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Abstract 

The effects of variations in flow field  due to the presence of electromagnetic  rotational forces 

on a transient  incompressible and  electrically conducting fluid flow are sought.  These 

variations result from  interactions between the electric currents with a nonuniform magnetic 

field.  The governing equations are coupled and nonlinear and are discretized using the finite 

difference technique. Numerical results illustrating the development of secondary flows by the 

rotational electromagnetic force field are displayed, as well as the effects on the streamline axial 

velocity profiles by the magnetic pressure number and the flow Reynolds numbers. 

Keywords: finite difference, secondary flows, magnetic pressure number, Reynolds number, coupled and nonlinear 

equations, electromagnetic pressure number. 

 

 NOMENCLATURE 

 B   magnetic field  

 E   electric field intensity 

 f  electromagnetic body force per unit volume 

g gravitational acceleration 

 h magnetic field intensity 

 h  component of the magnetic field intensity in the azimuthal direction 

 j   current density 

 0j  reference current density 

 p  pressure 

 r radial coordinate 

 0r  reference  coordinate 



 1r  radius of aperture 

 2r  radial distance from top of aperture to upper wall 

 R dimensionless radial coordinate 

 eR  Reynolds number 

 RB analog of streamlines for current flow 

 t  time coordinate 

 zu   axial velocity 

 0u  reference  velocity 

 U dimensionless axial velocity 

 ru  radial velocity 

 V dimensionless radial velocity 

 z  axial coordinate 

 Z dimensionless axial coordinate 

 Greek Symbols 

   gradient 

 m  magnetic permeability of fluid medium 

   kinematic viscosity 

   stream function 

  dimensionless stream function 

   density 

   dimensionless time 

    dimensionless vorticity 

    magnetic permeability 

    electrical conductivity 



   = magnetic pressure number 

 Subscripts 

 i,j node counters in axial and radial directions 

   

1. INTRODUCTION 

Magnetohyroynamics (MHD) deals with the interaction between  electrically-conducting 

fluids and   applied electromagnetic fields. The coupling between the two fields results in 

some exciting physics among which are; the development of secondary flows due to the 

presence of  rotational force fields, the development of electric current due to  the  

interaction of  the magnetic field and a conducting fluid, and  the generation of the 

Lorentz force  arising from the presence of a current and a magnetic field. The effect of 

this force is dynamical, because it acts on the conducting fluid and modifies its motion.  

The motion in turn modifies the field, which also modifies the motion.  

The description of MHD flows involves the solution of  the equations of fluid dynamics, 

the so called Navier-Stokes equations, and the equations of electrodynamics. These two 

equations are mutually coupled via the Lorentz force, and the Ohm’s Law;  hence  it is 

useful to understand  the influence of an externally generated body force on a conducting 

fluid in various dimensions for time dependent applications. 

The conversion of  electrical energy directly into a body force, defines  the 

magnetohydrodynamic concept .Fundamental to this,  is the interaction of an 

electromagnetic field  and  conducting fluid which may be  gas or liquid . From a unified 

viewpoint, plasma physics can be considered  a special case of magnetohydrodynamics 

because of its strong dependence on  the kinetic theory fluid model,  involving gases in 

the plasma regime. However for the purposes of this study,  our emphasis will be 

concentrated more on the  electromagnetic-fluid interaction model. 

MHD has always attracted  a keen research interest. The stimulus for  much of this 

interest lies in the desire to further understand the influence of electric and magnetic 

fields on heat and momentum transfer as they affect  fluid flow.  There are a couple of  

applications of  MHD that hold great potential for future use for example energy 

conversion devices, flight and energy control of space re-entry vehicles,   nuclear fusion 

control, electricity generation, etc.  In a coal-fired MHD power generator, gas produced 

by combusting coal expands through a nozzle and interacts with a magnetic field to 

produce electricity.  The MHD power generator  is beginning to take on an added 

importance because of the current global energy crisis and environmental pollution.  A 

conducting fluid   moves across a magnetic field  and in the process generates electrical 



energy which is tapped by making suitable connections to an external load . Some 

obvious advantages arising from this type of power generation include less pollution, and  

cheaper operational costs. Also, the reliable prediction of MHD flows coupled with 

strong magnetic fields is a key factor for the design of liquid metal blankets  for use in  

fusion reactors. 

It has been shown that the passage of electric current through a flowing conducting fluid 

radically alters the flow profile(Chow and Uberoi [1)]. Uberoi[2] adopted a linear 

analysis to study the effect of an axial current on the motion of an incompressible 

inviscid fluid through an insulated axisymmetric tube of varying cross-sectional area. The 

slowing down of the central flow when approaching the tube contraction was attributed to 

the electromagnetic pinch effect. For example, when draining  a current-carrying fluid 

from the apex of a conical tube, only the fluid in the narrow region near the wall can go 

through the apex. The oncoming flow along the tube axis experiences rapid deceleration, 

that forces the fluid to become stagnant before reaching the throat (Narain and Uberoi[3]). 

This type of flow was found to result in  recirculation   downstream of the stagnation 

point. 

Given the vast range of MHD applications and the variability of the dimensionless 

numbers involved; it is not possible to arrive at  complete numerical or analytical   

solutions of the governing differential equations. Hence the challenge  lies in developing 

both numerical and analytical techniques to deal with each problem depending on the 

physics and accompanying rigor. 

The flow of conducting fluid in pipes in the presence  of electromagnetic forces has been 

studied analytically by various authors. A good account of this can be found in  Sherclif 

[4], Di Pizza and Buhler[5]. Uberoi and  Chow[6] reported solutions for large scale 

motions in electrical discharges. Subsequent work on channel flow can be found in the 

thesis by Ritter[7],and the papers by Chamkha[8,9,10], Onyejekwe[11]. 

Pantokratoras[12], studied the fully developed flow between parallel plates in an 

electrically conducting fluid  under the action of  induced magnetic field for the case 

where  both the magnetic and electric fields are situated on the lower plate. Making some 

reasonable assumptions, he  obtained one-dimensional exact analytical solutions for the 

velocity, flow rate, and wall shear stress at the plates for weakly electrically conducting 

fluids. His results though restricted  in scope, could be used as adequate starting point 

from more complex considerations of MHD flows. The application of MHD to 

microfluidic devices is another blossoming area of research. The magnetohydrodynamic 

(MHD) pumping provides an efficient, cheap, reliable and easily controllable  method for 

pumping various liquids for the purposes of testing samples of blood, DNA and drugs in 

nano or microscales. Kabbani et al.[13] proposed approximate solutions for the velocity 

profile of steady incompressible MHD flows in a  rectangular microchannel driven by 



Lorentz force. Their solutions were found to compare favorably with existing 

computational and analytical results. 

 In the work reported herein, we present numerical solutions governing  a laminar 

electrically conducting viscous fluid through a horizontal tube connected to an electrical 

field . Such an electrical field is created by applying potential differences across a couple 

of screen electrodes placed at different positions in the nonconducting tube (Fig. 1).   We 

apply the no-slip boundary conditions at the bounding walls  to track the vorticities 

generated by  the rotational body forces as well those generated by the solid walls. Both 

the modification of the originally flow field by the rotational force field  as well as the 

development of MHD flow  at various stages are  of primary interest as well as the 

influence of the magnetic pressure number on the development of  secondary flows. 

2. PROBLEM FORMULATION 

We consider  a  circular tube with screen electrodes positioned at the entrance and middle 

of the tube.  A conducting fluid can move freely through the end electrodes. Both of them 

are  separated  by the same distance z0  from the center of the tube. The tube axis is at the 

center of the duct and its axis is parallel to the side wall and orthogonal to the streamwise 

direction [Fig. 1].  A converging and diverging current flow is obtained by applying 

potential  differences across the  electrodes.   A coordinate system is used with the origin 

positioned at the center of the circular tube, and the coordinates r, and z are aligned 

respectively along the channel height and width. The channel surface can be taken as 

nonconducting. It is our goal to determine the flow and  electromagnetic fields as well as 

secondary flows that can exist for this configuration, given the appropriate governing 

differential equations, initial and boundary conditions. 

On the assumptions that (a) fluid flow is incompressible (b)  the induced magnetic field  

is negligibly smaller than the applied magnetic field and hence much smaller than the 

total magnetic field B .  This is because the magnetic Reynolds number is considered 

small. (c) Both the displacement current and the free charge density are also considered 

negligible. (d) The Lorenz force is the only body force on the fluid (e) the velocity of 

flow is regarded as too small compared to the velocity of light as a consequence of this 

relativistic effects are ignored. The governing differential equations of motion for an 

incompressible electrically conducting fluid in a tube can be expressed together with  the 

Maxwell equations in the following form 

 

 

When an electric current is passed through the  conducting fluid, a magnetic field is 

generated and a current density J transmits through the fluid.  Relativistic effects are 



ignored for cases where the velocity of flow is  small compared  to the velocity of light. 

For steady state, even if the fluid were moving, the electromagnetic equations can be 

written in the form: 
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The system of Maxwell equations can be written in the form: 




        


, 0, , 0
B
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Ohm’s law can be written as: 

   3j E u B      

 The body force term or the Lorentz force is given by:   mf j B . It not only  

represents the  force per unit volume  that  accounts for the coupling between the fluid  



motion and the magnetic field, but also contributes in no small measure to the interesting 

physics of MHD flows.  

 Passage of electric current through a fluid  will set the fluid in motion since in general, 

the potential; pressure forces can not be balanced by the rotational electromagnetic forces. 

Because of the axisymmetric geometry of tubular flow, the streamfunction can be utilized 

to satisfy the continuity equation, and is expressed as  
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After carrying out the chores for nondimensionalization, the governing equations are 

given as:  
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An upwind scheme is used to handle  the nonlinear convection terms in equation (5d). It  would 

seem as if the computational overhead  associated with the governing equations will be quite 

intense, however the computational rigor is simplified if  we  take into consideration the 

symmetrical nature of the electromagnetic flow and find the solution  in the 

region  0 0z z   to the left of the central electrode and use the mirror image for the right of 

the electrode. This however does not apply to a net flow through the tube where the whole 

geometry is considered because  the flow pattern should  not be symmetric  about a center point.   

 Our first consideration, involves the fluid dynamics of  an unsteady flow  of an electrically 

conducting viscous fluid through orifices positioned  on the left  and right hand sides ( 1z   ) of 

an insulated tube (Fig.1) . The tube openings at the left and the tight sides  are positioned at 



distances 00.2r  from the centerline. No-slip boundary conditions are set up at the tube walls, and 

by assuming that the flow is purely axial, we impose a zero perpendicular velocity (V=0) at  

entrance and exit.  Boundary conditions for the stream functions comprise, 0   along the tube 

axis,  and along the wall 1 2  ,  at the entrance and exit 0Z    respectively. We assume 

uniform flow through the tube axis. As a consequence, the axial velocity in this region is 

specified as: 2

,1 ,22i iU h .   

Equations (5a) and (5b) as defined by the conservation of mass, show a similarity between the 

electromagnetic flow term RB and  the stream function  . This allows for constant values of RB 

to behave like streamfunction.  At the tube centerline and top wall,  RB = 0, and RB=0.5 

respectively. For  the centrally placed electrode, 1 00 R r r  ,   0RB Z    ,  and  for  

1 0 1 0r r R r r     RB=0.5 and at  the left orifice  0 0 , 0Z z r RB Z     .  Vorticity is 

specified at zero at the walls as well its derivative with respect to the horizontal direction at the 

entrance and exit  are both given zero values.   

To set up the initial flow conditions, uniform flow for  a unit axial velocity is assumed.  The fluid 

can not remain stationary in the presence of  a rotational electromagnetic body force and a 

predominantly axial motion is motivated by an electromagnetic force per unit volume mf B  

set up in the tube.  It should be noted that the this body force is rotational and can not be 

balanced by viscous forces unless at steady state 

The numerical strategy for solving this problem are enumerated as follows: 

Non dimensional electrode  and radial sizes of 1 0 0 00.1, 1r r and z r    together with a spatial 

increment of h= 0.1 are chosen. The governing differential equations are replaced by appropriate  

difference equations. Time and spatial coordinates are approximated by forward differencing in 

time and  central differencing in space. Iterative procedures are adopted to approximate 

equations (5b) , (5c) and (5d). Two additional grid lines at the entrance and exit are deployed to 

handle derivative boundary conditions. The unsteady nonlinear  equations together with the 

given boundary conditions are solved using an implicit,  iterative  finite difference scheme 

similar to the one described in Soundalgekar et al.[14].Square meshes are chosen to cover the 

problem domain.  Since the absolute dimensionless distance between the central electrode and 

the inlet or exit is unity, the each grid has  a value of 
 

1
1n 

.  After a series of trial, a 21x11 

grid was chosen for computation for a time step 0.01  . 

RB   is computed by solving equation (5c) iteratively to satisfy the boundary conditions. The RB  

scalar field gives us an idea of the  ‘streamlines of the current flow’ in the problem domain. 

Having obtained RB ,  the influence of the Lorentz force on the conducting fluid is determined 



by  computing the source term 
R Z


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B B
   in equation(5d) for all interior grid points, where 

the magnetic pressure number is given as :   
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The flow profile is determined by assuming a uniform flow of unit dimensionless speed and 

integrating equation (5a) for all the grid points. Since the flow field unlike the electromagnetic 

filed is not symmetrical, we have to pay due cognizance to the boundary conditions at the two 

ends of the tube containing the orifices.  At any instant in time, the velocity and vorticity 

distributions are obtained from  the conditions at the previous time step, eventhough at the 

beginning, they are obtained from a prescribed initial conditions. Streamfunction are computed 

based on  the vorticity distribution by solving equation(5b). Velocity components are computed 

based on equation (5a)  once  the values of the streamfunction are known.  These are again used 

to determine the vorticity field in the interior region for the next time step; and their boundary 

values updated appropriately. The same process is repeated at each of the time steps until the 

time counter reaches an apriorily  specified value of maximum time or the computed scalar field 

satisfies the criterion for steady state. Our numerical results will then represent steady state 

profiles  induced by an unsteady converging-diverging current field .  

A second numerical experimentation involves replacing the orifices with  two large screen 

electrodes covering the ends of the nonconducting tube. The governing equations for the 

electromagnetic field and the flow  are the same, but appropriate changes are made to the 

boundary conditions to reflect the new configuration. Just like in the first example, the 

electromagnetic field is symmetrical about the central electrode so it is computed  half the 

horizontal direction of the nonconducting tube and then reflected on the other side. Dirichlet 

boundary conditions of 0 and 0.5 Are specified for the tube centerline which constitutes the 

lower boundary as well as the top of the nonconducting tube. This amounts to setting up an 

electromagnetic barrier to the flow.  We assume that the electromagnetic flow  through the 

central electrode is purely horizontal, this is defined by setting up a Neumann or zero flux 

boundary condition at  this point i.e.   0R Z  B  . To guarantee that continuity requirements 

are satisfied, the total current through the central electrode (i.e. from its top the top of the tube) 

should be 0.5. Lastly in order  to ensure that the electromagnetic field  through the central 

electrode should be purely horizontal, a Neuman boundary condition is imposed on the left 

screen electrode (   0R Z  B )   

Since the stream function    is the analog of RB  by virture of equations (5b) and (5c), their 

boundary conditions are essentially the same except that for the flow boundary conditions care 

must be taken to reflect the fact  the flow pattern is no longer symmetrical and hence must have 

to be specified for the entire problem domain. Since the stream function essentially represents 



the  volume of fluid per unit time between a given point and a reference plane, it is given values 

of 0 and 0.5 at the tubes lower boundary (  the centerline) and the top boundary. The vorticity is 

set to zero at all boundaries. Axial flow through the end electrodes is guaranteed by setting the 

derivatives of the stream function and vorticity equal to zero  0Z Z        .  This last 

equation, in combination with equations (5a) and (5b)  determine the  entire flow field ( the 

radial and axial velocity components) in the problem geometry.  For example at the centerline  

flow is purely axial and  0 0V    . At the top wall 1 2 0R      , in terms of the 

velocity components 0, 0V U R     at the top wall. For the two electrodes at the exit and 

inlet 0Z Z        [15]. We need to interpret this in terms of the velocity components.  
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For the U velocity component we differentiate the above condition with respect to R 
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The second condition at the wall, 0Z    can also be written in terms of the velocity 

components by noting that equation (5b) can be expressed as: 
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Equations (6a) to (6d) are approximated by finite differences to read 

 1, 3, 1, 1, 6j j m j m jU U for LHS BC and U for RHS BC e  U   

 

 1, 3, 1, 1, 6j j m j m jV V for LHS BC and V V for RHS BC f      

Vorticity distribution is computed from equation (5d). Along the tube axis and  the walls 

vorticity is set to zero except at the exit, except at the inlet and the exit where the zero gradient 

specification leads to a finite difference approximation expressed as 



 1, 3, 1, 1,, 6j j m j m jand g        

RESULTS AND DISCUSIONS 

Fig.2 shows the profile of  an electric current  through an orifice in the presence of a conducting 

fluid. The electric current converges at the central electrode where higher R B   values are 

registered. This is in agreement with the specified boundary conditions as well as the fact  that 

the tube walls are non-conducting.The central electrode discharges towards the inlet and the exit,  

and produces an  axisymmetrical  configuration of the current streamlines. Electromagnetic 

forces result in this process, and are vital in the modification of the flow of fluid through the tube.  

Fig.3 is the profile of the electromagnetic force field. The rotational electromagnetic force  

associated with the current is displayed as two oppositely revolving force fields. These forces are 

rotational, and are not balanced by body forces arising  from pressure gradient unless at steady 

state. This imbalance gives rise to acceleration that impact on the dynamical features of the 

conducting fluid. 

Rotational forces will most likely develop secondary flows when the vorticity production 

becomes appreciable. It can be observed from Fig. 4 that secondary flow is initiated in the region 

starting from the tip of the orifice and towards the upper wall  at t= 10   for C = 0.3  and for a 

Reynolds number value of 100. Fig. 4 also depicts the axial velocity profiles of descending 

magnitude  as the upper boundary wall is approached.  A zero velocity value corresponds to the 

position of the upper lip of the aperture. As the flow enters and exits through the orifices, it 

impacts the solid boundaries at the inlet and exit. This results in a flow reversal which is 

indicated in the magnitude of the velocity values in this vicinity. 

 Fig. 5a displays the vorticity field generated  with    given as 0.3 and Reynolds number of 50 

at  a time of 2.5. As the fluid enters the orifice, and makes the first impact with the lip of the 

orifice, vorticity is generated along the solid wall leading to the upper boundary. We observe an 

increase of vorticity away from the wall in the axial direction. At this point in time , there is 

more vorticity generation at the upstream of the central electrode than in the downstream as the 

hydrodynamic effects of the fluid contact with the orifice has not been sufficiently felt 

downstream. Fig. 5b displays  the vorticity field at a later time ( t=5). The impact of the vorticity 

produced by the central electrode is observed as the fluid moves towards the exit.  In addition   

contributions from both the solid walls and electromagnetic field are merged, with  those of the 

central electrode. The overall picture , indicates that more vorticity is produced closer to the 

walls and in the vicinity of the  central electrode. 

In the second experiment, it is found that the strength of the magnetic field as indicated by  the 

magnetic pressure number and the size area of the electrode in the middle of the nonconducting 

tube  introduce some vital electromagnetic effects that produce different flow patterns. This is 

demonstrated by the flow streamline patterns along the tube axis (Figs. 6a and 6b). The increase 



in the gradient of the streamlines over the central electrode with respect to the radial coordinate 

indicates an increase of the axial velocity. As a fact , flows of this kind mimic those of ordinary 

flows when they encounter solid bodies as can be seen for flows past a plate aligned normal to 

the freestream direction. However one thing that needs to be pointed out in this case is that  there 

is a continuous decrease in flow as it moves towards the current constriction created by the 

central electrode(Figs 7a and 7b).  Minimum speed is observed just before the central electrode 

as shown by the axial velocity profile at the tube’s centerline. However in order to satisfy 

continuity requirements, the flow accelerates to speeds higher than the entry speed  and having 

made up for the continuity of mass,  it decelerates once again to the speed of entry. This 

occurrence is noticeable as  the value of the magnetic pressure number  is increased. It is 

worthwhile to note that nonuniformities in the flow electromagnetic field enhance their  

interaction  with the dynamics of a conducting fluid  and the eventual generation of  Lorenz 

forces which are basically damping in nature. Figure 7b shows that as the electromagnetic 

pressure number is increased, the flow becomes dispossessed of enough kinetic energy to flow 

over the pressure hump created by the central electrode. This is shown by how far below zero the 

tube’s axial velocity goes  just before it  gets to the central electrode. 

The presence of negative values of axial velocity before the approach to the central electrode is 

indicative of the formation of secondary flows. These observations show in a simple manner how 

the Lorenz force acts as an impediment to flow and as a consequence generates vorticity and 

secondary flows. The value of  plays a significant role in flow configuration . For relatively 

small values of   , the flow is only slightly deviated from its oncoming direction towards the 

central electrode, while an increase in   creates stagnation zones in front of the central electrode. 

Figs. 8a and 8b show that for 0.8  , counter-rotating vortices appears in the region of the 

central electrode. Both diagrams also show that the diffusive-convective transport of vorticity 

involves a considerable portion of the flow domain both upstream and downstream of the central 

electrode. 

The so called ‘pinch effect’ in the vicinity of the obstacle (central electrode) is indicative of a 

non-smooth  transition. It offers a region of intense hydrodynamic activity as  illustrated by a 

deficit in the fluid axial velocity(Figs. 9a and 9b)  and a consequential build up of velocity in the 

radial direction (Figs. 10a and 10b). Figure 11 shows that near the central electrode, the current 

streamlines are distributed uniformly  and directed towards the negative  radial direction  before 

it arrives at the obstacle. This shows that the Lorentz force  opposes fluid motion in this region 

and as a result causes its deviation from the streamwise direction and reverses this direction 

immediately after the obstacle.  

CONCLUSION 

Most of the flows found in scientific literature dealing with  nonuniform magnetic fields are 

related to the magnetohydrodynamics of duct flows in the streamwise direction arising from the 



interaction of electric and magnetic fields[16,17,18].  The current study in addition to this, 

examines the variations arising from orifice flow exposed to an electromagnetic field. In all cases 

this study has further illustrated how  the Lorentz force produced by the interaction of electric 

and magnetic fields slows down the flow and generates vorticity.  This may be of practical 

importance where mixing or heat enhancement is needed. The governing continuum equations 

that comprise the balance laws of mass and momentum are  modified to include the 

electromagnetic effects. These  have been solved numerically using the finite difference methods. 

The correctness of the numerical algorithm developed herein was confirmed by noting the 

closeness of some of the  results with those from literature( Chow[15]).   It is hoped that this 

work  will help in further understanding of flows  produced by localized forces and nonuniform 

magnetic fields and their concomitant effects in providing mixing, vorticity and heat 

enhancement. 

REFERENCES 

1. Chow C-Y and Uberoi,  M.S. Secondary flows due to axisymmetric converging-

diverging electric current, Computers and  Fluids 6 (1978) 115 

2. Uberoi, M.S. Magnetohyerodynamics at small magnetic Reynolds numbers, Phys. Fluids 

5,  (1962) 401 

3. Narain, J.P. and Uberoi, M.S. Magnetohydroynamics of conical flows, Phys. Fluids 14 

(1971) 14 

4. Shercliff, J.A. The flow of conducting fluids in circular pipes under transverse magnetic f 

ields J. Fluid Mech  1 (1956) 644 

5. Di Piazza, I and Buhler,  A general computational approach for magnetohydrodynmic  

flows using CFX code: buoyant flow though through a vertical square  channel,  Fusion 

Technology, 38 (2000) 180 

6. Uberoi, M. S,  and  Chow , C-Y. Large scale motions in electrical discharges, Phys. Fuid 

20 (1977) 1815 

7. Ritter, J.M. Two phase fluid flows in pipes and channels. M.S. Thesis, Tennessee 

Technological Society 1976 

8. Chamkha, A.J. Unsteady laminar  hydromagnetic fluid-particle flow and heat transfer in 

channels and circular pipes, Int. Jnl. Heat and Fluid Flow 21 (2000) 740 

9. Chamkha, A.J. Hydromagnetic two-phase flow in a channel. Int. Jnl. Engnr. Sci. 33 

(1995a) 437 

10. Chamkha, A.J. Time dependent two-phase channel flow due to an oscillating pressure 

gradient. Fluid/Particle Separation Jnl.8, (1995b) 203 



11. Onyejekwe, O.O. Magnetohydrodynamics flow in a tube with centrally placed electrodes. 

Int. Comm. Heat and Mass  Transf.  35, (2008) 1241 

12. Pantokratoras, A. Some new parallel flows in weakly conducting fluids with an 

exponenetially decaying Lorentz force. Math. Probl. in Engnr. 2, (2007) 1 

13. Kabbani, H.S. Martin J.M. Joo, S.W. Qian S Analytical prediction of flow in 

magnetohydrodynamic fluidic devices, 130 (2008) 1 

14. Soundalgekar,  V.M.  Finite  difference analysis of transient free convection with  mass 

transfer on  an isothermal vertical flat plate, Int. Jnl. Engnr. Sci. 19 (1981) 757 

15. Chow, C-Y An introduction to computational fluid mechanics. Publishers: John Wiley 

and sons 1979 396 pages  

16. Altinas, A. and Ozkol I. Magnetohydrodynamic flow of liquid-metal in circular pipes for 

externally heated non heated cases, Jnl. Appld. Fluid Mech. 8(2015) 507 

17. Jing, Z. M.-J. Ni, and Z.-H Wang Numerical study of MHD natural convection of liquid 

metal with wall effects, Num. Heat Transfer 6 (2013) 563 

18. Rao, J.A., Raju, R.S., and Sivsiah S., Finite element solution of heat and mass transfer in 

MHD flow of a viscous fluid past a vertical plate  under oscillatory suction velocity,Jnl. 

Appld. Fluid Mech. 5 (2012) 1 

 

 

 

 

 

 



 

 

 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

 

 



 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

 

 

 



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

 

 



Stream function

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

12

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

 

 



Stream function

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

 

 



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Axial velocity along tube axis

 

 



0 5 10 15 20 25
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Axial velocity along tube axis

 

 



vorticity contour

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

-3

-2

-1

0

1

2

3

4

5

6

7

8

 

 



vorticity contour

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

-15

-10

-5

0

5

10

15

20

 

Horizontal velocity contour

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 



0

5

10

15

0

10

20

30
-3

-2

-1

0

1

2

3

 
Horizontal velocity mesh

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 

 

 



Vertical velocity contour

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 

0

5

10

15

0

10

20

30
-1

-0.5

0

0.5

 
Vertical velocity mesh

 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

 



Current Streamlines

 

 

5 10 15 20
1

2

3

4

5

6

7

8

9

10

11

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

List of figures 

Fig. 1 Problem  configuration 

Fig. 2 Current streamlines  profile for orifice flow 

Fig.  3 Profile of electromagnetic force for orifice flow 

Fig. 4  Secondary flow profile for  orifice flow (  =0.3, Re=100, time=10) 

Fig. 5a Vorticity field for  orifice flow ( =0.3, Re=50, time=2.5) 

Fig. 6a Flow streamline pattern ( =0.3, Re=50) 

Fig. 6b Flow streamline pattern  ( =0.8, Re=50) 

Fig. 7a Axial velocity along tube axis ( =0.3, Re=50) 

Fig. 7b Axial velocity along tube axis ( =0.8, Re=50) 

Fig. 8a Vorticity contour ( =0.8, Re = 50) 

Fig. 8b Vorticity contour ( =0.8, Re=60) 

Fig. 9a Horizontal velocity contour ( =0.8, Re=60) 

Fig.9b Horizontal velocity mesh   ( =0.8, Re =60) 

Fig. 10a Vertical velocity contour ( =0.8, Re=60) 

Fig. 10b Vertical velocity mesh ( =0.8, Re=60) 

Fig. 11 Current streamlines ( =0.3, Re=50) 

 

 

 


