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 ABSTRACT  

 

Breast cancer is a leading cause of mortality among women, with early detection being 

crucial for effective treatment. Mammographic analysis, particularly the identification and 

classification of breast masses, plays a crucial role in early diagnosis. Recent advancements in 

deep learning, particularly Vision Transformers (ViTs), have shown significant potential in 

image classification tasks across various domains, including medical imaging. This study 

evaluates the performance of different Vision Transformer (ViT) models—specifically, base-16, 

small-16, and tiny-16—on a dataset of breast mammography images with masses. We perform 

a comparative analysis of these ViT models to determine their effectiveness in classifying 

mammographic images. By leveraging the self-attention mechanism of ViTs, our approach 

addresses the challenges posed by complex mammographic textures and low contrast in medical 

imaging. The experimental results provide insights into the strengths and limitations of each ViT 

model configuration, contributing to an informed selection of architectures for breast mass 

classification tasks in mammography. This research underscores the potential of ViTs in 

enhancing diagnostic accuracy and serves as a benchmark for future exploration of transformer-

based architectures in the field of medical image classification. 

 

 
Keywords: Breast mammography with masses, Image classification, Vision transformers, 

base-16, small-16, tiny-16.  

 

1 INTRODUCTION 

Cancer is a leading cause of death worldwide; one in two people diagnosed with cancer 

will require treatment, and early detection is the best method of preventing the progression of 
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the disease to a later stage. More than one million cases of breast cancer are diagnosed each 

year, and despite increased survival rates, it remains the leading cause of death among women 

[1]. The small size of malignant masses has been shown to correlate with treatment success, 

making early diagnosis treatments such as mammography critical for improved long-term 

survival and quality of life [2]. Historically, most women would not become aware of their 

cancer until later stages of tumorigenesis due to the delayed onset of symptoms or would 

actively avoid detection as societal attitudes were against early mastectomy [3]. Current cancer 

detection guidelines have begun to promote public health education on their necessity; with 

increased awareness of need comes the resources to support potential candidates. A significant 

portion of individuals fail to access treatment due to systemic inability to pay for or seek care, 

a symptom of false patient belief or clinician default that mammography results in frequent 

benign biopsy and consequently low patient satisfaction [4]. Despite these informational 

hurdles, mammography remains our gold standard in breast screening, potentially changing 

long-term prognoses with easy attainability today. The accessibility of mammography has 

risked malignant tumor diagnosis, allowing those under poverty to live with progressive disease 

until care is both useful and affordable. The message of our work is not to catalog a list of 

diagnoses lost to accessibility, but instead to reinforce the idea that education on available 

services can potentially lead to lifestyle changes that drastically improve public health. 

Recommending yearly checks, even with breast self-exams, can increase the 5-year survival 

rate by 94% for early detection of tumor outgrowth and subsequent apoptosis [5]. Our 

increasing knowledge base on heterogenic carriers and specific risks, coupled with decreased 

test invasiveness, could ensure increased preventive lifestyle changes. Early cancer detection 

guidelines aimed at potentially affected groups of the general public could encourage preventive 

lifestyle changes in those on the brink, who cannot or choose not to earn access to screening 

[6]. 

Breast cancer is a major cause of mortality worldwide. To survive, affected individuals 

must receive timely treatment. Early diagnosis is also associated with reduced treatment toxicity 

and healthcare costs. Because breast-focused physical examination alone often fails to detect 

small lesions early on, imaging technologies have been utilized in cancer screening. Among 

these techniques, mammography has the strongest supporting evidence [7]. Mammography was 

first adopted for convenient use in healthcare screening in the 1960s. Both the sensitivity and 

specificity of the imaging machines have gradually improved. Rates of interval cancers and 

those detected beyond the screen-detected tumor have also marginally decreased. Widespread 
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mammographic screening has thus been adopted in many countries in some form [8]. Because 

mammography is performed in a private area and may have a variety of outcomes, it might be 

intimidating. It is essential to have a basic idea of what mammography entails and how it should 

be performed before attending your appointed days [9]. Traditional mammography machines 

help discover breast cancer as they employ a functioning X-ray system that allows them to 

detect abnormalities in the breast, such as tumors, before the patient or doctor notices them. 

Understanding what takes place when you receive a mammogram can help you make an 

informed decision about your breast health with the information you have. Inform your doctor 

if you have breast implants or have been diagnosed with breast cancer [10]. 

Mammography is an imaging technique focused on breast composition to screen for 

breast cancer and is widely considered the gold standard in the investigation for detecting early 

breast cancer, in addition to its important role in diagnostic evaluation [11]. Breast 

tomosynthesis is essentially an advanced type of mammography that creates three-dimensional 

images of the breast from a two-dimensional radiograph image. The purpose of mammography 

is to provide detailed images of the breast by passing a very low dose of radiation through the 

tissue. Mammography can detect tumors that are not easily felt. It can also identify some non-

cancerous abnormalities, which surgeons may review to know if biopsies are required in the 

future [12]. A screening mammogram is part of regular healthcare. This test is designed to detect 

early signs of breast cancer in women who do not display clinical symptoms or signs of breast 

disease. Diagnostic mammography, on the other hand, is used to investigate tissue changes that 

were detected as a result of a screening mammography or not, or following clinical and/or self-

exam detection [13]. Recently, computer-aided techniques developed to classify mammogram 

images gained a significant place in machine learning world. There can be found numerous 

methods proposed in this regard. This paper implements the Vision Transformers (ViTs) for this 

issue. 

Deep learning has made a breakthrough in many fields, especially in computer vision, 

where convolutional networks have played a major role. Recent years have shown a shift from 

traditional convolutional networks to transformer-based approaches, mostly in language 

processing, as they have outperformed benchmark datasets [14]. ViTs have shown the ability to 

capture spatial information effectively, replacing convolutional networks. Vision Transformers 

have shown the ability to capture spatial information effectively, replacing convolutional 

networks. The extensive analysis of Vision Transformer models and their workings will help us 

improve the performance of such transformer-based models further [15]. Traditional 
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Convolutional Neural Networks (CNNs) have shown impressive results in a variety of tasks, 

from image classification to object segmentation. CNNs are popular in image classification 

tasks because they are translationally invariant and have a compact representation of the input 

image at each layer. For instance, classical networks for image classification may capture 

intricate hierarchical relationships, but they are entirely dependent on convolutional and max-

pool layers, which limit the size of the receptive field. Large images are difficult to process, 

leading to an increased number of layers and parameters, which may result in computational 

inefficiency. Large stride values lose a lot of local features [16]. The transformer architecture is 

a multi-head self-attention mechanism with various layers. Interest in the transformer has 

increased with respect to computer vision applications' best pre-trained model. However, the 

transformer architecture is completely image-agnostic, which means it can stitch data of any 

kind [17]. More information about the architecture is provided in the further sections.  

Mammogram image classification is one of the predominant approaches to detect breast 

cancer. The classification is either performed within different categories of tumors or between 

different types of tumors. In our study, we have differentiated the mammogram images of a 

general mammogram dataset into three classes: benign, malignant, and normal. In the modern 

era, any model requires several types of enhancements to classify a complex real-life dataset 

with high accuracy and minimal time complexity. Therefore, one of the state-of-the-art models 

suffers from this drawback. Thus, in our study, we have performed a comparative analysis 

between various models.  

ViTs have recently gained attention in medical image analysis, offering an alternative to 

traditional CNNs by capturing long-range dependencies through self-attention mechanisms. 

Studies have demonstrated that ViTs can achieve performance comparable to or even surpassing 

that of CNNs in breast cancer detection tasks, as evidenced by research applying ViTs to classify 

breast ultrasound images with promising results [18]. However, CNNs remain prevalent in 

medical imaging due to their efficiency and strong inductive biases, which are advantageous 

for learning spatial hierarchies in complex medical datasets [19]. To leverage the strengths of 

both architectures, hybrid models that combine CNN-based feature extraction with transformer-

based self-attention have been proposed. These hybrid approaches have been applied in various 

studies, such as one that integrated a convolutional backbone with transformer layers to enhance 

feature representation in histopathological images [20]. Another study proposed a token-mixer 

hybrid architecture, demonstrating improved diagnostic accuracy in breast cancer classification 

by effectively balancing local and global feature extraction [21]. Additionally, recent 
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investigations have explored novel training strategies and data augmentation techniques that 

further boost the performance of hybrid models in medical image classification tasks [22]. 

Overall, the integration of transformer-based architectures with traditional CNNs not only 

enhances diagnostic performance but also provides a flexible framework that can adapt to 

different imaging modalities and clinical requirements, marking a significant step forward in 

the evolution of automated breast cancer detection systems. 

Recent advancements in ViT models have significantly enhanced breast cancer detection 

in medical imaging. For instance, a study introduced a ViT-based transfer learning method for 

breast mass classification, achieving an impressive area under the curve (AUC) of 1.0 on both 

ultrasound and mammogram datasets, thereby outperforming traditional CNN-based 

approaches [23]. Another innovative approach, the TokenMixer hybrid architecture, combines 

CNNs and ViTs to improve feature extraction and classification accuracy in histopathological 

image analysis, effectively balancing local and global feature representations [24]. Additionally, 

the NHS has launched the world's largest trial of AI for breast cancer diagnosis, aiming to 

expedite detection by using AI to analyze a significant portion of mammograms, potentially 

reducing the workload on radiologists and decreasing patient wait times [25]. These 

developments underscore the potential of ViT-based models and AI integration in enhancing 

the accuracy and efficiency of breast cancer diagnostics. 

The article contributes significantly to the literature by providing a comprehensive 

evaluation of ViT models for breast cancer detection in mammographic imaging. Unlike 

traditional CNNs, which rely on local receptive fields, the study highlights the effectiveness of 

ViTs in capturing long-range dependencies and complex patterns in mammographic textures 

through self-attention mechanisms. By assessing three different ViT configurations—Base-16, 

Small-16, and Tiny-16—the research offers a comparative analysis of model performance, 

considering factors such as accuracy, computational efficiency, and training time. The findings 

indicate that while the Small-16 model achieves the highest accuracy, the Tiny-16 model 

provides a computationally efficient alternative with moderate performance. This study 

underscores the importance of selecting appropriate model architectures based on 

computational resources and diagnostic accuracy requirements. Furthermore, by leveraging a 

publicly available mammographic dataset and implementing a standardized preprocessing 

pipeline—including resizing, normalization, and Contrast Limited Adaptive Histogram 

Equalization (CLAHE)—the study ensures reproducibility and robustness in medical image 

classification. The research also contributes to the broader understanding of transformer-based 
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architectures in medical imaging, positioning ViTs as a viable alternative to CNNs for 

automated breast cancer diagnosis. This work serves as a benchmark for future studies, 

encouraging further exploration of ViTs and hybrid deep learning approaches to enhance 

diagnostic accuracy in medical applications. 

This paper implements a comprehensive analysis of the classification structure of ViTs. 

The three sub-models in the ViTs architecture which are the base-16, small-16 and tiny-16 

models have been separately considered for classifying mammographs. Thus, a detailed 

analysis of ViTs and its sub-models are discussed. In the paper next section presents the dataset 

and the third section gives information about the ViTs. The case study is shown in the fourth 

section and the last section includes the conclusions.  

2 THE DATASET OF MAMMOGRAPHY 

The Breast Mammography Images with Masses dataset, available through the Digital 

Object Identifier (DOI) 10.17632/ywsbh3ndr8.2, is an essential asset for professionals and 

researchers focused on medical imaging, breast cancer detection, and computer-aided 

diagnostic systems [26]. This comprehensive dataset comprises mammographic images that 

contain masses, which are critical indicators in assessing the likelihood of breast cancer. The 

images provide high-resolution visual information that supports the differentiation between 

benign and malignant masses, enhancing diagnostic accuracy. Each image in the dataset is 

carefully labeled and categorized, supporting diverse research applications such as mass 

detection, segmentation, and classification. This thorough annotation allows researchers to 

utilize the dataset effectively in machine learning contexts, where high-quality labeled data is 

essential for training algorithms designed to identify early-stage breast cancer. Such annotated 

data proves particularly valuable for developing and testing deep learning models in diagnostic 

radiology, where advancements in automated mass detection and classification can make a 

substantial impact on early diagnosis and patient outcomes. Figure 1 contains sample images 

from the dataset.  

https://doi.org/10.17632/ywsbh3ndr8.2
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Figure 1. Sample images from the dataset. 

The dataset is freely accessible for public use, making it a critical resource for both 

academic and industry researchers committed to advancing breast cancer detection and 

diagnosis technologies. Its availability allows a broad community of researchers to contribute 

to the development of new methodologies and models, ultimately aiding the early detection and 

treatment of breast cancer. 

The dataset is a structured collection designed for cancer detection and classification, 

containing approximately 625MB of data across 26,602 images. These images are divided into 

three main categories—benign, malignant, and normal—organized in subfolders corresponding 

to each class. Specifically, the dataset includes 10,866 images labeled as benign, 13,710 as 

malignant, and 2,026 as normal. Each image is 8 bits deep, primarily in PNG format, with a 

minimum resolution of 227x227 pixels, providing adequate detail for analysis. The PNG format 

used for these images supports clear labeling of each sample as benign, malignant, or normal, 

which is essential for training machine learning models. In addition, the dataset is publicly 

licensed, making it widely accessible and frequently utilized in medicine, oncology research, 

and computer vision applications. This open access allows researchers and developers 

uninterrupted downloading and use, supporting diverse initiatives in medical imaging. For deep 

learning model development, the dataset underwent further enhancements. After being resized 

to standardized dimensions, the images were enhanced using CLAHE, a technique that 

improves image contrast by adjusting local histogram intensities. This preprocessing step 
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enhances image quality, making it suitable for machine learning applications where subtle 

differences in tissue appearance are critical for model accuracy. The processed dataset thus 

serves as a valuable foundation for developing, testing, and refining deep learning models 

focused on breast cancer detection and classification. While this dataset provides high-

resolution images with well-annotated benign, malignant, and normal cases, we acknowledge 

the importance of assessing its applicability across different populations. The dataset primarily 

consists of images collected under specific clinical conditions, which may not fully represent 

the diversity of real-world patient populations, including variations in age, ethnicity, breast 

density, and imaging protocols. Additionally, potential sources of error in the dataset could arise 

from factors such as label inaccuracies, imaging artifacts, or biases introduced during data 

collection and annotation. For example, mammograms from different devices and institutions 

may exhibit variations in contrast and noise, which could impact model generalization. 

Moreover, the presence of class imbalances—such as fewer normal cases compared to benign 

and malignant ones—could affect classification performance. Addressing these limitations 

would require additional validation on diverse, multi-institutional datasets and collaboration 

with clinicians to assess model reliability in real-world scenarios. Future work could also 

incorporate domain adaptation techniques and bias mitigation strategies to improve the 

robustness and fairness of ViT-based models across different populations. 

It would be useful to give brief information about some existing studies using the 

dataset. The mammography dataset comprising INbreast, MIAS, and DDSM has been 

extensively utilized in various studies to enhance breast cancer detection and diagnosis through 

advanced machine learning techniques. For instance, a study by Al-Antari et al. developed a 

fully integrated computer-aided diagnosis (CAD) system employing deep learning models, 

achieving an overall classification accuracy of 95.64% on the INbreast dataset [27]. Similarly, 

Li et al. proposed a method combining deep learning with an extreme learning machine, 

resulting in accuracies of 97.19% on DDSM, 98.13% on MIAS, and 98.26% on INbreast 

datasets [28]. Another notable approach by Falconí et al. utilized transfer learning on NasNet 

Mobile and fine-tuned VGG models to classify mammogram images according to the BI-RADS 

scale, achieving an accuracy of 90.9% on the INbreast dataset [29]. These studies underscore 

the efficacy of integrating deep learning methodologies with traditional machine learning 

models to improve the accuracy and reliability of breast cancer diagnostics using the INbreast, 

MIAS, and DDSM datasets. 
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3 THE VISION TRANSFORMERS 

Vision transformers (ViTs) are a revolutionary development in computer vision that 

have the potential to replace traditional convolutional neural networks (CNNs) as the backbone 

of various vision tasks. CNNs process visual data in blocks, and at each layer, more abstract 

representations that capture spatial hierarchies are generated [30]. The modern architectures 

employ average pooling in the last layers to produce task-specific outputs. For example, if an 

image is being classified, the final average pooling layer is replaced by a classification head, 

and if the task at hand is object detection, the final average pooling layer is omitted altogether. 

Overall, the functions of CNNs are very different from global attention-based vision 

transformers. Thus, while the architectural details may differ, the overall task outputs are still 

closely related to each other for CNNs [31]. ViTs, on the other hand, decompose the input 

images into fixed-sized patches that are fed into conventional transformer blocks, which is a 

self-attention-based deep learning architecture. This decomposition allows the end-to-end 

training of large transformers acting on very large image datasets by ensuring a linear scaling 

in complexity with respect to the size of the images independent of dataset size [32]. All of the 

self-attention mechanisms in the transformer allow the model to perform efficient deduplication 

of work in processing pixel interactions because each operation is not applied between every 

possible pair of pixels. Rather, operations are applied across groups of patches, and information 

between the groups is incorporated sparsely from some operations across particular patches in 

each group. This allows for a more controlled and modular learning process that operates at the 

level of entire patches while leveraging information from different parts of the visual input [33].  

The self-attention mechanism is the cornerstone of vision transformers, allowing them 

to weigh different local parts of the image differently without losing any global information. 

The weighted mean of this local information is then calculated to obtain the image 

representation. The self-attention mechanism calculates attention scores that describe the 

similarity of the query feature against the key feature for all positions in the input space. [34] 

The attention score is calculated by taking the softmax of a scaled dot-product score, defined 

as the matrix multiplication (after scaling element-wise) between the query and key [35]. These 

attention scores specify the distribution of relative importance of signals from different 

positions. The output of the final self-attention layer is then calculated as a weighted sum of the 

value features, where each value is weighted by the normalized attention score [36]. The self-

attention mechanism introduces the representation of each position to be influenced by the 

context surrounding the position. In a more global scope, self-attention leads to potential 
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relationships between every position, and in turn makes it difficult for any position to contain 

the same amount of information [37].  

Unlike conventional computer vision project names that consist of the phrase “smaller,” 

these project names instead describe the scale of the vision and vision model, similar to a 

hardware platform descriptor. We utilize this descriptor to emphasize that there are three 

variations of the model that cater to different hardware platforms while maintaining a consistent 

vision size. The vision part of the model is linear by complexity [38]. The “Base-16” refers to 

a model with a standard complexity structure that conventionally achieves a balance between 

size and speed. The “Small-16” and “Tiny-16” variations project the complexities and outputs 

to 64 and 32 respectively, making them cheaper and more accessible. Keeping the vision part 

models constant between Base-16, Small-16, and Tiny-16 allows us to test the different models 

under similar settings [39].  

General workflow of ViTs is shows in figure 2 [40]. The Vision Transformer (ViT) 

workflow draws inspiration from the transformer architecture, which has shown great success 

in natural language processing. By applying transformers to image processing, Vision 

Transformers follow a specific sequence of steps to analyze image data and generate highly 

precise outcomes in computer vision tasks. Let's take a closer look at the detailed breakdown 

of the Vision Transformer workflow. 

Image Preprocessing 

Vision Transformers necessitate fixed input dimensions, which means that all images 

must be resized to a consistent size, such as 224x224 pixels for ViT. Following resizing, the 

image is split into a grid of set-size patches, with each patch flattened into a 1D vector. For 

example, a 224x224 image can be divided into 16x16 patches, resulting in a 14x14 grid, with 

each patch containing 256 pixels.  

 

Figure 2. General workflow of ViTs. 
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These flattened patches are then passed through a linear projection to map them to a 

higher-dimensional space, such as 768 dimensions, ensuring that the model has a consistent 

feature size irrespective of the original patch size. The resulting vectors, one for each patch, are 

known as patch embeddings [41]. 

Positional Encoding 

In contrast to CNNs, transformers do not naturally grasp spatial information, which is 

why positional encoding is included in each patch embedding. This encoding is crucial for 

helping the transformer comprehend the spatial connections between patches. Positional 

encodings commonly consist of learned or sinusoidal values that contribute specific position-

related details to each patch embedding, thereby preserving the image's spatial arrangement 

within the sequence. [42, 43]. 

Input Embedding Construction 

Following the incorporation of patch embedding and positional encoding, there is an 

output of a series of vectors, each of which represents a patch with position-aware details. A 

"class token" is also included at the beginning of the sequence, serving a similar purpose to the 

[CLS] token in NLP transformers. This class token is intended to consolidate information from 

all patches for use in classification tasks [44]. 

Transformer Encoder 

The sequence of embeddings undergoes several layers of transformer encoders. Each 

layer includes: Multi-Head Self-Attention (MHSA), where each embedding interacts with 

others to capture global relationships; Layer Normalization to stabilize and speed up training; 

a Feed-Forward Network (FFN) with a ReLU activation that processes each embedding 

independently; and Residual Connections to help gradients flow through the model. This 

sequence is iterated across all transformer encoder layers, gradually learning complex 

relationships across patches [45]. 

Classification Head (or Task-Specific Head) 

Upon completion of the encoder layers, the ultimate form of the class token serves as 

the representation of the image. In classification activities, this representation is processed 
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through an MLP head, generating class probabilities for each category through softmax. This 

head is adaptable for other tasks like segmentation or object detection [46]. 

Training and Optimization 

Vision Transformers are usually trained for classification tasks using cross-entropy loss, 

adjusting parameters through backpropagation and gradient descent. Pretraining on extensive 

datasets such as ImageNet can improve the ViT model's ability to perform well on related tasks. 

Fine-tuning the model on a specific dataset, like medical images, can also improve its 

performance by making it more adaptable to domain-specific characteristics [47]. 

Inference 

In the process of inference, the image goes through identical preprocessing procedures 

such as resizing, patch extraction, patch embedding, and positional encoding. The 

representation of the ultimate class token is employed for classification, enabling the model to 

anticipate the category of fresh, unobserved images [48]. 

Vision Transformers offer a more organic approach to capturing overall connections 

across an entire image as opposed to CNNs, which are limited by local receptive fields. They 

show efficient scalability with larger datasets, making them suitable for extensive image 

datasets. In contrast to CNNs, Vision Transformers do not impose a rigid hierarchical feature 

structure, enabling more adaptable feature learning [49]. 

4 THE CLASSIFICATION STUDY 

The Breast Mammography dataset was methodically divided to optimize model 

training, validation, and testing phases, with 80% of the images dedicated to training, 10% set 

aside for validation, and the remaining 10% reserved for testing. This split was chosen to 

provide a balanced approach that maximizes training data while ensuring ample samples for 

unbiased validation and evaluation. To prepare the images for deep learning model input, each 

image was resized to a uniform dimension of 384x384 pixels with three color channels (RGB). 

This resizing ensures that all images share a consistent structure, which is essential for 

convolutional neural networks that rely on uniform input shapes for accurate learning. 

Additionally, the choice to process the images as color (RGB) images, rather than grayscale, 

preserves critical color details that could aid in distinguishing between benign, malignant, and 
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normal tissue types. Normalization was applied to each image, adjusting pixel values to a 

standardized range, typically between 0 and 1, or to a distribution centered around zero. This 

step is critical as it minimizes variations across the dataset, enabling the network to focus on 

important visual features rather than being affected by differing brightness or contrast levels. 

Such preprocessing ensures that the model can learn effectively from the images without bias 

introduced by inconsistent pixel intensities. This preprocessing pipeline—including resizing, 

color preservation, and normalization—was applied identically to images used in both training 

and testing. This approach guarantees that the model encounters images of identical quality and 

format during training and evaluation, reducing any risk of performance discrepancies due to 

preprocessing differences. Overall, this careful preparation of the Breast Mammography dataset 

supports robust and reliable model training, validation, and testing, fostering a more accurate 

classification performance across breast tissue image categories. The training parameters are 

selected as follows. MiniBatchSize =12, MaxEpochs =5, IterationsPerEpoch =443, 

ObservationsTrain=1773 and Iterations=8865. This study utilized the base, small, and tiny 

ViT models with their default parameters. No particular hyperparameter modification was 

conducted to improve performance, as our emphasis was on examining the influence of the 

default models on the dataset. The ViT models used in this study were trained using a 

standardized set of hyperparameters to optimize performance while maintaining computational 

efficiency. The models utilized a patch size of 16×16 pixels, with input images resized to 

384×384 pixels. Training was conducted using the Adam optimizer with an initial learning rate 

of 1e-4 and a weight decay of 0.01. Each model was trained for five epochs with a batch size 

of 12, processing 443 iterations per epoch, totaling 8,865 iterations. The loss function employed 

was cross-entropy loss, and images were normalized to a [0,1] range to enhance model stability. 

The activation function used was Gaussian Error Linear Unit (GELU), and dropout was set at 

0.1 to prevent overfitting. The transformer architecture varied across models, with the Base 

model featuring 12 multi-head self-attention heads, 12 transformer encoder layers, a hidden 

dimension of 768, and a feed-forward network dimension of 3072. The Small model had 6 

attention heads, 8 encoder layers, a hidden dimension of 384, and a feed-forward network 

dimension of 1536, while the Tiny model was the most compact, with 3 attention heads, 4 

encoder layers, a hidden dimension of 192, and a feed-forward network dimension of 768. 

Positional encoding was learnable across all models. These hyperparameters were carefully 

selected to balance accuracy and efficiency, with the Small model achieving the highest 

classification performance, while the Tiny model offered a computationally efficient alternative 

with moderate accuracy. 
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In training the network, the Adam (Adaptive Moment Estimation) algorithm was applied 

as an optimization solver for deep learning. This optimizer was selected for its adaptive learning 

rate capability, which efficiently handles dynamic learning rates and accelerates convergence 

during training. The training process was executed on a GPU using parallel computing, with 16 

parallel workers operating concurrently to maximize processing efficiency and reduce training 

time. Key training parameters are as follows: 

Initial Learning Rate: Set at 1e-4 to provide a stable starting point that adjusts 

adaptively during training, facilitating consistent model updates. 

Shuffle: Data shuffling was configured to occur at every epoch, ensuring that the 

training data is randomly reordered with each cycle to enhance generalization and minimize 

overfitting. 

Execution Environment: Configured for parallel processing, utilizing the GPU’s multi-

threading capabilities for optimized computation. 

This configuration was designed to support efficient, stable, and resource-effective 

training, as detailed in the computational setup, and provided the necessary foundation for 

robust model convergence.  

The computational setup, detailed in Table 1, illustrates the hardware specifications and 

the configuration that enabled efficient and stable training. The optimized environment 

supported a faster convergence rate, enhancing model performance while ensuring consistent 

resource utilization throughout the learning process. 

Table 1. Hardware specifications of the computer used in this study. 

Processor 12th Gen Intel(R) CoreTM i9-12900F 2.40 GHz 

Cores, Processors 16, 24 

Installed RAM 64.0 GB (63.7 GB usable) 

GPU NVIDIA RTX A4000 

DirectX version 12 (FL 12.1) 

GPU Memory 47.9 GB (16.0 GB Dedicated, 31.9 GB Shared) 

 

The Vision Transformers (ViT) models employed in this study consist of the following 

configurations: 

1. Base-16-ImageNet-384: This base-sized model contains 86.8 million parameters, with a 

patch size of 16 pixels, and is fine-tuned on the ImageNet 2012 dataset. It processes images 

at a resolution of 384x384 pixels, making it suitable for capturing complex features in larger 

images. 



U. Demiroğlu, B. Şenol / BEU Fen Bilimleri Dergisi, 14 (1), pp. 287-313, 2025 

 

 

301 

2. Small-16-ImageNet-384: This smaller model includes 22.1 million parameters, also with a 

patch size of 16, and is fine-tuned on the ImageNet 2012 dataset at the same resolution of 

384x384 pixels. It provides a balance between model size and computational efficiency, 

enabling effective feature extraction with lower resource requirements. 

3. Tiny-16-ImageNet-384: The smallest of the three models, this configuration has 5.7 

million parameters and a patch size of 16. It is similarly fine-tuned on the ImageNet 2012 

dataset with an image resolution of 384x384 pixels. This model is optimized for scenarios 

with limited computational resources while still leveraging the benefits of the ViT 

architecture. 

Each of these ViT models, fine-tuned with ImageNet 2012 data, offers unique trade-offs 

in terms of parameter count and processing capacity, making them adaptable to various resource 

constraints and performance needs in image classification tasks. 

In the study, the dataset was divided into three subsets: 80% for training, 10% for 

validation, and 10% for testing. These groups were separated before training began, ensuring 

that they consisted of independent images. 

The training and testing performance graphs, along with the computed values for the 

base, small, and tiny ViT models, are presented below. Figure 3 shows the training visualities 

for the base model. 

 

Figure 3. Training process of the base model. 
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The test performance parameters of the ViT base model—Accuracy, Error, Recall, 

Specificity, Precision, F1-Score, Geometric Mean Precision Recall (G-Measure PR), Geometric 

Mean Sensitivity Specificity (G-Measure SS), and Matthews Correlation Coefficient (MCC)—

are presented in the table below. 

Table 2. Performance metrics for the base model. 

Accuracy Error Recall Specificity Precision F1-Score G-Measure PR G-Measure SS MCC 

83.9534 16.0466 87.4203 89.5156 88.4118 87.4151 87.6649 88.0407 71.9342 

 

The training visualities for the small model are illustrated in Figure 4. The test 

performance metrics of the model are listed in Table 3. 

Table 3. Performance metrics for the small model. 

Accuracy Error Recall Specificity Precision F1-Score G-Measure PR G-Measure SS MCC 

87.9369 12.0631 91.1346 92.4234 91.1982 91.1647 91.1656 91.7628 78.5135 

 

 

Figure 4. Training process of the small model. 

Finally, the training of the tiny model is visualized in Figure 5. The test performance 

parameters of the model can be seen in Table 4. 
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Figure 5. Training process of the tiny model. 

Table 4. Performance metrics for the tiny model. 

Accuracy Error Recall Specificity Precision F1-Score G-Measure PR G-Measure SS MCC 

81.5859 18.4141 86.3841 88.3812 86.4489 86.3963 86.4064 87.3136 67.1630 

 

For all three ViT model types, training was conducted using the same parameters on the 

80% training dataset, while validation was performed independently using the 10% validation 

dataset. Testing was carried out after training was completed using a separate and independent 

10% test data. 

As a result of the training process, the test accuracies for each model type are as follows: 

• Base model: Accuracy = 0.8395 

• Small model: Accuracy = 0.8794 

• Tiny model: Accuracy = 0.8159 

These results indicate that the accuracy rates vary according to the model size, with the 

small model achieving the highest accuracy, while the tiny model achieved the lowest. 

The training durations for each model are as follows: 

• Base Model: Training completed in 32 hours 37 minutes 40 seconds. 

• Small Model: Training completed in 3 hours 12 minutes 39 seconds. 

• Tiny Model: Training completed in 1 hour 47 minutes 1 second. 



U. Demiroğlu, B. Şenol / BEU Fen Bilimleri Dergisi, 14 (1), pp. 287-313, 2025 

 

 

304 

These training times demonstrate a significant reduction in duration as the model size 

decreases. However, there is also a noticeable trade-off in accuracy, with the smaller models 

taking less time but showing some differences in accuracy. This highlights the impact of model 

size on both accuracy and training time. Confusion matrixes showing the training accuracies 

obtained for three models are given in figure 6. 

 

Figure 6. Confusion matrixes obtained for Base, Small and Tiny Models. 

Figure 7 illustrates the Area Under the Curve (AUC) graphics for the three models. In 

the figure, the classes 1, 2 and 3 represents Bening Malignant and Normal classes respectively. 

 

Figure 7. AUC graphics obtained for Base, Small and Tiny Models. 

For the base model, the performance values were calculated as, Benign: 0.8186, 

Malignant: 0.8392, and Normal: 0.9963. For the small model, performance values are found as 

Benign: 0.8743, Malignant: 0.8791 and Normal: 1.0 and for the tiny model, the performance is 

found as Benign: 0.8065, Malignant: 0.8152 and Normal: 0.9998.  

Figure 8 shows the progress of accuracy and loss during the ViTs Base model. As shown 

in Figure 4, the validation performance of the training process for the base model of the ViT 

network was 51.56%. This indicates that, during the validation phase, the model was able to 

correctly classify 51.56% of the samples, reflecting its ability to generalize from the training 

data to unseen data. While the performance might suggest room for improvement, it provides 
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valuable insight into the network’s capabilities, and further optimizations or fine-tuning could 

lead to enhanced accuracy in future iterations. 

 

Figure 8. Accuracy and Loss values obtained for the base model. 

Similarly, figure 9 is for the progress of accuracy and loss obtained for the small model 

of ViTs. According to the Small model, the validation performance of the training process was 

88.00%. This high validation accuracy suggests that the model has effectively learned the 

features necessary for distinguishing between the classes in the dataset. The improved 

performance of the Small model compared to the base model demonstrates the advantages of 

using a more compact architecture, which may offer better generalization and efficiency in 

training. Further analysis could be conducted to understand the specific factors contributing to 

this improvement, such as the choice of hyperparameters or the model's ability to capture 

intricate patterns in the data. 

 

Figure 9. Accuracy and Loss values obtained for the small model. 
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Finally, figure 10 presents the progress of accuracy and loss values obtained for the tiny 

model. 

 

Figure 10. Accuracy and Loss values obtained for the tiny model. 

 

According to the Tiny model, the validation success of the training process was 63.93%. 

This result indicates the model's performance in classifying images it had not seen during 

training, both during the intermediate validation tests and after the final training completion. 

These validation tests used unseen images, which are crucial for assessing the model's 

generalization ability. While the Tiny model shows a moderate level of validation accuracy, it 

suggests there may be potential for improvement, possibly through further tuning or more 

sophisticated techniques for feature extraction and model optimization. The test success for the 

Tiny model is also detailed in the confusion matrix in figure 3, which provides a deeper insight 

into the misclassifications and the overall model performance. 

For all three models, table 5 provides a comprehensive overview of the training iteration 

progress, including the duration of each iteration, training and test performance, and calculation 

data from both the beginning and the end of the training process: 
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Table 5. Training iteration progress. 

 Base Small Tiny 

It
er

a
ti

o
n

 

E
p

o
ch

 

T
im

e 

E
la

p
se

d
 

T
ra

in
in

g
 

A
cc

u
ra

cy
 

V
a

li
d

a
ti

o
n

 

A
cc

u
ra

cy
 

T
im

e 

E
la

p
se

d
 

T
ra

in
in

g
 

A
cc

u
ra

cy
 

V
a

li
d

a
ti

o
n

 

A
cc

u
ra

cy
 

T
im

e 

E
la

p
se

d
 

T
ra

in
in

g
 

A
cc

u
ra

cy
 

V
a

li
d

a
ti

o
n

 

A
cc

u
ra

cy
 

0 0 00:01:28  13.652 00:00:41  30.951 00:00:27  43.738 

1 1 00:01:29 25  00:00:41 25  00:00:27 50  

50 1 00:08:32 50  00:01:42 75  00:01:00 41.667  

100 1 00:17:28 66.667  00:02:40 91.667  00:01:36 33.333  

150 1 00:26:23 50  00:03:39 75  00:02:11 58.333  

200 1 00:34:57 83.333  00:04:37 58.333  00:02:43 41.667  

250 1 00:43:23 91.667  00:05:36 83.333  00:03:16 50  

300 1 00:51:47 58.333  00:06:35 75  00:03:50 58.333  

350 1 01:00:12 91.667  00:07:32 100  00:04:28 66.667  

400 1 01:08:39 91.667  00:08:30 75  00:05:07 58.333  

443 1 01:17:09 83.333 76.909 00:09:50 91.667 84.806 00:06:08 91.667 60.7 

…           

8417 5 30:15:06 41.667 51.561 03:01:06 100 81.986 01:40:30 91.667 89.357 

8450 5 30:23:41 75  03:01:51 100  01:40:54 91.667  

8500 5 30:36:30 50  03:02:58 100  01:41:29 91.667  

8550 5 30:49:25 58.333  03:04:05 100  01:42:05 100  

8600 5 31:02:18 66.667  03:05:11 100  01:42:41 91.667  

8650 5 31:15:14 66.667  03:06:18 100  01:43:16 100  

8700 5 31:28:08 33.333  03:07:25 100  01:43:52 100  

8750 5 31:41:03 50  03:08:32 100  01:44:28 100  

8800 5 31:53:59 50  03:09:39 91.667  01:45:02 91.667  

8850 5 32:06:55 25  03:10:46 100  01:45:39 91.667  

8860 5 32:23:00 50 51.561 03:11:35 100 86.574 01:46:10 100 79.955 

8865 5 32:37:17 66.667 51.561 03:12:18 91.667 88.003 01:46:38 91.667 63.934 

 

The training performances of the network models used, including their success rates, 

error rates, parameter sizes, and training times, are summarized in table 6. This table provides 

an overview of the performance of each model, helping to compare their relative effectiveness 

in terms of classification accuracy, model complexity (parameter size), and the time taken to 

complete the training process. The models demonstrate different strengths, with the Small 

model achieving the highest accuracy, while the Tiny model offers a more compact architecture 

with moderate performance. The Base model, although achieving lower accuracy, can still serve 

as a useful baseline for comparison against more optimized configurations. 
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Table 6. Performance metrics of the training and test process. 

Model 

Accuracy 

Train 

(%) 

Accuracy 

Validation 

(%) 

Accuracy 

Test 

(%) 

Training 

Loss 

Validation 

Loss 
Parameters 

Training 

Time 

ViT-Base 66.667% 51.561% 83.9534% 0.69153 0.91771 86.8 million 32:37:40 

ViT-Small 91.667% 88.003% 87.9369% 0.25361 0.54841 22.1 million 03:12:39 

ViT-Tiny 91.667% 63.934% 81.5859% 0.16297 2.4384 5.7 million 01:47:01 

 

When interpreting Table 6, it is evident that the Small model of the Vision Transformer 

(ViT) networks achieves the highest accuracy, with a performance difference of 3.99% 

compared to the Base model, despite having approximately 4 times fewer parameters. This 

highlights the effectiveness of the Small model in terms of both performance and computational 

efficiency. 

Although the Tiny model has about 15 times fewer parameters than the Base model and 

approximately 4 times fewer parameters than the Small model, its performance remains close 

to that of the other models. Notably, the Tiny model achieves this level of success in 

significantly less time, which makes it a viable option for scenarios where computational speed 

is critical. 

While the Base model ranks second in terms of accuracy, it is worth considering for 

certain applications where a balance between performance and computational time is required. 

Therefore, the choice of model depends heavily on the specific needs of the research or 

application, whether that is achieving the highest accuracy, minimizing computational time, or 

balancing both factors. 

The ViT base model consists of 86.8 million parameters. Given the complexity of such 

a large model, processing images involves an extensive number of computations, leading to a 

significant demand for computational resources at maximum capacity. As a result, obtaining 

outcomes takes considerably longer compared to the small and tiny models. Although the ViT 

base model's validation performance during training appears significantly lower than that of the 

other two models, its test performance was found to be very close to theirs. Ultimately, when 

analyzing test performance, the results indicate that the accuracy rates across all three models 

are relatively close and fall within an acceptable range. 
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5 RESULTS AND DISCUSSION 

Breast cancer remains one of the leading causes of mortality among women worldwide, 

with early detection playing a crucial role in improving treatment outcomes. One of the most 

important diagnostic tools in this context is mammography, which allows for the detection of 

breast masses, a key indicator of potential malignancy. In recent years, advancements in deep 

learning have demonstrated promising results in improving the accuracy and efficiency of 

medical image analysis, particularly through the use of Vision Transformers (ViTs). ViTs have 

gained significant attention for their ability to model long-range dependencies in images and 

leverage self-attention mechanisms, making them ideal candidates for complex medical 

imaging tasks. This study evaluates the performance of three different Vision Transformer 

models—base-16, small-16, and tiny-16—on a dataset of breast mammography images 

containing masses. These models were specifically chosen to assess how different 

configurations of ViTs, with varying sizes and parameter counts, perform on the task of 

classifying mammographic images into categories such as benign, malignant, and normal. The 

ViTs' self-attention mechanism helps address challenges posed by the inherent complexity of 

mammographic textures and the low contrast that is often seen in medical imaging, which can 

make traditional image classification techniques less effective. Through comparative analysis, 

this study highlights the strengths and limitations of each ViT model. The findings provide 

valuable insights into the performance of these models in terms of accuracy, training time, and 

computational efficiency. By evaluating their effectiveness in breast mass classification tasks, 

this research aims to contribute to the broader understanding of how transformer-based 

architectures can enhance diagnostic accuracy in medical imaging. The results serve as a 

benchmark for future research, paving the way for further exploration of ViTs and other 

transformer-based models in medical image classification and diagnosis. This study 

underscores the potential of Vision Transformers in advancing the field of medical image 

analysis, particularly for early breast cancer detection, and supports their future application in 

clinical settings. 

This paper provides a thorough examination of the classification architecture of Vision 

Transformers (ViTs) in the context of breast mammography image classification. Specifically, 

it investigates three sub-models within the ViTs framework: the base-16, small-16, and tiny-16 

models. Each of these sub-models has been individually evaluated for their performance in 

classifying mammographic images, which are crucial for early breast cancer detection. The 

study aims to provide an in-depth understanding of how these different ViT configurations, with 
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varying model sizes and complexities, contribute to the classification task. A comprehensive 

analysis is conducted to highlight the strengths, weaknesses, and performance characteristics 

of each sub-model in the ViT architecture. The base-16 model, with its larger parameter size, is 

assessed for its ability to capture complex patterns in mammographic images, while the small-

16 and tiny-16 models, with fewer parameters, are evaluated for their efficiency and speed, 

particularly in clinical settings where computational resources may be limited. By discussing 

the specific advantages and limitations of each model, this paper offers valuable insights into 

the trade-offs between accuracy, computational cost, and training time. This analysis also 

explores the role of the self-attention mechanism inherent in ViTs, which enables the models to 

effectively focus on relevant features within the mammographic images, addressing challenges 

such as low contrast and intricate textures commonly found in medical imaging. The study 

emphasizes how the selection of the appropriate ViT sub-model can be tailored to different 

research or clinical needs, depending on the available computational resources and the required 

diagnostic accuracy. 

The study primarily focuses on a theoretical and computational comparison of ViT 

models for breast cancer detection in mammographic imaging. By evaluating the Base-16, 

Small-16, and Tiny-16 ViT configurations on a standardized dataset, we provide a benchmark 

analysis that highlights their strengths and limitations in terms of accuracy, training time, and 

computational efficiency. However, we acknowledge that clinical validation and real-world 

testing with physicians would enhance the applicability of our findings. Future research 

directions could involve collaboration with radiologists to assess model performance in real 

clinical settings, integrating physician feedback to improve interpretability and usability. 

Additionally, testing the models on diverse, real-world datasets with varying imaging 

conditions and patient demographics could further validate their robustness and reliability. Such 

efforts would bridge the gap between theoretical performance and practical deployment, 

making these models more applicable for clinical decision-making. 

The primary objective of this research is to evaluate the outputs of ViT models on the 

same dataset in order to draw conclusions about their strengths, weaknesses, benefits, and 

disadvantages. This will be accomplished by using the default parameters of the models. If we 

had begun out with the intention of surpassing the existing performance of the dataset in the 

literature by utilizing a single ViT model, our primary focus would have been on further 

improving the dataset through the application of image processing techniques. 
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Overall, this paper serves as a detailed guide for understanding the application of ViTs 

in medical image classification, particularly for breast cancer detection, and it lays the 

groundwork for further research into optimizing and refining transformer-based models for use 

in medical diagnostics. 
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