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 ABSTRACT  

 

This study proposes a new equation to predict the moment capacity of ferrocement elements 

by using Gene Expression Programing (GEP) method that is one of the machine learning 

techniques. The experimental parameters that are selected to propose an equation are the beam 

width, beam height, cube compressive strength of concrete, ultimate tensile strength of the wire 

mesh and the volume fraction of the wire mesh. The predictions obtained from the proposed 

GEP model are compared with the experimental results obtained on the dataset available in the 

literature.  

In addition, the predictions of theoretical and GEP-based models in the literature are also 

compared with experimental results. Statistical analysis is performed on these comparative 

results. It is concluded that the proposed GEP model is superior to theoretical and the other GEP 

based model on prediction of moment capacity of ferrocement elements in the light of statistical 

data. Moreover, sensitivity and parametric analysis are conducted. It is also a conclusion to 

sensitivity analysis that the most effective parameters on the proposed GEP model are beam 

height, the volume fraction of the wire mesh and beam width, while the least effective 

parameters are cube compressive strength of concrete and ultimate tensile strength of the wire 

mesh. Finally, the conclusions of the analyses indicate that the predictive capacity of the 

proposed GEP model is acceptable in terms of accuracy and robustness of the model. 
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1 INTRODUCTION 

Ferrocement is a composite structural element consisting of cement and various types 

of wire mesh such as square, expanded and hexagonal meshes. Ferrocement is used in important 

structural elements such as walls, water tanks, deep beams, low-cost housing, ships, and panels 

[1, 2]. The cross-section of ferrocement elements is schematically shown in Figure 1. The 

ferrocement elements are also used in the practical applications of repairing, strengthening and 

jacketing in structural projects. It is reported that ferrocement elements are included in the 

construction process in different parts of the world [3]. In addition, these elements have not 

only practical advantages, such as the ability to be formed into any shape, easy procurement of 

raw materials, economical, ease of construction and easy workmanship, but also mechanical 

advantages, such as enhanced load carrying capacity, cracking behavior, ductility and resistance 

against earthquakes [2, 4-10]. 

However, these elements have some disadvantages. One of these disadvantages is 

thermal problems in the structure due to the thinness of the ferrocement element. Another 

disadvantage is the difficulty in determining the moment capacity of this element due to the 

complex interaction among its components. It is necessary to make theoretical assumptions and 

simplifications to predict the moment capacity of the ferrocement elements. These assumptions 

and simplifications lead to deviations when predicting the flexural behavior of ferrocement 

elements. To reduce the effect of these deviations, machine learning techniques have recently 

been used to solve complex problems. According to the results of studies in the literature, 

predictions using machine learning techniques have given statistically more reliable results than 

theoretical models [1, 2, 11-14]. 

 

Figure 1. Cross-sectional representation of ferrocement elements [2]. 

GEP is a computer program that produces mathematical equations as output, 

distinguishing it from other machine learning tools in its ability to express complex problems. 

GEP, one of the machine learning-based approaches, combines the advantages of programming 
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and genetic algorithms. This provides users with highly accurate predictions in the form of 

mathematical expressions [15-16]. GEP has recently been the subject of academic studies in 

many fields. In civil engineering, studies were carried out using GEP to express the complex 

relationship between parameters affecting behavior in a simple and reliable way [17-23].  

Alacali et al. [24] derived GEP models to predict the contribution of fiber-reinforced 

polymers (FRP) to the shear capacity of reinforced concrete (RC) beams. Three different GEP 

models were derived for three different forms of strengthening with FRP strips. The prediction 

accuracy of these models was found to be high compared to various design codes and studies 

in the literature. In another study, it was understood that the equation derived from the GEP 

model for predicting the moment redistribution coefficient of a two-span RC beam yielded the 

most accurate results [25]. Additionally, the equation developed using GEP was observed to 

provide fairly accurate predictions for determining the plastic hinge length in RC columns [26]. 

Positive findings have also been reported in several studies on equation derivation using the 

GEP model in structural engineering [27–33]. From the studies mentioned above, it can be 

concluded that the use of the GEP technique is sufficient for the safe solution of a complex 

problem.  Additionally, many machine learning tools have been used to predict the moment 

capacity of ferrocement elements [2, 3, 12-14, 34, 35].  

This study aims to propose an equation that predicts the moment capacity of ferrocement 

elements with high accuracy from available experimental data in the literature using the GEP 

technique. The predictions of the proposed GEP equation will be statistically compared with 

the experimental results. In addition, Comparison results of both theoretical and GEP-based 

models in the literature will also be given. Then, these statistical results are interpreted. Finally, 

sensitivity and parametric analysis of the proposed GEP equation are performed. 

2 MATERIAL AND METHOD  

2.1 Overview of Existing Equations 

In the literature, the equations of theoretical and GEP models that predict the moment 

capacity of ferrocement elements were given below. 

- Plastic Analysis Method [36] 

𝑀𝑢 = 𝜎𝑡𝑢𝑏(ℎ − 𝑥1)(ℎ/2) (1) 
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where 𝑀𝑢, 𝑏, ℎ, 𝑥1 and 𝜎𝑡𝑢 are, respectively, the moment capacity, the beam width, the beam 

height, and the depth of neutral axis and the ultimate tensile strength of wire mesh. 

- Mechanism Approach Method [37] 

𝑀𝑢 = 𝜎𝑡𝑢𝑏ℎ2/2 (2) 

- Simplified Method [38] 

𝑦 = 0.005 + 0.422 − 0.0772𝑥2 (3) 

𝑥 =
𝑣𝑓𝜎𝑦

𝑓𝑐
′

 (4) 

𝑦 =  
𝑀𝑢

𝑛𝑜𝑓𝑐
′𝑏ℎ2

 (5) 

where 𝑣𝑓, 𝜎𝑦 , 𝑛𝑜 and 𝑓𝑐
′ are, respectively, the volume fraction of the wire mesh, the yield tensile 

strength of wire mesh, efficiency factor of wire mesh and cylinder compressive strength of  

concrete. 

- GEP model [2] 

𝑀𝑢,𝐺𝐸𝑃 =  
𝑏(ℎ − 11)(ℎ + 𝑓𝑐𝑢)

5184

(𝑓𝑢𝑙𝑣𝑓)0.6

√𝑓𝑐𝑢

 (6) 

2.2 Summary of Experimental Data 

The data set used to derive the GEP equation was taken from the study published by 

Mashrei et al [12]. It includes a total of 75 test specimens compiled by Mashrei et al [12] from 

nine different experimental studies in the literature [12, 36, 37, 39-44]. This dataset contains 

five input parameters: 𝑏, ℎ, 𝑓𝑐𝑢, 𝑓𝑢𝑙  , 𝑣𝑓, as well as one output parameter: 𝑀𝑢.  To determine the 

most appropriate input parameters, similar studies based on machine learning techniques were 

reviewed, and it was observed that these parameters are commonly used in the literature [2, 3, 

12, 14]. The maximum, minimum, and mean values of these parameters are presented in Table 

1. Also, Figure 2 illustrates the frequency histograms of the parameters used to develop the 

GEP model.  
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Additionally, Figure 3 provides a visual representation of the Pearson correlation matrix, 

which helps understand the strength and direction of linear relationships between the input 

parameters and the moment capacity of ferrocement elements. The heat map is a useful analysis 

tool that helps identify the strongest relationships between the input variables and the target 

output. Figure 3 shows that the beam width (𝑏) and height (ℎ) have a more significant effect on 

the structural behavior compared to the material properties, exhibiting the highest positive 

correlations with the moment capacity. These results also agree well with the sensitivity 

analysis results and support the reliability of the proposed GEP model. 

Table 1. Properties of the experimental parameters in database. 

Number Reference  
b 

(mm) 

h 

(mm) 

fcu 

(MPa) 

ful 

(MPa) 

vf 

- 

Mu 

(Nm) 

4 [39] Min. 400.00 50.00 12.60 371.00 0.0060 955.00 
  Max. 400.00 75.00 12.60 371.00 0.0120 5393.00 
  Mean 400.00 62.50 12.60 371.00 0.0095 2933.25 

16 [12] Min. 200.00 50.00 40.40 600.00 0.0016 393.50 
  Max. 300.00 80.00 50.80 600.00 0.0130 3752.00 
  Mean 250.00 65.00 47.84 600.00 0.0066 1376.38 

9 [40] Min. 100.00 20.00 29.90 500.00 0.0362 171.00 
  Max. 100.00 100.00 29.90 533.00 0.0392 3375.00 
  Mean 100.00 44.44 29.90 518.33 0.0375 931.67 

6 [37] Min. 100.00 25.00 29.90 371.00 0.0148 137.50 
  Max. 100.00 100.00 50.00 500.00 0.0418 3937.00 
  Mean 100.00 40.83 46.65 392.50 0.0282 831.58 

6 [36] Min. 100.00 25.00 38.00 371.00 0.0172 125.00 
  Max. 100.00 35.00 56.00 371.00 0.0296 355.00 
  Mean 100.00 26.67 46.50 371.00 0.0240 180.83 

8 [41] Min. 130.00 13.00 62.00 513.00 0.0154 33.00 
  Max. 130.00 13.00 62.00 714.00 0.0664 155.30 
  Mean 130.00 13.00 62.00 600.63 0.0391 84.26 

7 [42] Min. 100.00 13.00 24.20 382.60 0.0070 76.10 
  Max. 130.00 26.00 62.00 562.00 0.0682 270.20 
  Mean 104.29 24.14 29.60 408.23 0.0371 165.39 

3 [43] Min. 100.00 25.00 24.20 382.60 0.0081 102.50 
  Max. 200.00 26.00 28.30 979.00 0.0825 293.50 
  Mean 166.67 25.33 26.93 780.20 0.0356 195.73 

16 [44] Min. 76.00 25.00 28.30 628.00 0.0032 144.00 
  Max. 200.00 50.00 36.00 979.00 0.0504 1367.30 
  Mean 83.75 48.44 35.52 649.94 0.0217 678.16 

Full Dataset (n = 75) 

Min. 76.00 13.00 12.60 371.00 0.0016 33.00 

Max. 400.00 100.00 62.00 979.00 0.0825 5393.00 

Mean 150.80 42.92 39.95 543.10 0.0243 819.79 
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Figure 2. Frequency histograms of the parameters in dataset. 

 

Figure 3. Heat map of the Pearson correlation matrix for the moment capacity of 

ferrocement elements. 

2.3  Gene Expression Programming (GEP) 

GEP, which is one of the most frequently used genetic methods in engineering problems 

in recent years, was first developed by Ferreira [45]. The basic steps of the gene expression 

programming (GEP) are shown schematically in Figure 4. The chromosomes of a certain 

number of individuals are randomly generated and selected according to their fitness. Selected 

individuals pass on their genetic information to the next generation, resulting in new 
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characteristics emerging in subsequent generations. The generated chromosomes are then 

converted into expression trees (ETs) [45]. ETs can be expressed as a mathematical function, 

as shown in Figure 4. Each node represents either an operation or an operator. Each leaf node 

represents either a variable or a constant value. This study uses Subexpression Trees (Sub-ETs), 

which refer to simplified expression structures derived from GEP or other machine learning 

models. These subtrees are systematically integrated to form the main expression tree, which 

represents the predictive formulation of the model and highlights the influence of input 

variables on individual predictions. Sub-ETs with different shapes and sizes are combined 

through linking functions to generate more complex and effective expressions. Each GEP gene 

consists of a head, which contains functions and terminals, and a tail, which contains only 

terminals. 

Within the scope of this study, a detailed analysis was made on a total of 75 data points 

using the GEP model to predict the moment capacity of ferrocement member. The data set 

presented in Table 1 was evaluated using GeneXproTools 5.0 software [46]. The data set was 

randomly divided into training and validation sets with 56 data points (75%) for the training set 

and 19 data points (25%) for the validation set. The parameter configurations used in the GEP 

model presented on Table 2. In this study, the size of chromosomes 30, size of genes 3 and head 

size 8 were selected as the most suitable values for the development of the GEP optimization 

model. Additionally, other optional GEP parameter settings are also seen in Table 2. 

 

Figure 4. The flowchart of GEP [45]. 
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Table 2. GEP parameter settings. 

Definition Values 

Input parameters 𝑏(mm), ℎ(mm), 𝑓𝑐𝑢(MPa), 𝑓𝑢𝑙(MPa), 𝑣𝑓 
 

Output parameter 𝑀𝑢 (Nmm) 

Genes 3 

4 

4 

 

Function set + .  −.  ∗.  /. √.
4

. ^3. ^5. Avg(x.y) 

 
Chromosomes 30 

Head Size 

 

8 

10 

10 

 

Linking function between 

ETs 

Addition 

Mutation 0.00138 

Inversion rate 

 

0.00546 

Constants per gene 10 

Data type Floating type 

 

The ETs of the GEP model proposed for ferrocement elements in this study are shown 

in Figure 5. The model consists of three different Sub-ETs, which are combined using a linking 

function. These ET models are converted into the mathematical expression presented in 

Equation 7. 

  

Figure 5. Expression trees (ETs) of GEP model for moment capacity. 
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𝑴𝒖,𝒑𝒓𝒐𝒑𝒐𝒔𝒆𝒅(Nmm) = [𝑏(ℎ − 21.44) + 23.81𝑓𝑐𝑢][21.44𝑣𝑓(𝑏 + 𝑓𝑐𝑢)] +

1.81 [𝑓𝑢𝑙

5

4(ℎ − 13.61)] + (𝑣𝑓ℎ3 − 2ℎ)(0.5𝑓𝑐𝑢 + 1.5𝑏 − ℎ)  
(7) 

2.4 Statistical Metrics 

The equations of the statistical metrics used to assess and compare the performance of 

the proposed GEP model with those of previous researchers are defined in Equations (8)–(13), 

as presented in Table 3. The mean value (M) is calculated by dividing the experimental values 

by the predicted values. In addition, the statistical metrics SD, MAPE, and RMSE indicate the 

degree of error in the predictions. Lower values of SD, MAPE, and RMSE correspond to 

smaller prediction errors. Moreover, a high R² value and a low COV value indicate greater 

reliability in the model's predictions. 

Table 3. Statistical metrics for evaluating prediction performance. 

3 RESULT AND DISCUSSION 

This section presents a comparison between the experimental results and the predicted 

values of the moment capacity of ferrocement elements, using the proposed GEP model, 

theoretical equations [36–38], and the GEP model developed by Gandomi et al. [2]. 

Statistical Indices Expression Equation 

Mean (M) 𝑀 =
∑

𝑒𝑥𝑝
𝑚𝑜𝑑𝑒𝑙

𝑛
𝑖=1

𝑛
 (8) 

Standard deviation 

(SD) 𝑆𝐷 = √
∑ (

𝑒𝑥𝑝
𝑚𝑜𝑑𝑒𝑙

− 𝑀)2𝑛
𝑖=1

𝑛 − 1
 

(9) 

Root mean square 

error (RMSE) 𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑥𝑝 − 𝑚𝑜𝑑𝑒𝑙)2𝑛

𝑖=1

𝑛
 (10) 

Mean absolute 

percentage error 

(MAPE) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑒𝑥𝑝 − 𝑚𝑜𝑑𝑒𝑙

𝑒𝑥𝑝
|

𝑛

𝑖=1

 (11) 

Coefficient of 

variation (COV) 
𝐶𝑂𝑉 =  

𝑆𝐷

𝑀
 (12) 

Coefficient of 

determination (R2) 𝑅2 = [
[∑ (𝑒𝑥𝑝 − 𝑒𝑥𝑝̅̅ ̅̅ ̅)(𝑚𝑜𝑑𝑒𝑙 − 𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1 ]

∑ (𝑒𝑥𝑝 − 𝑒𝑥𝑝̅̅ ̅̅ ̅)𝑛
𝑖=1 ∑ (𝑚𝑜𝑑𝑒𝑙 − 𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

]

2

 (13) 
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Table 4 presents the statistical results of the proposed GEP model for both the training 

and validation datasets. The R² values were 0.974 for the training set and 0.989 for the 

validation set, indicating a strong correlation between the predicted and experimental outcomes. 

The mean values were 0.983 and 1.061, both close to 1, which demonstrates a high level of 

agreement between the predictions and actual results. Regarding statistical metrics, the RMSE 

values were 163.178 for training and 149.088 for validation, while the MAPE values were 

22.198 and 18.138, respectively. The COV values were also low, with 0.251 for training and 

0.212 for validation. These findings confirm that the model provides accurate and consistent 

predictions without signs of overfitting, and the similarity between the training and validation 

results highlights its strong generalization capability. 

Table 4 Training and validation results of the GEP model. 

 M SD MAPE RMSE R2 COV 

Training 0.983 0.247 22.198 163.178 0.974 0.251 

Validation 1.061 0.225 18.138 149.088 0.989 0.212 

 

Also, Figure 6 shows the comparison between the experimental moment capacities and 

those predicted by the GEP model for both the training and validation datasets. The orange 

vertical line in the figure is used to clearly separate the training data from the validation data. 

Figure 6 also illustrates the error rates between the predicted and experimental values for both 

datasets, highlighting the consistency of the proposed GEP model. Figure 7 presents the average 

absolute error percentages for each of the 75 experimental specimens, providing a clear view 

of the prediction accuracy of the proposed GEP model. According to the figure, 22 specimens 

have an absolute error below 10 percent, and approximately 80 percent of the specimens have 

an error below 30 percent. This distribution confirms that the model yields low prediction errors 

for most of the dataset, highlighting its reliability and consistency.      
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Figure 6. Comparison of experimental and proposed moment capacities for GEP model. 

 

Figure 7. Frequency distribution of average absolute error (%). 

 

Moreover, Figure 8 shows the scatter plot of experimental and predicted values for the 

moment capacity of ferrocement elements. As seen in Figure 7, the R² values were high for 

both the training and validation datasets, indicating a strong correlation. The GEP model 

predictions were observed to be homogeneously distributed. These results suggest a close 

relationship between the predicted and experimental values, confirming the reliability of the 

proposed GEP model.  
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Figure 8. Scatter plots of experimental and proposed values for moment capacity. 

The prediction results of the proposed GEP model, Plastic Analysis [36], Mechanism 

[37], Simplified Method [38], and the GEP model proposed by Gandomi et al. [2] were 

compared with the experimental results. It was seen that the predictions obtained using the 

Plastic Analysis [36], Mechanism [37], Simplified [38] methods are consistent with those 

obtained in Mashrei et al [12]. The comparison results are presented in Table 5. According to 

the mean value, the predictions closest to the experimental results belong to the proposed GEP 

model developed in this study. In contrast, the Simplified Method [38] yielded the highest mean 

value of 2.315, indicating that this approach may not provide economical results. Among all 

models, the proposed GEP model exhibited the lowest SD, MAPE, and RMSE values, which 

were 0.243, 21.141, and 159.777, respectively. The R² value of the proposed GEP model was 

0.977, representing the highest level of correlation compared to the other models. Additionally, 

the COV value of 0.242 was the lowest among all compared approaches. Based on these 

statistical indicators, the proposed GEP model outperforms both the theoretical models [36–38] 

and the GEP model developed by Gandomi et al. [2]. Following the proposed GEP model, the 

most consistent prediction accuracy was observed in the GEP model developed by Gandomi et 

al [2]. Among the theoretical models, Plastic Analysis [36], Mechanism [37], and Simplified 

Method [38] ranked from best to worst in terms of predictive accuracy. As shown in Table 5, 

the difference in MAPE and RMSE values between the theoretical models, especially 

Mechanism and Simplified Method, and the GEP models was significant. 
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Table 5. Statistical data obtained from the comparisons between the predictions and 

experimental findings. 

Model M SD MAPE RMSE R2 COV 

GEP model [2] 1.025 0.329 25.538 199.644 0.964 0.321 

Plastic Analysis [36] 1.348 0.418 28.682 564.326 0.843 0.310 

Mechanism [37] 1.111 0.429 33.036 518.582 0.764 0.386 

Simplified Method [38] 2.315 0.869 51.519 876.941 0.757 0.375 

Proposed GEP model 1.003 0.243 21.141 159.777 0.977 0.242 

 

The 3D surface and 2D contour plots of absolute error are presented in Figures 9a and 

9b to better illustrate the prediction reliability of the proposed GEP model. The frequency of 

large prediction errors was generally low. It was observed that higher error percentages were 

more common in elements with lower moment capacity, whereas the error decreased in 

elements with higher moment capacity. As a result, based on Figure 8, the proposed GEP model 

demonstrated strong overall predictive ability when evaluated across the entire dataset. 

 

Figure 9. 3D surface and 2D contour plots of absolute error of the GEP model for moment 

capacity (a) 3D surface plot. (b) 2D contour plot. 

3.1  Sensitivity and Parametric Analysis  

A sensitivity and parametric analysis (SA) were presented using Equations (14) and (15) 

to identify the relative contribution of the parameters to the moment capacity. 

𝑁𝑖 = 𝑓𝑚𝑎𝑥(𝑥𝑗) − 𝑓𝑚𝑖𝑛(𝑥𝑗) (14) 

𝑆𝐴 =
𝑁𝑗

∑ 𝑁𝑗
𝑗=1
𝑛

 (15) 
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where 𝑓𝑚𝑎𝑥(𝑥𝑗) and 𝑓𝑚𝑖𝑛(𝑥𝑗) refers to the maximum and minimum predicted outputs 

corresponding to the ith input parameter, while the other input parameters are held constant their 

mean values [47, 48]. Additionally, the results of the sensitivity analysis showing the relative 

contributions of each input parameter to the moment capacity of ferrocement elements are 

presented in Figure 10. According to the figure, the most influential input parameter affecting 

the model output is ℎ, with a contribution of 54.06%, followed by 𝑣𝑓 at 27.18%.  The next most 

significant parameter is 𝑏, with a contribution of 15.68%. In contrast, the  𝑓𝑐𝑢 
 and  𝑓𝑢𝑙 

have 

relatively minor effects on the model output. The results are consistent with findings reported 

in the literature [2, 3, 12]. As is evident from these results, the robustness of the proposed GEP 

model is acceptable. 

The parametric analysis was also performed besides sensitivity analysis in this study. 

The purpose of parametric analysis is to show the impact of changing the input parameters of 

the given model on the predicted output. The findings of the parametric analysis performed to 

better prove the accuracy of the model in evaluating and optimizing the performance of the 

GEP Model are shown in Figure 11. In addition, as presented in Figure 11, the moment capacity 

of ferrocement elements increases when each input variable is increased in general. 

Additionally, it was observed that 𝑓𝑐𝑢 
,  𝑓𝑢𝑙 

, 𝑣𝑓 
parameters linearly increase the moment 

capacity, while 𝑏  and ℎ have a non-linear effect on the moment capacity. These findings are 

consistent with the findings of parametric analysis in other studies [2, 12]. 

 

 

Figure 10. Sensitivity analysis of input parameters on moment capacity. 
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Figure 11. Parametric analysis of input parameters on moment capacity. 

4 CONCLUSION 

In this study, the GEP model is proposed to predict the moment capacity of ferrocement 

elements using a data set of 75 test specimens and five input parameters. The findings obtained 

are given below; 

1) It is observed that the statistical values calculated in this study for both the training 

and validation datasets are close to each other. This result shows that the GEP model has 

sufficient accuracy in predicting 𝑀𝑢. 

2) The M, SD, MAPE, RMSE, R2 and COV values of the proposed GEP were 1.003, 

0.243, 21.141, 159.777, 0.977 and 0.242, respectively. These values prove that it is statistically 

ahead of the theoretical studies and the findings of a different GEP model in the literature. In 

particular, the high R2 and low COV value of the proposed GEP model shows that there is a 

high correlation between the experimental findings and the predictions. 
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3) It is seen that the error percentage of the predictions with the proposed GEP model is 

higher for test elements with low moment capacity compared to the experimental findings given 

in the data set. 

4) According to the sensitivity analysis findings, the most effective parameters on 𝑀𝑢 

are ℎ, 𝑣𝑓 and 𝑏 while the least effective parameters are 𝑓𝑐𝑢 
 and  𝑓𝑢𝑙 

. The findings of the 

parametric analysis and sensitivity analysis show that the proposed GEP model achieve the 

physical characteristics of the moment capacity of ferrocement elements with respect to 

robustness. 

5) As a result, it can be said that GEP provides effective and reliable findings and 

therefore, it can facilitate the solution of many complex problems in civil engineering. 

6) The proposed GEP model in this study and the predictions findings obtained are valid 

for the maximum and minimum range of input parameters in the used dataset. To obtain more 

accurate findings, it is recommended to propose new equations for 𝑀𝑢 by increasing the number 

of experiments and input parameters. 
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