEC 24570: Software engineering - NESMA

functional size measurement method version 2.1 - Definitions and counting
guidelines for the application of Function Point Analysis.

7. ISO/IEC (2008) ISO/IEC 29881: Information technology – Software and

systems engineering – FiSMA 1.1 functional size measurement method.
8. ISO/IEC (2009) ISO/IEC 20926: Software and systems engineering -

Software measurement - IFPUG functional size measurement method.

9. ISO/IEC (2011) ISO/IEC 19761: Software engineering - COSMIC: A

functional size measurement method.

10. Brandon DM (1998) Earned Value Easily and Effectively. Proj. Manag. J.

29:2
11. Garcia CAL, Hirata CM (2008) Integrating functional metrics, COCOMO

II and earned value analysis for software projects using PMBoK. In: Proc.

2008 ACM Symp. Appl. Comput. - SAC. p 820
12. Jin-hua L, Chang-jiang W, Jing L, Qiong L (2008) Earned value project

management of model-centric software development. In: Wirel. Commun.

Netw. Mob. Comput. WiCOM ’08. 4th Int. Conf. pp 1–4
13. Lu X, Bai X, Wang S (2008) Earned value analysis for software project

based on function point method. In: 2nd Int. Conf. Manag. Sci. Eng.

Manag. pp 301–308
14. Fleming Q, Koppelman J (1998) Earned Value Project Management.

CROSSTALK J Def Softw Eng 19–23. doi: 10.1016/j.drudis.2010.11.015

15. Pow-sang JA, Jolay-vasquez E (2006) An Approach of a Technique for
Effort Estimation of Iterations in Software Projects. In: Proc. 20th Asia-

Pacific Softw. Eng. Conf. pp 367–376

16. Balbin D, Ocrospoma M, Soto E, Antonio Pow-Sang J (2009) TUPUX: An
Estimation Tool for Incremental Software Development Projects. In: AST

2009 Int. E-CONFERENCE Adv. Sci. Technol. Proc. pp 39–43

17. Pow-sang JA, Imbert R (2012) Effort Estimation in Incremental Software
Development Projects Using Function Points. In: Comput. Appl. Softw.

Eng. Disaster Recover. Bus. Contin. pp 458–465

18. Hussain I, Kosseim L, Ormandjieva O (2010) Towards Approximating
COSMIC Functional Size from User Requirements in Agile Development

Processes Using Text Mining. In: Proc. Nat. Lang. Process. Inf. Syst. 15th

Int. Conf. Appl. Nat. Lang. to Inf. Syst. pp 80–91
19. Santana C, Leoneo F, Vasconcelos A, Gusmão C (2011) Using Function

Points in Agile Projects. In: Agil. Process. Softw. Eng. XP. pp 176–191

20. Hussain I, Kosseim L, Ormandjieva O (2013) Approximation of COSMIC
functional size to support early effort estimation in Agile. Data Knowl Eng

85:2–14. doi: 10.1016/j.datak.2012.06.005
21. Robiolo G (2011) How Simple is It to Measure Software Size and

Complexity for an IT Practitioner? Online Inf Rev 33:40–48.

22. Akca AA, Tarhan A (2013) Run-time measurement of COSMIC functional

size for Java business applications: Is it worth the cost? In: Proc. - Jt. Conf.

23rd Int. Work. Softw. Meas. 8th Int. Conf. Softw. Process Prod. Meas.

IWSM-MENSURA 2013. pp 54–59
23. Gonultas R, Tarhan A (2015) Run-Time Calculation of COSMIC

Functional Size via Automatic Installment of Measurement Code into Java

Business Applications. In: Softw. Eng. Adv. Appl. (SEAA), 2015 41st
Euromicro Conf. pp 112–118

24. Huijgens H, Bruntink M, Van Deursen A, et al (2016) An Exploratory

Study on Functional Size Measurement based on Code. In: Int. Conf.
Softw. Syst. Process. pp 56–65

25. Bévo V, Lévesque G, Abran A (1999) Application de la méthode FFP à

partir d’une spécification selon la notation UML : COMPTE RENDU DES
PREMIERS ESSAIS D’APPLICATION ET QUESTIONS. In: Proc. 9th

Int. Work. Softw. Meas. pp 230–242

26. Levesque G, Bevo V, Cao DT (2008) Estimating software size with UML
models. In: Proc. C3S2E Conf. pp 81–87

27. Lavazza L, Del Bianco V (2009) A case study in COSMIC functional size

measurement: The rice cooker revisited. In: LNCS 5891. pp 101–121

28. Fehlmann TM, Kranich E (2011) COSMIC Functional Sizing based on

UML Sequence Diagrams. In: Proceedigns Metr. 2011. p 16
29. Bianco V, Lavazza L, Liu G, Morasca S (2013) Model-based Simplified

Functional Size Measurement – an Experimental Evaluation with COSMIC

Function Points. In: Proc. EESSMOD@MoDELS. pp 13–22
30. Ho VT, Abran A (1999) A Framework for Automatic Function Point

Counting from Source Code. In: Proc. IWSM. pp 249–255

31. Akca AA, Tarhan A (2012) Run-time Measurement of COSMIC
Functional Size for Java Business Applications: Initial Results. In: 2012 Jt.

Conf. 22nd Int. Work. Softw. Meas. 2012 Seventh Int. Conf. Softw.

Process Prod. Meas. pp 226–231
32. Sag MA, Tarhan A (2014) Measuring COSMIC software size from

functional execution traces of java business applications. In: Proc. - 2014

Jt. Conf. Int. Work. Softw. Meas. IWSM 2014 Int. Conf. Softw. Process
Prod. Meas. Mensura 2014. pp 272–281

33. Demirel H, Özkan B (2015) Üç Katmanlı Nesne-İlişkisel Eşleme Mimarisi

İçin Otomatik Fonksiyonel Büyüklük Ölçümü (Automated Functional Size
Measurement for Three-Tiered Architecture Object-Relational Mapping) -

in Turkish. In: Proc. 9th Natl. Softw. Eng. Symp. (9. Ulus. Yazilim

Mühendı̇slı̇ğı̇ Sempozyumu -UYMS). pp 242–256
34. Tarhan A, Baris O, Icoz GC (2016) A Proposal on Requirements for

COSMIC FSM Automation from Source Code. In: Iwsm-Mensura, 5-7 Oct

2016, Berlin. pp 195–200
35. Soubra H, Abran A, Ramdane-Cherif A (2014) Verifying the accuracy of

automation tools for the measurement of software with COSMIC - ISO

19761 including an AUTOSAR-based example and a case study. Proc -
2014 Jt Conf Int Work Softw Meas IWSM 2014 Int Conf Softw Process

Prod Meas Mensura 2014 23–31. doi: 10.1109/IWSM.Mensura.2014.26
36. Abran A, Fagg P, Woodward C (2015) The COSMIC Functional Size

Measurement Method, Version 4.0.1. 98.

37. Kiczales G, Lamping J, Mendhekar A, et al (1997) Aspect Oriented
Programming. In: Ak\csit M, Matsuoka S (eds) Proc. 11th Eur. Conf.

Object-Oriented Program. Springer Berlin Heidelberg, Berlin, Heidelberg,

pp 220–242
38. Wang Y, Zhao J (2007) Specifying pointcuts in AspectJ. In: Proc. - Int.

Comput. Softw. Appl. Conf. pp 5–10

39. Paton K (1999) Automatic Function Point Counting Using Static and
Dynamic Code Analysis. In: Int. Work. Softw. Meas. p 6

40. Kusumoto S, Imagawa M, Inoue K, et al (2002) Function point

measurement from Java programs. In: Proc. Int. Conf. Softw. Eng. pp 576–
582

41. Jenner MS (2001) COSMIC-FFP 2.0 and UML: Estimation of the Size of

a System Specified in UML - Problems of Granularity. In: Proc. 4th Eur.
Conf. Soft. Meas. ICT Control. pp 173–184

42. Yin RK (2013) Case Study Research: Design and Methods. Sage

Publications, Inc; 5th ed.
43. OMG (2014) Automated Function Points (AFP). 32.

BIOGRAPHIES

AYÇA TARHAN received the B.S. and M.S. degrees in
computer engineering from Ege University in 1995 and from

Dokuz Eylul University in 1999, and the Ph.D. degree in
information systems from Informatics Institute of Middle East

Technical University (METU) in 2006.

She was a visiting researcher in 2013-2015 in the Department of Industrial
Engineering and Innovation Sciences of Eindhoven University of Technology.

Her research interests include internal and external software quality, software
metrics, software development methodologies, process maturity, and business

process management. Since 2007, she has been working as a Lecturer and an

Assistant Professor in Computer Engineering Department of Hacettepe
University in Ankara, Turkey.

MUHAMMET ALİ SAĞ received the B.S. and M.S.
degrees in computer engineering from Hacettepe University

in 2010 and 2014. In 2010-2012, he worked as a software

engineer and researcher in Software Technologies Research
Institute of the Scientific and Technological Research

Council of Turkey (TUBITAK).

Since 2012, he has been working as a system engineer and researcher in
Turkish Academic Network and Information Center (ULAKBIM) of

TUBITAK.

http://www.bajece.com/

