

ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION

KULDIP RAJ AND RENU ANAND

ABSTRACT. In this paper we introduce new difference sequence spaces $r^q(\mathcal{M}, \Delta_n^m, u, p)$ by using Riesz mean and Musielak-Orlicz function. We also make an effort to study some topological properties and compute $\alpha -, \beta -$ and $\gamma -$ duals of these spaces. Finally, we study matrix transformations on newly formed spaces.

1. INTRODUCTION AND PRELIMINARIES

Let w be the vector space of all real or complex sequences. By l_{∞}, c and c_0 ; we denote the classes of all bounded, convergent and null sequences; respectively. Also, we write bs, cs and l_p to denote the spaces of all bounded, convergent series and p-absolutely summable sequences, respectively, where $1 \le p < \infty$. We use the convention that any term with a negative subscript is equal to zero.

Let X and Y be two sequence spaces and let $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x exists and is in Y; where $(Ax)_n = \sum_{i=1}^{n} a_{nk}x_k$.

By $A \in (X : Y)$ we mean the characterizations of matrices $A : X \to Y$. A sequence x is said to be A-summable to l if Ax converges to l which is called the A-limit of x. For a sequence space X, the matrix domain X_A of an infinite matrix A is defined as

(1.1)
$$X_A = \{ x = (x_k) \in w : Ax \in X \}.$$

The theory of matrix transformations is a wide field in summability theory. It deals with the characterizations of classes of matrix mappings between sequence spaces

²⁰⁰⁰ Mathematics Subject Classification. 46A45, 40C05, 46J05.

Key words and phrases. sequence space of non-absolute type, Musielak-Orlicz function, paranorm space, matrix transformations.

by giving necessary and sufficient conditions on the entries of the infinite matrices. The classical summability theory deals with a generalization of convergence of sequences and series. One original idea was to assign a limit to divergent sequences or series. Toeplitz [29] was the first to study summability methods as a class of transformations of complex sequences by complex infinite matrices.

Let $A = (a_{nk})$ be any matrix. Then a sequence x is said to be summable to l, written $x_k \to l$, if and only if $A_n x = \sum_k a_{nk} x_k$ exists for each n and $A_n x \to l$ $(n \to \infty)$.

For example, if $A_n = I$, the unit matrix for all n, then $x_k \to l(I)$ means precisely that $x_k \to l \ (k \to \infty)$, in the ordinary sense of convergence.

An infinite matrix $A = (a_{nk})$ is said to be regular ([11], page:165) if and only if the following conditions (or Toplitz conditions) hold:

(i)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} = 1,$$

(ii)
$$\lim_{n \to \infty} a_{nk} = 0, \quad (k = 0, 1, 2, ...)$$

(iii)
$$\sup_{n \in \mathbb{N}} \sum_{k=0}^{\infty} |a_{nk}| < \infty.$$

Let (q_k) be a sequence of strictly positive numbers and let us write, $Q_n = \sum_{k=0}^n q_k$ for $n \in \mathbb{N}$. Then the matrix $R^q = (r_{nk}^q)$ of the Riesz mean (R, q_n) is given by

$$r_{nk}^{q} = \begin{cases} \frac{q_{k}}{Q_{n}}, & \text{if } 0 \le k \le n, \\ \\ 0 & \text{if } k > n. \end{cases}$$

The Riesz mean (R, q_n) is regular if and only if $Q_n \to \infty$ as $n \to \infty$ (see, Petersen [22], p.10).

The sequence space $r^{q}(u, p)$ is introduced by Sheikh and Ganie [26] as:

$$r^{q}(u,p) = \Big\{ x = (x_{k}) \in w : \sum_{k} \Big| \frac{1}{Q_{k}} \sum_{j=0}^{k} u_{j} q_{j} x_{j} \Big|^{p_{k}} < \infty \Big\},$$

where $0 \leq p_k \leq D < \infty$.

Let $p = (p_k)$ be a bounded sequence of strictly positive real numbers with $\sup_k p_k = \sum_k p_k$

D and $H = \max\{1, D\}$. Then, the linear spaces l(p) and $l_{\infty}(p)$ were defined by Maddox [13] (see also, [27],[30]) as follows:

$$l(p) = \{x = (x_k) : \sum_k |x_k|^{p_k} < \infty\}$$

and

$$l_{\infty}(p) = \{x = (x_k) : \sup_k |x_k|^{p_k} < \infty\}$$

which are complete spaces paranormed by

$$g_1(x) = \left[\sum_k |x_k|^{p_k}\right]^{\frac{1}{H}}$$
 and $g_2(x) = \sup_k |x_k|^{\frac{p_k}{H}}$

if and only if $\inf p_k > 0$ for all k.

Throughout the paper we shall assume that $p_k^{-1} + \{p'_k\}^{-1} = 1$ provided 1 < 1

inf $p_k \leq D < \infty$ and we denote the collection of all finite subsets of \mathbb{N} by F where $\mathbb{N} = \{0, 1, 2, ...\}.$

An Orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences $x = (x_k)$, then

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [9] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p (p \ge 1)$. The Δ_2 -condition is equivalent to $M(Lx) \le kLM(x)$ for all values of $x \ge 0, k > 0$ and for L > 1.

A sequence $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function (see [14], [19]). A sequence $\mathcal{N} = (N_k)$ is defined by

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \ k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \Big\},$$
$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k)$$

and $x = (x_k) \in t_{\mathcal{M}}$.

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^{0} = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

The notion of difference sequence spaces was introduced by Kizmaz [8], who studied the difference sequence spaces $l_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [5] by introducing the spaces $l_{\infty}(\Delta^m), c(\Delta^m)$ and $c_0(\Delta^m)$. Let n, m be non-negative integers, then for Z a given sequence space, we have

$$Z(\triangle_n^m) = \{x = (x_k) \in w : (\triangle_n^m x_k) \in Z\}$$

for $Z = c, c_0$ and l_{∞} where $\triangle_n^m x = (\triangle_n^m x_k) = (\triangle_n^{m-1} x_k - \triangle_n^{m-1} x_{k+1})$ and $\triangle^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_n^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+nv}.$$

Taking n = 1, we get the spaces $l_{\infty}(\triangle^m), c(\triangle^m)$ and $c_0(\triangle^m)$ studied by Et and Golak [5]. Taking m = n = 1, we get the spaces $l_{\infty}(\triangle), c(\triangle)$ and $c_0(\triangle)$ introduced and studied by Kizmaz [8]. Mursaleen et al. ([15], [16], [17], [18]) used the idea of Orilcz function and study different sequence spaces. Esi et al. ([1], [3], [4]) work on these type of sequence spaces. For more details about sequence spaces and matrix transformations (see [2], [7], [12], [20], [21], [23], [24], [25], [28]) and references there in.

2. The Riesz Sequence Space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ of Non-Absolute Type

Let X be a linear metric space. A function $g: X \to \mathbb{R}$ is called paranorm, if

- (1) $g(x) \ge 0$, for all $x \in X$,
- (2) g(-x) = g(x), for all $x \in X$,
- (3) $g(x+y) \le g(x) + g(y)$, for all $x, y \in X$,
- (4) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $g(x_n x) \to 0$ as $n \to \infty$, then $g(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm g for which g(x) = 0 implies x = 0 is called total paranorm and the pair (X, g) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [31], Theorem 10.4.2, P-183).

Let $\mathcal{M} = (M_j)$ be Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers. Then we define new difference sequence space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ as follows:

$$r^{q}(\mathcal{M}, \Delta_{n}^{m}, u, p) = \Big\{ x = (x_{k}) \in w : \sum_{k} \Big| \frac{1}{Q_{k}} \sum_{j=0}^{k} M_{j}(|u_{j}q_{j}\Delta_{n}^{m}x_{j}|) \Big|^{p_{k}} < \infty \Big\},$$

where $0 < p_k \leq D < \infty$.

With the definition of matrix domain (1.1), the sequence space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ may be redefined as

$$r^{q}(\mathcal{M}, \Delta_{n}^{m}, u, p) = \{l(p)\}_{R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)}$$

where $R^q(\mathcal{M}, \Delta_n^m, u)$ denotes the matrix $R^q(\mathcal{M}, \Delta_n^m, u) = r_{nk}^q(\mathcal{M}, \Delta_n^m, u)$ defined by

$$r_{nk}^{q}(\mathcal{M}, \Delta_{n}^{m}, u) = \begin{cases} \frac{1}{Q_{n}}(M_{k}(u_{k}q_{k}) - M_{k+1}(u_{k+1}q_{k+1})), & \text{if } 0 \le k \le n-1\\ \frac{M_{n}(u_{n}q_{n})}{Q_{n}}, & \text{if } k = n\\ 0, & \text{if } k > n. \end{cases}$$

Define the sequence $y = (y_k)$ which will be used by the $R^q(\mathcal{M}, \Delta_n^m, u)$ -transform of a sequence $x = (x_k)$, we have

(2.1)
$$y_k = \frac{1}{Q_k} \sum_{j=0}^k M_j(|u_j q_j \Delta_n^m x_j|).$$

The main purpose of this paper is to study some new difference sequence spaces generated by Riesz Mean and Musielak-Orlicz function. We shall show that these spaces are complete and paranormed spaces. We have also discuss the $\alpha -, \beta$ -duals of these spaces in section third of this paper. Finally, we discuss the matrix transformations on these spaces in the last section of this paper.

Theorem 2.1. Let $\mathcal{M} = (M_j)$ be Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers. Then $r^q(\mathcal{M}, \Delta_n^m, u, p)$ is a complete linear metric space paranormed by

$$g(x) = \left[\sum_{k} \left| \frac{1}{Q_k} \sum_{j=0}^{k-1} (M_j(u_j q_j) - M_{j+1}(u_{j+1} q_{j+1})) x_j + \frac{M_k(u_k q_k)}{Q_k} x_k \right|^{p_k} \right]^{\frac{1}{H}}$$

with $0 \leq p_k \leq D < \infty$ and $H = \max\{1, D\}$.

Proof. The linearity of $r^q(\mathcal{M}, \Delta_n^m, u, p)$ follows from the inequality. For $x, y \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ (see [11], p.30)

$$(2.2) \left[\sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k-1} (M_{j}(u_{j}q_{j}) - M_{j+1}(u_{j+1}q_{j+1}))(x_{j} + y_{j}) + \frac{M_{k}(u_{k}q_{k})}{Q_{k}}(x_{k} + y_{k}) \right|^{p_{k}} \right]^{\frac{1}{H}} \\ \leq \left[\sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k-1} (M_{j}(u_{j}q_{j}) - M_{j+1}(u_{j+1}q_{j+1}))x_{j} + \frac{M_{k}(u_{k}q_{k})}{Q_{k}}x_{k} \right|^{p_{k}} \right]^{\frac{1}{H}} \\ + \left[\sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k-1} (M_{j}(u_{j}q_{j}) - M_{j+1}(u_{j+1}q_{j+1}))y_{j} + \frac{M_{k}(u_{k}q_{k})}{Q_{k}}y_{k} \right|^{p_{k}} \right]^{\frac{1}{H}}$$

and for any $\alpha \in \mathbb{R}$ (See [12])

$$(2.3) \qquad |\alpha|^{p_k} \le \max(1, |\alpha|^H).$$

It is clear that $g(\theta) = 0$ and g(x) = g(-x) for all $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$. Again the inequality (2.2) and (2.3) yield the subadditivity of g and

$$g(\alpha x) \le \max(1, |\alpha|)g(x).$$

Let $\{x^n\}$ be any sequence of points of the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ such that $g(x^n - x) \to 0$ and (α^n) is a sequence of scalars such that $\alpha^n \to \alpha$. Then since the inequality,

$$g(x^n) \le g(x) + g(x^n - x)$$

holds by subadditivity of $g, \{g(x^n)\}$ is bounded and we thus have

$$g(\alpha_n x^n - \alpha x) = \left[\sum_k \left| \frac{1}{Q_k} \sum_{j=0}^k (M_j(u_j q_j) - M_{j+1}(u_{j+1} q_{j+1}))(\alpha_n x_j^n + \alpha x_j) \right|^{p_k} \right]^{\frac{1}{H}} \\ \leq |\alpha_n - \alpha|^{\frac{1}{H}} g(x^n) + |\alpha|^{\frac{1}{H}} g(x^n - x)$$

which tends to zero as $n \to \infty$. This proves that the scalar multiplication is continuous. Hence g is paranorm on the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$.

Now we prove the completeness of $r^q(\mathcal{M}, \Delta_n^m, u, p)$:

Let $\{x^i\}$ be any Cauchy sequence in the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$, where $x^i = \{x_0^i, x_1^i, ...\}$. Then, for a given $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that

(2.4)
$$g(x^i - x^j) < \epsilon \quad \forall \quad i, j \ge n_0(\epsilon).$$

Using definition of g and for each fixed $k \in \mathbb{N}$ that

$$|(R^q(\mathcal{M},\Delta_n^m,u)x^i)_k - (R^q(\mathcal{M},\Delta_n^m,u)x^j)_k|$$

$$\leq \left[\sum_{k} |(R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)x^{i})_{k} - (R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)x^{j})_{k}|^{p_{k}}\right]^{\frac{1}{H}} < \epsilon \text{ for } i, j \geq n_{0}(\epsilon)$$

which yields that $\{(R^q(\mathcal{M}, \Delta_n^m, u)x^0)_k, (R^q(\mathcal{M}, \Delta_n^m, u)x^1)_k, ...\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges say

$$(R^q(\mathcal{M}, \Delta_n^m, u)x^i)_k \to (R^q(\mathcal{M}, \Delta_n^m, u)x)_k \text{ as } i \to \infty.$$

Using these infinitely many limits $(R^q(\mathcal{M}, \Delta_n^m, u)x)_0, (R^q(\mathcal{M}, \Delta_n^m, u)x)_1, ..., we define the sequence <math>\{(R^q(\mathcal{M}, \Delta_n^m, u)x)_0, (R^q(\mathcal{M}, \Delta_n^m, u)x)_1, ...\}$. From (2.4) for each $t \in \mathbb{N}$ and $i, j \geq n_0(\epsilon)$,

(2.5)
$$\sum_{k=0}^{\iota} |(R^q(\mathcal{M}, \Delta_n^m, u)x^i)_k - (R^q(\mathcal{M}, \Delta_n^m, u)x^j)_k|^{p_k} \leq g(x^i - x^j)^H < \epsilon^H.$$

Take any $i, j \ge n_0(\epsilon)$. First, let $j \to \infty$ in (2.5) and then $t \to \infty$, we obtain

$$g(x^i - x) \le \epsilon.$$

Finally, taking $\epsilon = 1$ in (2.5) and letting $i \ge n_0(1)$, we have by Minkowski's inequality for each $t \in \mathbb{N}$ that

$$\left[\sum_{k=0}^{\tau} |(R^q(\mathcal{M}, \Delta_n^m, u)x)_k|^{p_k}\right]^{\frac{1}{H}} \leq g(x^i - x) + g(x^i)$$
$$\leq 1 + g(x^i)$$

which implies that $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$. Since $g(x - x^i) \leq \epsilon$ for all $i \geq n_0(\epsilon)$, it follows that $x^i \to x$ as $i \to \infty$. Hence, the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ is complete. \Box

Theorem 2.2. Let $\mathcal{M} = (M_j)$ be Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers. Then the sequence space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ of non-absolute type is linearly isomorphic to the space l(p), where $0 < p_k \leq D < \infty$.

Proof. To show that the spaces $r^q(\mathcal{M}, \Delta_n^m, u, p)$ and l(p) are linearly isomorphic, we have to prove that there exists a linear bijection between these spaces. Define a linear transformation $T: r^q(\mathcal{M}, \Delta_n^m, u, p) \to l(p)$ by $x \to y = Tx$ by using equation (2.2). The linearity of T is trivial. Further, it is obvious that $x = \theta$ whenever $T(x) = T(\theta)$ and hence T is injective. Let $y \in l(p)$ and define the sequence $x = (x_k)$ by

$$x_k = \sum_{n=0}^{k-1} \left(\frac{1}{M_n(u_n q_n)} - \frac{1}{M_{n+1}(u_{n+1} q_{n+1})} \right) Q_k y_k + \frac{Q_k}{M_k(u_k q_k)} y_k$$

for $k \in \mathbb{N}$. Then

$$g(x) = \left[\sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k-1} (M_{j}(u_{j}q_{j}) - M_{j+1}(u_{j+1}q_{j+1}))x_{j} + \frac{M_{k}(u_{k}q_{k})}{Q_{k}} x_{k} \right|^{p_{k}} \right]^{\frac{1}{H}}$$
$$= \left[\sum_{k} \left| \sum_{j=0}^{k} \delta_{kj}y_{j} \right|^{p_{k}} \right]^{\frac{1}{H}}$$

$$= \left[\sum_{k} \left|\sum_{j=0} \delta_{kj} y_{j}\right|\right]$$
$$= \left[\sum_{k} \left|y_{k}\right|^{p_{k}}\right]^{\frac{1}{H}}$$
$$= g_{1}(y) < \infty,$$

where

$$\delta_{kj} = \begin{cases} 1, & \text{if } k = j \\ 0, & \text{if } k \neq j. \end{cases}$$

Thus, we have $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$. Consequently, T is surjective and paranorm preserving. Hence, T is linear bijection and this shows that the spaces $r^q(\mathcal{M}, \Delta_n^m, u, p)$ and l(p) are linearly isomorphic.

3. Basis and $\alpha - \beta - \beta$ and $\gamma - \beta$ duals of the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$

In this section, we compute $\alpha - \beta - \beta$ and $\gamma - \beta$ duals of the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ and finally we give the basis for the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$.

For the sequence space X and Y, define the set

$$S(X:Y) = \{z = (z_k) : xz = (x_k z_k) \in Y\}.$$

The α -, β - and γ - duals of a sequence space X, respectively denoted by X^{α} , X^{β} and X^{γ} which are defined by

$$X^{\alpha} = S(X:l_1), X^{\beta} = S(X:cs) \text{ and } X^{\gamma} = S(X:bs).$$

Firstly, we state some lemmas which are required in proving our theorems:

Lemma 3.1. [6] (i) Let $1 < p_k \leq D < \infty$. Then $A \in (l(p) : l_1)$ if and only if there exists an integer B > 1 such that

$$\sup_{k\in F}\sum_{k}\left|\sum_{n\in k}\alpha_{nk}B^{-1}\right|^{p'_{k}}<\infty.$$

(ii) Let $0 < p_k \leq 1$. Then $A \in (l(p) : l_1)$ if and only if

$$\sup_{k\in F} \sup_{k} \left| \sum_{n\in k} \alpha_{nk} B^{-1} \right|^{p_k} < \infty.$$

Lemma 3.2. [10] (i) Let $1 < p_k \leq D < \infty$. Then $A \in (l(p) : l_{\infty})$ if and only if there exists an integer B > 1 such that

(3.1)
$$\sup_{n} \sum_{k} \left| \alpha_{nk} B^{-1} \right|^{p'_{k}} < \infty.$$

(ii) Let $0 < p_k \leq 1$ for every $k \in \mathcal{N}$. Then $A \in (l(p) : l_{\infty})$ if and only if

(3.2)
$$\sup_{n,k} \left| \alpha_{nk} \right|^{p_k} < \infty.$$

Lemma 3.3. [8] Let $0 < p_k \leq D < \infty$ for every $k \in \mathcal{N}$. Then $A \in (l(p) : c)$ if and only if (3.1) and (3.2) hold along with

(3.3)
$$\lim_{n} \alpha_{nk} = \beta_k \text{ for } k \in \mathcal{N}$$

also holds.

Theorem 3.1. Let $\mathcal{M} = (M_j)$ be a Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers. Define the sets $D_1(\mathcal{M}, \Delta_n^m, u, p)$ and $D_2(\mathcal{M}, \Delta_n^m, u, p)$ as follows:

$$D_1(\mathcal{M}, \Delta_n^m, u, p) = \bigcup_{B>1} \left\{ \alpha = (\alpha_k) \in w : \sup_{k \in F} \sum_k \left| \sum_{n \in k} \left[\left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) Q_k \alpha_n + \frac{Q_n}{M_n(u_n q_n)} \alpha_n \right] B^{-1} \right|^{p'_k} < \infty \right\}$$

and

$$D_{2}(\mathcal{M}, \Delta_{n}^{m}, u, p) = \bigcup_{B>1} \left\{ \alpha = (\alpha_{k}) \in w : \sum_{k} \left| \left[\left(\frac{\alpha_{k}}{M_{k}(u_{k}q_{k})} + \left(\frac{1}{M_{k}(u_{k}q_{k})} - \frac{1}{M_{k+1}(u_{k+1}q_{k+1})} \right) \sum_{i=k+1}^{n} \alpha_{i} \right) \right. \right.$$

$$Q_{k} \left] B^{-1} \right|^{p_{k}'} < \infty \right\}$$

Then

$$\left[r^q(\mathcal{M},\Delta_n^m,u,p)\right]^{\alpha} = D_1(\mathcal{M},\Delta_n^m,u,p)$$

and

$$\left[r^{q}(\mathcal{M},\Delta_{n}^{m},u,p)\right]^{\beta}=D_{2}(\mathcal{M},\Delta_{n}^{m},u,p)\cap cs.$$

Proof. Let us take any $\alpha = (\alpha_k) \in w$. We can easily derive with (2.1) that

(3.4)
$$\alpha_n x_n = \sum_{k=0}^{n-1} \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \alpha_n Q_k y_k + \frac{\alpha_n}{M_n(u_n q_n)} Q_n y_n$$
$$= (Cy)_n,$$

where $C = (c_{nk})$ is defined as

$$c_{nk} = \begin{cases} \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})}\right) \alpha_n Q_k, & \text{if } 0 \le k \le n-1\\ \\ \frac{\alpha_n}{M_n(u_n q_n)} Q_n, & \text{if } k = n\\ \\ 0, & \text{if } k > n, \end{cases}$$

for all $n, k \in \mathcal{N}$. Thus, we observe by combining (3.4) with (i) of lemma (3.1) that $\alpha x = (\alpha_n x_n) \in l_1$ whenever $x = (x_n) \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ if and only if $Cy \in l_1$ whenever $y \in l_p$. This gives the result that $\left[r^q(\mathcal{M}, \Delta_n^m, u, p)\right]^{\alpha} = D_1(\mathcal{M}, \Delta_n^m, u, p)$. Further, consider the equation

$$\sum_{k=0}^{n} \alpha_k x_k = \sum_{k=0}^{n} \left[\left(\frac{\alpha_k}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \sum_{i=k+1}^{n} \alpha_i \right) Q_k \right] y_k$$
$$= (Dy)_n,$$

where $D = (d_{nk})$ is defined as

$$d_{nk} = \begin{cases} \left(\frac{\alpha_k}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})}\right) \sum_{i=k+1}^n \alpha_i\right) Q_k, & \text{if } 0 \le k \le n \\\\ 0, & \text{if } k > n. \end{cases}$$

Thus, we deduce from Lemma (3.3) with (3.5) that $\alpha x = (\alpha_n x_n) \in cs$ whenever $x = (x_n) \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ if and only if $Dy \in c$ whenever $y \in l(p)$. Therefore, we derive from (3.1) that

$$(3.6) \sum_{k} \left| \left[\left(\frac{\alpha_k}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \sum_{i=k+1}^n \alpha_i \right) Q_k \right] B^{-1} \right|^{p'_k} < \infty$$

and $\lim_{n} d_{nk}$ exists and hence shows that $\left[r^{q}(\mathcal{M}, \Delta_{n}^{m}, u, p)\right]^{\beta} = D_{2}(\mathcal{M}, \Delta_{n}^{m}, u, p) \cap cs.$ From lemma (3.2) together with (3.5) that $\alpha x = (\alpha_{k} x_{k}) \in bs$ whenever $x = (x_{n}) \in r^{q}(\mathcal{M}, \Delta_{n}^{m}, u, p)$ if and only if $Dy \in l_{\infty}$ whenever $y = (y_{k}) \in l(p)$. Therefore, we again obtain the condition (3.6) which means that $\left[r^{q}(\mathcal{M}, \Delta_{n}^{m}, u, p)\right]^{\gamma} = D_{2}(\mathcal{M}, \Delta_{n}^{m}, u, p) \cap cs$ and the proof of theorem is complete. \Box

64

Theorem 3.2. Let $\mathcal{M} = (M_j)$ be Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers. Define the sets $D_3(\mathcal{M}, \Delta_n^m, u, p)$ and $D_4(\mathcal{M}, \Delta_n^m, u, p)$ as follows:

$$D_{3}(\mathcal{M}, \Delta_{n}^{m}, u, p) = \left\{\alpha = (\alpha_{k}) \in w : \sup_{k \in F} \sup_{k} \left| \sum_{n \in k} \left[\left(\frac{1}{M_{k}(u_{k}q_{k})} - \frac{1}{M_{k+1}(u_{k+1}q_{k+1})} \right) Q_{k}\alpha_{n} + \frac{Q_{n}}{M_{n}(u_{n}q_{n})} \alpha_{n} \right] \right|^{p_{k}} < \infty \right\}$$

and

$$D_{4}(\mathcal{M}, \Delta_{n}^{m}, u, p) = \left\{ \alpha = (\alpha_{k}) \in w : \sup_{k} \left| \left[\left(\frac{\alpha_{k}}{M_{k}(u_{k}q_{k})} + \left(\frac{1}{M_{k}(u_{k}q_{k})} - \frac{1}{M_{k+1}(u_{k+1}q_{k+1})} \right) \sum_{i=k+1}^{n} \alpha_{i} \right) Q_{k} \right] \right|^{p_{k}} < \infty \right\}.$$

Then

$$\left[r^{q}(\mathcal{M},\Delta_{n}^{m},u,p)\right]^{\alpha}=D_{3}(\mathcal{M},\Delta_{n}^{m},u,p)$$

and

$$\left[r^{q}(\mathcal{M},\Delta_{n}^{m},u,p)\right]^{\beta}=D_{4}(\mathcal{M},\Delta_{n}^{m},u,p)\cap cs$$

Proof. This is obtained by proceeding in proof of Theorem (3.1), by using second parts of lemmas (3.1), (3.2) and (3.3) instead of the first parts so we exclude the details.

Theorem 3.3. Let $\mathcal{M} = (M_j)$ be Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers. Define the sequence $b^{(k)}(q) = \{b_n^{(k)}(q)\}$ of the elements of the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ for every fixed $k \in \mathbb{N}$ by

$$b_n^{(k)}(q) = \begin{cases} \left(\frac{1}{M_n(u_n q_n)} - \frac{1}{M_{n+1}(u_{n+1} q_{n+1})}\right) Q_n + u_n^{-1} \frac{Q_k}{M_k(u_k q_k)}, & \text{if } 0 \le n \le k-1\\ 0, & \text{if } n > k-1. \end{cases}$$

Then the sequence $\{b^{(k)}(q)\}\$ is a basis for the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ and any $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ has a unique representation of the form

(3.7)
$$x = \sum_{k} \lambda_k(q) b^{(k)}(q)$$

where $\lambda_k(q) = (R^q(\mathcal{M}, \Delta_n^m, u)x)_k$ for all $k \in \mathbb{N}$ and $0 < p_k \leq D < \infty$.

Proof. It is clear that $\{b^{(k)}(q)\} \subset r^q(\mathcal{M}, \Delta_n^m, u, p)$, since

(3.8)
$$R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)b^{(k)}(q) = e^{(k)} \in l(p) \text{ for } k \in \mathbb{N}$$

and $0 < p_k \leq D < \infty$, where $e^{(k)}$ is the sequence whose only non-zero term is 1 in kth place for each $k \in \mathbb{N}$.

Let $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ be given. For every non-negative integer t, we put

(3.9)
$$x^{[t]} = \sum_{k=0}^{t} \lambda_k(q) b^{(k)}(q).$$

Then, we obtain by applying $R^q(\mathcal{M}, \Delta_n^m, u)$ to (3.9) with (3.8) that

$$R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)x^{[t]} = \sum_{k=0}^{t} \lambda_{k}(q)R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)b^{(k)}(q) = \sum_{k=0}^{t} (R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)x)_{k}e^{(k)}$$

and

$$\left(R^{q}(\mathcal{M},\Delta_{n}^{m},u)(x-x^{[t]})\right)_{i} = \begin{cases} 0, & \text{if } 0 \leq i \leq t\\ (R^{q}(\mathcal{M},\Delta_{n}^{m},u)x)_{i}, & \text{if } i > t, \end{cases}$$

where $i, t \in \mathbb{N}$. Given $\epsilon > 0$, there exists an integer t_0 such that

$$\left(\sum_{i=t}^{\infty} \left| (R^q(\mathcal{M}, \Delta_n^m, u)x)_i \right|^{p_k} \right)^{\frac{1}{H}} < \frac{\epsilon}{2} \quad \forall \ t \ge t_0.$$

Hence,

$$g(x - x^{[t]}) = \left(\sum_{i=t}^{\infty} \left| (R^q(\mathcal{M}, \Delta_n^m, u)x)_i \right|^{p_k} \right)^{\frac{1}{H}}$$

$$\leq \left(\sum_{i=t_0}^{\infty} \left| (R^q(\mathcal{M}, \Delta_n^m, u)x)_i \right|^{p_k} \right)^{\frac{1}{H}}$$

$$< \frac{\epsilon}{2}$$

$$< \epsilon,$$

for all $t \ge t_0$ which proves that $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ is represented as equation (3.7).

Let us show that the uniqueness of the representation for $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ given by equation (3.6). Suppose, on the contrary that there exists a representation $x = \sum_k \mu_k(q)b^{(k)}(q)$. Since the linear transformation T from $r^q(\mathcal{M}, \Delta_n^m, u, p)$ to l(p)

used in the Theorem (2.2) is continuous, we have

$$(R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)x)_{n} = \sum_{k} \mu_{k}(q)(R^{q}(\mathcal{M}, \Delta_{n}^{m}, u)b^{(k)}(q))_{n} = \sum_{k} \mu_{k}(q)e_{n}^{(k)} = \mu_{n}(q)$$

for $n \in \mathbb{N}$, which contradicts the fact that $(R^q(\mathcal{M}, \Delta_n^m, u)x)_n = \lambda_n(q) \quad \forall n \in \mathcal{N}$. Hence, the representation (3.7) is unique. \Box

4. Matrix Mappings on the Space $r^q(\mathcal{M}, \Delta_n^m, u, p)$

In this section, we characterize the matrix mappings from the space $r^q(\mathcal{M}, \Delta_n^m, u, p)$ to the space l_{∞} .

Theorem 4.1. Let $\mathcal{M} = (M_j)$ be Musielak-Orlicz function, $u = (u_j)$ be a sequence of strictly positive real numbers and $p = (p_k)$ be a bounded sequence of positive real numbers.

(i) Let $1 < p_k < D < \infty$ for $k \in \mathbb{N}$. Then $A \in (r^q(\mathcal{M}, \Delta_n^m, u, p) : l_\infty)$ if and only if there exists an integer B > 1 such that (4.1)

$$C(B) = \sup_{n} \sum_{k} \left| \left[\left(\frac{\alpha_{nk}}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \sum_{i=k+1}^{n} \alpha_{ni} \right) Q_k \right] B^{-1} \right|^{p'_k} < \infty$$

and $\{\alpha_{nk}\}_{k\in\mathbb{N}}\in cs \text{ for each } n\in\mathbb{N}.$

(ii) Let $0 < p_k \leq 1$ for every $k \in \mathbb{N}$. Then $A \in (r^q(\mathcal{M}, \Delta_n^m, u, p) : l_\infty)$ if and only if

$$(4.2) \sup_{n,k} \left| \left[\left(\frac{\alpha_{nk}}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \sum_{i=k+1}^n \alpha_{ni} \right) Q_k \right] \right|^{p_k} < \infty$$

and $\{\alpha_{nk}\}_{k\in\mathbb{N}}\in cs$ for each $n\in\mathbb{N}$.

Proof. We shall prove only (i) and the proof of (ii) will follow on applying similar argument. Let $A \in (r^q(\mathcal{M}, \Delta_n^m, u, p) : l_\infty)$ and $1 < p_k \leq D < \infty$ for every $k \in \mathbb{N}$. Then Ax exists for $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$ and implies that $\{\alpha_{nk}\}_{k \in \mathbb{N}} \in \{r^q(\mathcal{M}, \Delta_n^m, u, p)\}^{\beta}$ for each $n \in \mathbb{N}$. Hence necessity of (4.1) holds. Conversely, suppose that (4.1) holds and $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$, since $\{\alpha_{nk}\}_{k \in \mathbb{N}} \in \{r^q(\mathcal{M}, \Delta_n^m, u, p)\}^{\beta}$ for every fixed $n \in \mathbb{N}$, so the A- transform of x exists. Consider the following equality obtained by using the relation (3.4) that

(4.3)

$$\sum_{k=0}^{t} \alpha_{nk} x_k = \sum_{k=0}^{t} \left[\left(\frac{\alpha_{nk}}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \sum_{i=k+1}^{t} \alpha_{ni} \right) Q_k \right] y_k.$$

Taking into account the assumptions, we derive from (3.3) as $t \to \infty$ that

(4.4)

$$\sum_{k} \alpha_{nk} x_{k} = \sum_{k} \left[\left(\frac{\alpha_{nk}}{M_{k}(u_{k}q_{k})} + \left(\frac{1}{M_{k}(u_{k}q_{k})} - \frac{1}{M_{k+1}(u_{k+1}q_{k+1})} \right) \sum_{i=k+1}^{\infty} \alpha_{ni} \right) Q_{k} \right] y_{k}$$

Now by combining (4.4) and the inequality which holds for any B > 0 and any complex numbers a, b

$$|ab| \le B\left(|aB^{-1}|^{p'} + |b|^p\right)$$

with $p^{-1} + \{p'\}^{-1} = 1$ [10], we can see that

$$\sup_{n \in \mathcal{N}} \left| \sum_{k} \alpha_{nk} x_k \right| \le \sup_{n \in \mathbb{N}} \sum_{k} \left| \left[\left(\frac{\alpha_{nk}}{M_k(u_k q_k)} + \left(\frac{1}{M_k(u_k q_k)} - \frac{1}{M_{k+1}(u_{k+1} q_{k+1})} \right) \sum_{i=k+1}^{\infty} \alpha_{ni} \right) Q_k \right] \right| |y_k|$$

$$\leq B[C(B) + h_1^B(y)] < \infty.$$

This shows that $Ax \in l_{\infty}$ whenever $x \in r^q(\mathcal{M}, \Delta_n^m, u, p)$. The proof is complete. \Box

References

- A. Esi, Some new sequence spaces defined by Orlicz Functions, Bull. Inst. Math. Acad. Sinica, 27 (1999), 71-76.
- M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 (2000), 25-32.
- [3] A. Esi, B. C. Tripathy and B. Sharma, On some new type generalized difference sequence spaces, Math. Slovaca, 57 (2007), 1-8.
- [4] A. Esi and Işık Mahmut, Some generalized difference sequence spaces, Thai J. Math., 3 (2005) 241-247.
- [5] M. Et and R. Çolak, On some generalized sequence spaces, Soochow. J. Math., 21 (1995), 377-386.
- K. G. Gross Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), 223-238.
- [7] E. Herawati, M. Mursaleen and I. E. Supama Wijayanti, Order matrix transformations on some Banach lattice valued sequence spaces, Appl. Math. Comput., 247 (2014), 1122-1128.
- [8] H. Kızmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
- [9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970), 99-104.
- [11] I. J. Maddox, *Elements of Functional Analysis*, The University Press, Cambridge, 1988.
- [12] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64 (1968), 335-340.
- [13] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18 (1967), 345-355.
- [14] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [15] M. Mursaleen, K. Raj and S. K.Sharma, Some spaces of difference sequences and Lacunary statistical convergence in n-normed spaces defined by a sequence of Orlicz functions, Miskolc Math. Notes, 16 (2015), 283-304.
- [16] M. Mursaleen, S. K. Sharma, A. Kılıçman, Sequence spaces defined by Musielak-Orlicz function over n-normed spaces, Abstr. Appl. Anal., 27 (2013), 47-58.
- [17] M. Mursaleen, S. K Sharma, A. Kılıçman, New class of generalized seminormed sequence spaces, Abstr. Appl. Anal., 2014, Article ID 461081, 7 pages.
- [18] M. Mursaleen, S. K Sharma, S. A. Mohiuddine and A. Kılıçman, New difference sequence spaces defined by Musielak-Orlicz function, Abstr. Appl. Anal. 2014.
- [19] J. Musielak, Orlicz spaces and modular spaces, Lecture notes in Mathematics, **1034** (1983).
- [20] S. A. Mohiuddine, K. Raj and A. Alotaibi, Generalized spaces of double sequences for Orlicz functions and bounded regular matrices over n-normed spaces, J. Inequal. Appl., 2014, 2014:332.
- [21] S. A. Mohiuddine, M. Mursaleen and A. Alotaibi, Compact operators for almost conservative and strongly conservative matrices, Abstr. Appl. Anal. 2014, Art. ID 567317, 6 pp.
- [22] G. M. Petersen, Regular matrix transformations, McGraw-Hill, London, 1966.
- [23] K. Raj, S. K. Sharma and A. Gupta, Some difference paranormed sequence spaces over nnormed spaces defined by Musielak-Orlicz function, Kyungpook Math. J., 54 (2014), 73-86.
- [24] K. Raj and S.K.Sharma, Some seminormed diffrence sequence spaces defined by Musielak Orlicz function over n-normed spaces, J. Math. Appl., 38 (2015), 125-141.
- [25] K. Raj and M. Arsalan Khan, Some spaces of double sequences their duals and matrix transformations, Azerb. J. Math., 6 (2016), 19pp.
- [26] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedago. Nyregy., 28 (2012), 47-58.

- [27] N. A. Sheikh and A. H. Ganie, On the sequence space l(p, s) and some matrix transformations, Nonlinear func. Anal. Appl., 18 (2013), 253-258.
- [28] B. C. Tripathy, A. Esi and T. Balakrushna, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math., 31 (2005), 333-340.
- [29] O. Toeplitz, Uberallegemeine Lineare mittelbildungen, Prace Math. Fiz., 22 (1991), 113-119.

[30] C. S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 9 (1978), 269-274.

[31] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., 85 (1984).

Department of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J&K India

E-mail address: kuldipraj68@gmail.com

Department of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J&K India

E-mail address: renuanand710gmail.com