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ABSTRACT: In this study, we proposed a new approach for diagnosing Parkinson’s disease (PD) based on 

the slope values between neighboring amplitudes of vocal cord vibration signals. The inter-amplitude slope 

signals were obtained by computing the slopes between adjacent amplitudes in the vocal cord vibration 

signals. Feature vectors were extracted using common statistical parameters and applied to widely used 

machine learning classifiers such as Naive Bayes (NB), Generalized Logistic Regression (GLR), Logistic 

Regression (LR), Decision Tree (DT), and Random Forest (RFs). Different experiments were conducted to 

evaluate the contribution of the inter-amplitude slope approach and the performance of the classifiers in 

distinguishing healthy and PD segments. The experiments were carried out on original signals, inter-amplitude 

slope signals, and sub-band decompositions of both original and slope signals. The results showed satisfactory 

classification accuracy for all feature extraction methods, with the highest accuracy achieved using inter-

amplitude slope signals. The GLR and Random Forest (RFs)-based classifiers outperformed others, achieving 

100% accuracy, while the LR classifier reached 91%, and the DT and NB classifiers achieved 95%. Finally, 

the inter-amplitude slope approach, used for the first time in this study, enhanced classifier performance in 

PD diagnosis. 
 

Keywords- Vocal cords, Parkinson's Disease, inter-features slope. 

 

1. Introduction 

Parkinson's disease (PD) first introduced by Doctor James Parkinson in 1817 is a 

neurodegenerative disorder with major symptoms such as speech disorders, gait 

disturbances, dementia and tremors occurring due to damaging of neurons that are 

responsible for the emitting of dopamine in the brain. (Langston, 2002; Jankovic, 2007). It 

is estimated that PD affects 5 million people worldwide and this disease will unfortunately 

increase significantly in the next 10 years (Yigit et al., 2018). PD occurs in one person in 

every 100 people aged 65 and over, which is the most common disease after Alzheimer's 

disease in a particular age group (Parkinson's Disease Association, 2011). Although some 

of the symptoms of PD may be reduced by means of drug treatment and/or surgical 

intervention, there is still no definitive diagnostic method. However, the scales, which was 

introduced by International Parkinson and Movement Disorder Society (MDS), such as the 

PD Questionnaire 39 (PDQ-39) (Peto et al., 1995), the Unified PD Rating Scale (MDS-

UPDRS) (International Parkinson and Movement Disorder Society, 2008), Hoehn and Yahr 

Scale (Hoehn et al., 1967), and Brief Psychiatric Rating Scale (Overall et al., 1962), are 

helpful for the analysis of disease, but they are not seen enough. Therefore, in order to make 

a significant contribution to early diagnosis of the disease and support the results of the 

scale, many diagnosis models based on artificial neural networks (ANNs) have recently 

been suggested by researchers (Guruler and Huseyin, 2017).  

http://dergipark.gov.tr/gbad
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The feature vectors extracted from different datasets such as vocal cords signals, speech 

signals, pre-processed walking signals and Fourier-transformed infrared micro-

spectroscopy (FTIR) datasets have been used as the inputs of the ANN-based classifier 

models in the diagnosis of PD. These include studies on the use of artificial intelligence and 

machine learning techniques in the diagnosis of PD (Kwon, et al., 2020), studies examining 

the relationship between audio signals and audio analysis and Parkinson's disease (Muro et 

al., 2018), studies on PD diagnosis with pre-processed gait signals (Mirelman et al., 2011), 

and the effects of data sets obtained using FTIR techniques on Parkinson's disease 

(Kavanagh, et al., 2015). FTIR is a powerful technique in biochemistry to examine the 

secondary structure of protein molecules, nucleic acids, carbohydrates and lipids (Hamilton, 

2016). This study of Hamilton in 2016 allowed the analysis of PD progress on the semi-

numerical evaluation of DaTSCAN images by using the ratio of audience accumulation in 

putamen to the audience accumulation in the caudate core. In a study of Baby in 2017, the 

pre-processed walking dataset was also used for the classification of PD. Muniz et al. used 

the basic components derived from the vertical component of ground reaction force (vGRF) 

as the inputs of a probabilistic neural network (PNN) in order to determine the difference 

between normal and PD subjects (Muniz et al., 2009). Ai et al. (2008) proposed a novel 

method to determine three types of common tremor (ET), PD tremor and physiological 

tremor (PT) which were frequently incorrectly diagnosed clinically. To this end, they 

proposed a novel synthetic multifaceted diagnostic method for hand tremendous 

acceleration signals by combining the output results of the independent back-propagated 

neural network (BPNN) with the D-S evidence theory. In another study, the dataset 

consisting of PD and healthy subjects were weighted the by using the fuzzy C-means (FCM) 

clustering-based feature weighting (FCMFW) model, and then classified them by using the 

k-NN classifier (Polat, 2011). While k was selected as 2, while total correct classification 

(TCC) ratio was 72.16% for the raw dataset, it was 96.96% for the dataset weighted by 

using FCMFW approach. In the study of Ozcift in 2012, the integration of feature selection 

and rotation forest classifiers in computer-aided diagnosis of (PD) is investigated. In the 

study, support vector machines (SVM) are used to select the most important features and 

rotation forest classifiers are used on these selected features to improve the diagnostic 

performance. PD was detected by using SVM classifier in TCC ratio of 97% (Ozcift, 2012). 

Chen et al. proposed a PD diagnostic system with the fuzzy k-Nearest Neighbor (FKNN) 

method, and compared its experimental results with them of SVM-based approaches (Chen 

et al., 2013). They also used the Principal Component Analysis (PCA) approach to reduce 

the size of the dataset in the analysis stage to improve PD diagnostic accuracy. Their 

experimental results showed that the FKNN-based system significantly improved the 

classification accuracy with 96.07% and left behind SVM-based approaches and other 

methods in the literature. In 2014, Chandrashekar developed a new method for the diagnosis 

of PD by using an ANN-based classifier and speech measurements. For this method, PDs 

were spoken into a microphone, and these speech signals were analyzed by using the Praat 

(a free software package for the scientific analysis of phonetics). ANN-based classifier 

trained by the actual PD dataset could accurately classified the dataset in the TCC ratio of 

96.55%. In another study, the feature vectors extracted by using two computational models 

that match speech signal measurements to clinical results were applied into MLPNN and 

Adaptive Neuro Fuzzy Inference System (ANFIS) models for the diagnosis of PD (Hlavica 

et al., 2016). It was seen in this study that the MLPNN model trained by using the 

Levenberg-Marquardt (LM) optimization algorithm was more successful than the MLPNN 

model trained by using flexible back propagation and conjugate gradient methods. The 

artificial neural network model turned out to be 92.6% accurate and the ANFIS model was 

90.5% accurate. The findings show that artificial neural networks are better at predicting 
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progression of PD. The models' loss functions were also analyzed and the artificial neural 

network model's loss value was less than that of the ANFIS model.  The latter was more 

sensitive as the power plant operational conditions affected the models. It shows that the 

artificial neural network has a greater predictive power. Khan et al. suggested an 

evolutionary method to train both distinguishable and indistinguishable parameters using 

the Cartesian Genetic Programming (CGP) (Khan et al., 2017). When real-world datasets 

for the detection of PD were used, the performance of their method reached to remarkable 

levels obtained by using many standard classification methods. Nilashi et al. focused on a 

new hybrid intelligent system to be used for estimating PD progression (Nilashi et al., 

2016). In their system, PCA and Expectation Maximization (EM) were used to address 

multiple common problems in experimental datasets and to cluster the dataset. Then, PD 

progression was estimated by using ANFIS and Support Vector Regression (SVR). The 

experimental results performed by using the datasets of public Parkinson's showed that their 

method increased the prediction accuracy of PD progression, significantly. Guruler in 2017 

proposed a new diagnostic system using a combination of K-means clustering-based feature 

weighting (KMCFW) method and complex valued ANN (CVANN) model. In the first stage 

of the model, the features in the PD dataset were weighted by using the KMCFW method 

and these new features were converted into a complex format. The obtained complex feature 

values are applied into the input of CVANN model. The performance of the proposed 

system was evaluated by five different evaluation methods. Their experimental results 

showed that this hybrid system called as KMCFW-CVANN was significantly superior to 

the real valued ANN and reached the highest classification results reported so far with a 

classification accuracy of 99.52%. In 2017, Yilancioglu focused on PD diagnosis based on 

the linear regression (LR) model and used the features which are motor, total United PD 

Rating Scale (UPDRS) clinical results and vocal cord signals. In addition to this, some 

features were removed from the training datasets used in the LR model in order to show the 

importance of different characteristics and correlations between the results and predicted 

UPDRS scores. The total UPDRS features were excluded from the training dataset and the 

experiments were repeated. The correlation between the estimated motor UPDRS and 

clinical motor UPDRS decreased to 72%. When the motor UPDRS features were removed 

from the training dataset, the total estimation of UPDRS decreased by up to 76%. Next, all 

Jitter values were excluded from the training dataset, and then the motor UPDRS scores 

were estimated. The correlation between predicted motor UPDRS score and clinical motor 

UPDRS score was found as 97%. Jitter values and total UPDRS scores were then removed 

and motor UPDRS scores were estimated. The correlation between the estimated and 

clinical motor UPDRS scores was 79%.  

 

In this paper, a new approach is proposed for the diagnosis of PD based on the feature 

vectors obtained by using the basic statistical parameters on the frequency sub-bands of 

vocal cord signals. First, the vocal cord signals were decomposed into the sub-bands by 

using the discrete wavelet transform (DWT). Second, the feature vectors were computed by 

using the basic statistical parameters that are mean, standard variation, geometric mean and 

harmonic mean. The obtained feature vectors were used as the inputs of NB, GLR, LR, DT 

and RFs based classification models with and without normalization in order to illustrate 

the contributions of the basic parameters to PD learning of the classifier models.  
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2. Material and Methods 

2.1. Dataset 

In this study, the dataset was consisted of 54 healthy subjects and 54 PD subjects. 54 healthy 

subjects were collected by means of the sound recordings from healthy volunteers aged 16-

50 years. For this aim, they were asked to say a, o and u for 5 seconds, and the obtained 

sounds were recorded in .m4a format. The sound samples of 20 PD subjects were taken 

from University of California repository, and they were rearranged by dividing with 5 

seconds. Both of healthy and PD sounds were sampled at 48000 Hz (Parkinsons Data Set). 

The examples of signals taken from the PD and healthy segments are given in Figure 1. 

  
(a) PD                                                                        (b) healthy 

Figure 1. The examples of signals taken from the PD and healthy segments 
 

 

2.2. Discrete Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) is a spectral analysis technique used for analyzing 

non-stationary signals, providing a time-frequency representation. It has been widely 

applied in the analysis of biomedical signals and images, as these signals often exhibit non-

stationary characteristics (Hariharan et al., 2022). DWT employs long time windows at low 

frequencies and short time windows at high frequencies, which ensures effective time-

frequency localization (Gonzalez and Woods, 2002). This approach allows for the best 

time-frequency resolution across all frequency ranges. DWT is also capable of analyzing 

time series signals with non-stationary power across different frequencies, using both the 

time-frequency and time-scale domains (Coskun and Istanbullu, 2012). 

DWT decomposes a signal into sub-bands through successive high-pass and low-pass 

filtering of the time-domain signal. The high-pass filter (g) is the discrete mother wavelet, 

while the low-pass filter (h) is its mirror version. The down-sampled signals from the first 

filtering step are called the first-level approximation (A1) and detail coefficients (D1). The 

approximation and detail coefficients for subsequent levels are obtained using the 

approximation coefficients from the previous level. The number of decomposition levels is 

determined based on the dominant frequency components of the signal (Zayrit et al., 2020). 
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Figure 2. Sub-band decomposition of a signal by using DWT 

 

Scaling function, )(, xkj  based on low pass filter and wavelet function, )(, xkj  based on 

high pass filter are defined as  
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where x=0,1, 2,…, M-1, j=0,1,2,…,J-1, k=0,1,2,…,2j-1, J equals to log2(M) and M is the 

length of the signal and chosen as 2J (Gonzalez and Woods, 2002).  

 

Sampling rate k and the resolution j specify the positions and the widths on the x axis of 

functions, respectively. The amplitudes of functions depend on 2/2 j  value (Gonzalez and 

Woods, 2002). Approximation coefficients )(kAi  and detail coefficients )(kDi  in ith level 
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Figure 3 and 4 show approximate and detailed coefficients of vocal cord segments taken 

from the healthy and PD subjects, respectively. 
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Figure 3. Approximate and detailed coefficients of a sample vocal cord segment taken 

from healthy subject 

 

 
 

 

Figure 4. Approximate and detailed coefficients of a sample vocal cord segment taken 

from the PD subject 

 

In this study, the decomposition level of the DWT applied to both normalized and non-

normalized vocal cord signal was determined by the correct classification success rates. 

Since level 3 provided the highest TCC rates in the experimental studies, this level of 

transform was used. Therefore, in this study, the feature vectors calculated from the A3, 

D1, D2, D3 coefficients obtained by wavelet transform at level 3 were applied as input to 

machine learning (ML)-based classifier models for PD diagnosis.    
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2.3. Feature extraction 

For comparing the signals, they need to be normalized in power level by scaling in identical 

level, therefore we normalized both of PD and healthy vocal cord segments between [0,1] 

using min-max normalization formula as below 

 

 𝑥𝑖 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                                                                         (4) 

 

The obtained normalized signals were decomposed into frequency sub-bands using DWT, 

and the feature vectors were obtained from the sub-band coefficients using basic statistical 

parameters in following Table 1.  

 

Table 1. The used statistical parameters 

Statistical parameters Formulas Explain 

Mean 
𝑋𝑚𝑒𝑎𝑛 =

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 

The mean is the ratio of the sum of 

the amplitudes in a segment to the 

number of data points. 

Standard variation 

𝜎 =
√

∑ (𝑥𝑖−𝑋𝑚𝑒𝑎𝑛)
2

𝑛

𝑖=1

𝑛
 

The standard deviation is the ratio of 

the sum of the squares of the distance 

to the mean of the amplitudes in a 

segment to the number of data points. 

Geometric mean 

𝐺 = √∏ 𝑥𝑖

𝑛

𝑖=1

𝑛

 

Geometric mean is the multiplication 

of the amplitudes in a segment by the 

root of the number of data points in 

that segment. 

Harmonic mean 𝐻 =
𝑛

∑
1
𝑥𝑖

𝑛

𝑖=1

 The harmonic average is 

multiplication of the inverse of the 

amplitudes in a segment by the 

number of data points in that 

segment. 

where, 𝑥𝑖 is the amplitude of ith data point, 𝑛 is the number of data points.  

 

2.4. Detection of PD using the sub-bands of vocal cords  

In this study, we used the widely known classifiers for the detection of PD which are Naïve 

Bayes (NB), General Logistic Regression (GLR), Logistic Regression (LR), Decision Tree 

(DT) and Random Forest (RFs). These classifiers are briefly described in the following 

subsections: 

 

2.4.1. NB classifier 

In this approach, data with a certain proportion of pre-classified data is presented and 

learned. The new data is compared with the taught data to predict which category the new 

data belongs to (Mitchel, T. ,1997). The more pre-classified data, the closer the prediction 

is to the truth. What matters in NB is the probability of an event happening (Bishop, 2006).
      

𝑃𝑃 (
𝑌𝑖

𝑋
) =

𝑃(
𝑋

𝑌𝑖
)𝑃(𝑌𝑖)

𝑃(𝑋)
                                                                                                                 (5)
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where, 𝑌𝑖 is one of the classes previously labeled as 1 or -1. NB is eager learning, meaning 

that it learns before the data to be predicted arrives, calculating all the probabilities. After 

learning, it is memory efficient as it deletes the data used for training and keeps only the 

probabilities (Bhattacharyya et al., 2011).                                               

      

2.4.2. Logistic Regression (LR) classifier 

In logistic regression, the estimated values of the dependent variable are calculated 

probabilistically and classified accordingly (Ayhan 2006). Binary logistic regression 

method was used in the experimental studies. Binary logistic regression model is expressed 

by Equation 6 (Ozdamar, 2009). 

 

(𝑌)𝑃
 =

𝑒𝛽0+𝛽1𝑥

1+𝑒𝛽0+𝑒𝛽1𝑥
                   (6) 

 
 

2.4.3. DT classifier 

Classification based on this approach is predicated on learning the dataset by partitioning it 

into certain groups. The decision tree starts with a node, which is the most discriminative 

category in the dataset. The most discriminative category is the one with the highest gain. 

Equation 7 calculates the entropy of the class to be predicted (Ghanbari, et al., 2023). 

 

𝐸(𝐷) = − ∑ 𝑃𝑖𝑙𝑜𝑔2(𝑃𝑖)
𝑁

𝑖=1
                      (7)                                                                                                                           

where, 𝑃𝑖  is the class to be predicted. After calculating the information gain of attribute, A 

in dataset 𝐷 with Equation 8, the gain is calculated with Equation 9 and the node with the 

highest gain is selected (Balaji, et al., 2023). 

 

𝑖𝑛𝑓𝑜𝐴(𝐷) = ∑ (
|𝐷𝑗|

|𝐷|

𝑁

𝑗=1
𝐸(𝐷𝑗))                      (8)                                                                                                                       

 

Gain(A)=E(D)- 𝑖𝑛𝑓𝑜𝐴(𝐷)                     (9)        

where, Gain(A) is the gain of attribute A, 𝐷𝑗  is the jth element in the dataset. N is the length 

of the dataset (Ali et al., 2023). 

 

2.4.4. Random Forests (RFs) classifier 

A random forest (RF) multi-class classifier consists of multiple trees, each grown with some 

form of randomness. The leaf nodes of each tree are labeled with estimates of the posterior 

distribution over the image classes. Each internal node contains a test that optimally splits 

the data space to be classified. A pattern is classified by passing it down each tree and 

aggregating the leaf distributions that it reaches. Randomness can be introduced at two 

stages during training: by subsampling the training data so that each tree is grown with a 

different subset, and by selecting the node tests randomly (Bosch et al., 2007). The RF 

classifier approach aims to achieve higher accuracy by using multiple decision trees 

simultaneously. The key difference from bagging is how the decision trees are constructed. 

The feature to split at each node is chosen as the best from a randomly selected set of 

features. 
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Figure 5. The schematic structure of RFs 

As it can be seen in Figure 5, the majority vote can be taken as the decision (averaged if a 

prediction is to be made). In RF, unlike NB, as the data increases, the results may be wrong. 

This is due to overlearning. Also, the computation time gets longer as the branches increase. 

Therefore, it is useful for small and medium sized data sets. 

 

3. Results and Discussion 

In this paper, the data normalization and feature extraction processes, and the classification 

processes based on machine learning algorithms was implemented in MATLAB and Rapid 

Miner program, respectively. In first, dataset was normalized by using Equation 4 in order 

to have the same range of values for each of the inputs to the classifier models. This can 

guarantee stable convergence of weight and biases. In second, the normalized vocal cords 

were decomposed by using DWT into sub-bands, and the feature vectors were extracted 

from each sub-band of vocal cords by using widely used statistical parameters which are 

mean, geometric mean, harmonic mean, variance, inter-point slope, Chi-Square and its 

entropy. In order to detect PD, the feature vectors were applied into the classifier models 

which are NB, GLR, LR, DT, RFs. 

 

Data preprocessing algorithms were written in MATLAB. Machine learning methods were 

tested in Rapid Miner. According to the tests performed in Rapid-Miner, the results 

(discarding those with stability=100%) are given in the figures below. According to the 

calculations made in Rapid Miner, the stability of the geometric and harmonic averages of 

the virtual parts of the data and the averages of the coefficients A of the 2nd wavelet 

transform and D of the 3rd wavelet transform of the real parts were found to be 100%. They 

were removed from the dataset as they may lead to overlearning (memorization). The 

correlations of the standard deviations of the D coefficients of the real and imaginary parts 

of the 1st wavelet transforms and the deviations of the harmonic means of the real parts of 

the 4th wavelet transform were found to be close to 0%. The results for non-normalized 

signals are given in the Table 2. 

 

Table 2. Results for non-normalized signals 

 ACC (%) F1 Score (%) Precision (%) AUC 

NB 73 77 67 0.905 

GLR 91 92 85 0.917 

LR 95 95 100 0.934 

DT 91 92 85 0.909 

RFs 100 100 100 1 

 

As can be seen in Table 2, NB shows a lower performance compared to other models. 

Especially in terms of Precision, it gave a low result with 67%. In addition, although the 

Dataset

Dataset 1 Decision Tree 1

Dataset 2 Decision Tree 2
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area under the curve (AUC) value is 0.905, it is weaker than the other models. The GLR model 

shows a strong performance in terms of accuracy and F1 score. The AUC value is also quite 

high at 0.917, indicating that the model can successfully separate the positive class. Logistic 

Regression performs the best in terms of Precision with 100%. The AUC value is also quite 

high at 0.934, indicating that the model is a strong classifier. Overall, it can be considered as a 

model that can produce accurate and balanced predictions. The Decision Tree performs 

similarly to GLR. Although it has high accuracy, F1 score and AUC values, it falls below other 

strong models. The Random Forests model performs 100% on all metrics and has an excellent 

AUC of 1. It is possible that this model overfits the data, but it appears to be the strongest model 

on the available data. The ROC curves for these classifiers are given in Figure 6. 

 

 Figure 6. ROC curves for non-normalized signals 

As can be seen in Figure 6, the RFs model shows the highest performance in all metrics, 

but may pose a risk of overfitting. Logistic Regression (LR) and GLR stand out with high 

accuracy and AUC values and can be considered as reliable classifiers. 

 

The dataset was normalized in MATLAB and then fed back to Rapid Miner Auto Model 

for machine learning methods. In the dataset, the collinearities of the averages, the means 

and harmonic means of the 1st Wavelet A coefficients, the real coefficients and the standard 

deviations of both the A and D coefficients of the 1st, 2nd, 3rd, 4th Wavelets are greater 

than 95%. Also, the stability of the geometric and harmonic means of the virtual parts is 

greater than 90%. Since these have a bad effect on learning, they were removed from the 

dataset and a new dataset was given to the input of the machine learning models. 

Accordingly, the results are given in Table 3. 

Table 3. Results for non-normalized signals 

 ACC F1 Score Precision AUC 

NB 95 95 100 0.917 

GLR 100 100 100 1 

LR 91 92 85 1 

DT 95 96 92 0.5 

RFs 100 100 100 1 
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As seen in Table 3, the NB model performs quite well, especially with a Precision of 100%, 

minimizing the false positive rate. The AUC value of 0.917 shows that the model separates 

the positive and negative classes well, but is slightly weaker than the other models. The 

GLR model turns out to be an excellent classifier, performing 100% on all metrics. The 

AUC value is also 1, indicating that the model successfully distinguishes classes. However, 

the 100% performance may carry a risk of overfitting the model. Although the Logistic 

Regression model performs well in terms of accuracy and F1 score, it may tend to 

misclassify some positive examples with a Precision of 85%. The AUC value is quite high 

at 1, indicating that it can distinguish between positive and negative classes very well. While 

the accuracy and F1 score of the Decision Tree model is high, the AUC value is given as 

0.5. This indicates that the model cannot distinguish between positive and negative classes 

and makes random predictions. Such a low AUC may suggest that the model's classification 

success is not independent of the data distribution and only performs well in certain parts 

of the data. The Random Forests model performs 100% on all metrics. An AUC of 1 

indicates that the model can perfectly separate classes. The ROC curves for these classifiers 

are given in Figure 7. 

 
Figure 7. ROC curves for normalized signals 

As shown in Figure 7, the GLR and RFs models show the highest performance, but this can 

carry a risk of overfitting. The NB model also provides very reliable results, while LR 

shows a balanced performance. The low AUC value for the DT model indicates that this 

model has difficulty distinguishing between classes and is not as reliable as the other 

models.  

 

Normalization provided a significant improvement in classifier performance. With non-

normalized data, the RF classifier showed the highest accuracy and F1 score, while there 

was a significant difference between the other classifiers in terms of accuracy and F1 score. 

However, GLR and DT classifiers showed limited success in some performance metrics. In 

particular, the AUC value for the NB model remained at 0.905, indicating that the 

classification capacity of the model is relatively low. 

 

After normalization, the performance of all classifiers improved significantly. For example, 

the NB classifier reached 95% in ACC and F1 score, and its AUC value increased to 0.917. 

The GLR and RF classifiers achieved 100% accuracy, 100% F1 score and 100% AUC, 
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providing an optimal classification. Although the AUC of the DT classifier decreased to 

50%, it performed well in other metrics (ACC: 95%, F1: 96%). This shows that 

normalization positively affects the feature extraction process of certain algorithms, but 

may have different effects on algorithms such as DT. These analyses show that 

normalization plays a critical role in improving classification accuracy, especially in GLR, 

LR and RF classifiers. 

 

4. Conclusions 

In this study, we investigate learning methods and parameters to help early detection of PD. 

The studies show that normalization positively affects the feature extraction process of 

certain algorithms, but may have different effects on algorithms such as DT. These analyses 

show that normalization plays a critical role in improving classification accuracy, especially 

in GLR, LR and RF classifiers. In conclusion, these findings suggest that normalization is 

an important preprocessing step, especially for classifiers such as NB and GLR, and plays 

a critical role in improving performance. Moreover, the RF classifier maintains its high 

performance regardless of the normalization status and can be an effective choice for early 

detection of PD. Future work could explore more classifiers and datasets to generalize these 

findings and examine normalization techniques' effects on performance. Studies with 

clinical data may also enhance practical applicability, aiding the development of robust 

tools for early PD diagnosis. 
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