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BLASCHKE APPROACH TO EULER-SAVARY FORMULAE FOR

ONE PARAMETER DUAL HYPERBOLIC SPHERICAL MOTION

ZEHRA EKİNCİ AND H. HÜSEYİN UḠURLU

Abstract. In this paper, we have introduced one parameter dual hyperbolic
spherical motions in the dual Lorentzian space. This examination is given

using Blaschke frame of axodes corresponding to the curves on the unit dual

hyperbolic sphere. By considering Disteli axis on the Blaschke frame we have
obtained Euler Savary formulae for one parameter dual hyperbolic spherical

motions. At the end of this study, by obtaining orthogonal rotation matrices

in the sense of dual Lorentzian type, we have found real and dual invariants
of fixed and moving axodes.

1. Introduction

Line trajectories have an important place in the kinematic design and mecha-
nism. In spatial motions, trajectories of directed lines connected in a moving rigid
body are ruled surface. Differential geometry of ruled surfaces has been widely
used in spatial mechanism, Computer Aided Geometric Design (CAGD), kinematic
modeling of analytical tools of robot science and manufacturing of mechanical prod-
ucts. On dual geometry, many applications of ruled surfaces is studied by using
transference principle or E. Study mapping. By this transfer, ruled surfaces can be
represented by dual spherical curves lying on unit dual sphere of dual space. Then,
a motion of a line in the 3-dimensional space can be studied by the motion of a
unit dual vector of dual space and the properties of this motion can be obtained
[2,3,4,12,19,20,30,32]. On the one parameter spatial motion, instantaneous screw
axis ISA which a pair of ruled surface generates moving axode in the moving space
and fixed axode in the fixed space. Kinematics and geometry of these axodes with
corresponding to dual curves have investigated by some mathematician [2,3,4,14,19].
In the planar kinematics, there exists only one curvature circle and the position of
point is given in the moving plane, then the radius and center of this circle can be
determined by the famous Euler-Savary formulae. Euler-Savary formulae of a line
trajectory were studied. This formula have introduced on the spherical kinematics
[2, 3,14,30]. Furthermore, Lorentzian space kinematics is more different and more
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interesting than the Euclidean case. Differential geometry of curves and surfaces
in the Lorentzian space are studied [1,13,17,21,23,26,27,28,29]. In this space, the
spherical motions are studied according to the Lorentzian casual characters of the
lines. Then, the spherical motion is called hyperbolic spherical motion if the mo-
tion is determinated by moving and fixed unit hyperbolic spheres and the spherical
motion is called Lorentzian spherical motion if it is determinate by moving and
fixed unit Lorentzian spheres [16,22]. Similar to the Euclidean case, by considering
the E. Study mapping of timelike and spacelike lines, the motions of these lines are
studied in dual Lorentzian space and the properties of these motions are obtained
[25]. One parameter spherical motion have investigated at reel and dual Lorentzian
spaces [5,8,16,24,25]. The purpose of this paper is to introduce one parameter dual
hyperbolic spherical motions on the dual Lorentzian space. By considering Disteli
axis on the Blaschke frame we have obtained Euler Savary formulae for one param-
eter dual hyperbolic spherical motions. At the end of this study, we have found
real and dual invariants of fixed and moving axodes by using orthogonal rotation
matrices in the sense of dual Lorentzian type 3× 3.

2. Lorentz Space

Let R3
1 be a 3-dimensional Minkowski space over the field of real numbers R with

the Lorentzian inner product 〈 , 〉 given by〈
~a,~b
〉

= −a1b 1 + a2b 2 + a3b3,

where ~a = ( a 1, a 2, a 3), ~b = ( b 1 , b2 , b3) ∈ R3. A vector ~a = ( a 1, a 2, a 3)
of IR3

1 is said to be timelike if 〈~a,~a〉 < 0, spacelike if 〈~a,~a〉 > 0 or ~a = 0, and
lightlike (null) if 〈~a,~a〉 = 0 and ~a 6= 0. Similarly, an arbitrary curve ~α(s) in R3

1 is
spacelike, timelike or lightlike (null), if all of its velocity vectors ~α′(s) are spacelike,
timelike or lightlike (null), respectively [15]. The norm of a vector ~a is defined by

‖~a‖ =
√
| 〈~a,~a〉 |. Now, let ~a = ( a 1, a 2, a 3) and ~b = ( b1, b2, b3 ) be two vectors

in IR3
1. Then the Lorentzian cross product of ~a and ~b is given by

~a × ~b = ( a2b 3 − a3b 2 , a1b 3 − a 3b1, a2 b1 − a 1b2 ) .

The sets of the unit timelike and spacelike vectors are called hyperbolic unit
sphere and Lorentzian unit sphere and denoted by

H2
0 =

{
~a = ( a 1, a 2, a 3) ∈ R3

1 : 〈~a,~a〉 = −1
}
,

and

S2
1 =

{
~a = ( a 1, a 2, a 3) ∈ R3

1 : 〈~a,~a〉 = 1
}
,

respectively [28].

3. Dual Space

A dual number has the form λ̄ = λ+ ελ∗, where λ and λ∗ are real numbers and
ε is called dual unit which is subject to following rules:

ε 6= 0 , ε2 = 0, 0ε = ε 0 = 0, 1 ε = ε 1 = ε .

We denote the set of all dual numbers by D:
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D =
{
λ̄ = λ + ελ∗ : λ , λ∗ ∈ R , ε2 = 0

}
.

Equality, addition and multiplication are defined in D by
(i) λ+ ελ∗ = β + εβ∗ if and only if λ = β and λ∗ = β∗.
(ii)(λ+ ελ∗) + (β + εβ∗) = (λ+ β) + ε(λ∗ + β∗).
(iii) (λ+ ελ∗)(β + εβ∗) = (λβ) + ε(λ∗β + β∗λ).
respectively. Then it is easy to show that (D , + , . ) is a commutative ring with

unity [20].
The dual number ā = a+ εa∗ divide by dual number b̄ = b+ εb∗, with b 6= 0, is

defined by

ā

b̄
=
a

b
+ ε

a∗b− ab∗

b2
.

Let f be a differentiable function with dual variable x̄ = x + εx∗. Then the
Maclaurin series generated by f is

f (x̄) = f (x + ε x∗) = f (x ) + ε x∗f ′ (x ),

where f ′ (x ) is the derivative of f with respect to x.
Let D3 be the set of all triples of dual numbers, i.e.

D3 = { ã = (ā1, ā2 , ā3) | āi ∈ D, 1 ≤ i ≤ 3} .
The elements of D3 are called dual vectors. A dual vector ã may be expressed

in the form ã = ~a + ε~a∗, where ~a and ~a∗ are the vectors of R 3. Let ã = ~a + ε~a∗,

b̃ = ~b+ ε~b∗ ∈ D3 and λ̄ = λ+ ε λ∗ ∈ D. Then we define

ã + b̃ = ~a + ~b + ε (~a∗ + ~b∗),
λ̄ ã = λ~a+ ε(λ~a∗ + λ∗~a) .

By these operations, D3 becomes a unitary module and it is called D-module or
dual space (See [7,9]).

For any dual vectors ã = ~a+ε~a∗ and b̃ = ~b+ε~b∗ in D3, scalar product and vector
product are defined by〈

ã, b̃
〉

=
〈
~a,~b
〉

+ ε
(〈
~a,~b∗

〉
+
〈
~a∗,~b

〉)
,

and

ã× b̃ = ~a×~b+ ε
(
~a×~b∗ + ~a∗ ×~b

)
,

respectively, where
〈
~a,~b
〉

and ~a × ~b are inner product and vector product of the

vectors ~a and ~b in R3, respectively.
The norm of a dual vector ã is given by

‖ã‖ =
√
〈ã, ã〉 = ‖~a‖+ ε

〈~a,~a∗〉
‖~a‖

,~a 6= ~0.

Definition 3.1 (7,30). The set of all unit dual vectors is called unit dual sphere,

and is denoted by S̃2 and this sphere is defined by

S̃2 =
{
ã ∈ D3

∣∣ ||ã|| = (1, 0)
}
.
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Theorem 3.2. (E. Study’s Mapping): There exists a one-to-one correspondence

between the points of unit dual sphere S̃2 and the directed lines of the space R3 [7].

4. Dual Lorentzian Space

The Lorentzian inner product of two dual vectors ã = ~a + ε~a∗, b̃ = ~b+ε~b∗ ∈ D3

is defined by 〈
ã, b̃

〉
=
〈
~a , ~b

〉
+ ε

(〈
~a , ~b∗

〉
+
〈
~a∗, ~b

〉)
,

where
〈
~a , ~b

〉
is the Lorentzian inner product of the vectors ~a and~b in the Minkowski

3-space R3
1. Then, a dual vector ã = ~a + ε~a∗ is said to be dual timelike if ~a is

timelike, dual spacelike if ~a is spacelike or ~a = 0 and dual lightlike (null) if ~a is
lightlike (null) and ~a 6= 0 [25].

The set of all dual Lorentzian vectors is called dual Lorentzian space and it is
denoted by

D3
1 =

{
ã = ~a + ε~a∗ : ~a , ~a∗ ∈ R3

1

}
.

The Lorentzian cross product of dual vectors ã,b̃ ∈ D3
1 is defined by

ã × b̃ = ~a ×~b + ε (~a∗ × ~b + ~a × ~b∗) ,
where ~a × ~b is the Lorentzian cross product in R3

1.
Let ã = ~a+ ε~a∗ ∈ D3

1 . Then ã is said to be unit dual timelike (resp. spacelike)
vector if the vectors ~a and ~a∗ satisfy the following equations:

< ~a,~a >= −1 (resp. < ~a,~a >= 1), < ~a , ~a∗ > = 0.

The set of all unit dual timelike vectors is called dual hyperbolic unit sphere,
and is denoted by H̃2

0 . Similarly, the set of all unit dual spacelike vectors is called

dual Lorentzian unit sphere, and is denoted by S̃2
1 and these spheres are defined by

H̃2
0 =

{
ã ∈ D3

1 : 〈ã, ã〉 = −1
}
, S̃2

1 =
{
ã ∈ D3

1 : 〈ã, ã〉 = 1
}

respectively (See [21,25,28]).

Definition 4.1 (18,31). (i) Dual hyperbolic angle: Let ã and b̃ be dual timelike

vectors in D3
1. Then the dual angle between ã and b̃ is defined by < ã, b̃ >=

−‖ã‖
∥∥∥b̃∥∥∥ cosh θ̄. The dual number θ̄ = θ + εθ∗ is called the dual hyperbolic angle.

The geometric interpretation of dual hyperbolic angle is that θ is the real hyperbolic
angle between timelike lines L1, L2 corresponding to the dual timelike unit vectors
ã, b̃, respectively, and θ∗ is the shortest distance between those lines.

(ii) Dual central angle: Let ã and b̃ be dual spacelike vectors in D3
1 that span

a dual timelike vector subspace. The dual angle between ã and b̃ is defined by∣∣∣< ã, b̃ >
∣∣∣ = ‖ã‖

∥∥∥b̃∥∥∥ cosh θ̄. The dual number θ̄ = θ+ εθ∗ is called the dual central

angle. The geometric interpretation of dual central angle is that θ is the real
central angle between spacelike lines L1, L2 corresponding to the dual spacelike
unit vectors ã, b̃ in D3

1 that span a dual timelike vector subspace, respectively, and
θ∗ is the shortest distance between those lines.
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(iii) Dual spacelike angle: Let ã and b̃ be dual spacelike vectors in D3
1 that span

a dual spacelike vector subspace. Then the angle between ã and b̃ is defined by

< ã, b̃ >= ‖ã‖
∥∥∥b̃∥∥∥ cos θ̄. The dual number θ̄ = θ + εθ∗ is called the dual spacelike

angle. The geometric interpretation of dual spacelike angle is that θ is the real
spacelike angle between spacelike lines L1, L2 corresponding to the dual spacelike
unit vectors ã, b̃ in D3

1 that span a dual spacelike vector subspace, respectively,
and θ∗ is the shortest distance between those lines.

(iv) Dual timelike angle: Let ã be a dual spacelike vector and b̃ be a dual

timelike vector in D3
1. Then the angle between ã and b̃ is defined by

∣∣∣< ã, b̃ >
∣∣∣ =

‖ã‖
∥∥∥b̃∥∥∥ sinh θ̄. The dual number θ̄ = θ+ εθ∗ is called the dual timelike angle. The

geometric interpretation of dual timelike angle is that θ is the real timelike angle
between spacelike line L1 and timelike line L2 corresponding to the dual spacelike
unit vector ã and timelike unit vector b̃, respectively, and θ∗ is the shortest distance
between those lines.

Theorem 4.2 (E. Study’s Mapping for Lorentzian Space). : The dual timelike
(respectively spacelike) unit vectors of the dual hyperbolic (respectively Lorentzian)

unit sphere H̃2
0 (respectively S̃2

1) are in one-to-one correspondence with the directed
timelike (respectively spacelike) lines of the Minkowski 3-space IR3

1 [25].

5. Differential Geometry of Dual Hyperbolic Spherical Curves

q̃ = ~q(t)+ε~q∗(t) be a unit dual timelike vector is connected to a real parameter t ,

this vector draws a curve on the unit dual hyperbolic sphere H̃2
0 . Applying Study’s

map, this curve represents a timelike ruled surface M . If the ruling ~q is timelike,
then the ruled surface M is said to be of type M1

− [11]. Therefore, differential
geometry of dual hyperbolic spherical curves corresponds to differential geometry
of timelike ruled surface M1

−.

Let dθ̄ = dθ + εdθ∗ dual arc-length of dual hyperbolic spherical curve q̃ = q̃(t).
Thus, we have

(5.1) dθ̄2 = 〈d~q, d~q〉+ 2ε 〈d~q, d~q∗〉

Hence we obtain

(5.2) dθ2 = 〈d~q, d~q〉 , dθdθ∗ = 〈d~q, d~q∗〉 .

Therefore, differential invariant of timelike ruled surface M1
− given by

(5.3) δq =
dθ∗

dθ
=
〈d~q, d~q∗〉
〈d~q, d~q〉

=

〈
~q′, ~q∗′

〉
〈~q′, ~q′〉

.

The invariant δq is said to be distribution parameter (or drall) of the timelike

ruled surface. If
〈
~q′, ~q′

〉
= 0, the ruled surface is said to be timelike cylindrical and

we except this case [17,21].
We now give an orthonormal moving frame of a dual hyperbolic spherical curve

as follows:
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(5.4) q̃ = q̃(t), h̃ =
q̃′

‖q̃′‖
, ã = −q̃ × h̃.

This frame is called the Blaschke frame, and the corresponding lines intersect
at the striction point of timelike ruled surface M1

−. The set of the striction points
constitute a curve C = C(t) lying on the timelike ruled surface M1

− and is called

striction curve. h̃ and ã are known as the central tangent and the central normal
of the timelike ruled surface M1

−. So, Blaschke formula is given by

(5.5)


q̃′ = k̄1h̃, k̄1 =

√
〈q̃′, q̃′〉

h̃′ = k̄1q̃ + k̄2ã, k̄2 = − (q̃,q̃′,q̃′′)
〈q̃′,q̃′〉

ã′ = −k̄2h̃

and

(5.6)
dC

dt
= cosh φ̄q̃ + sinh φ̄ã

where k̄1, k̄2 are called the Blaschke’s invariants. From (5.5) for dual vector ψ̃ =
~ψ + ε~ψ∗ = −k̄2q̃ − k̄1ã we can write

q̃′ = ψ̃ × q̃, h̃′ = ψ̃ × h̃, ã′ = ψ̃ × ã,
where dual vector ψ̃ = ~ψ + ε~ψ∗ = −k̄2q̃ − k̄1ã is called the dual instantaneous
Pfaffian vector. The pole vector and the Steiner vector of the motion are given by

(5.7) ψ̃ =
∥∥∥ψ̃∥∥∥ P̃ , d̃ =

∮
ψ̃,

respectively [17,21].

6. One Parameter Dual Hyperbolic Spherical Motions

Let two coordinate systems
{
O′; ~qf ,~hf ,~af

}
and

{
O; ~qm,~hm,~am

}
be orthonor-

mal coordinate systems which one represents fixed space L2 and which one repre-
sents moving space L3 in R3

1 , respectively, where ~qf and ~qm are assumed as timelike
vectors. In order to introduce the motion L3/L2 let take the coordinate system{
Q; ~q,~h,~a

}
as an orthonormal relative system which represent the relative space

L1. Let Σ1, Σ2 and Σ3 be unit dual hyperbolic spheres with same center O. Accord-
ing to the E. Study mapping, the points of unit dual hyperbolic spheres Σ1, Σ2 and

Σ3 can be represented by dual orthogonal systems
{
O; q̃, h̃, ã

}
,
{
O; q̃f , h̃f , ãf

}
and{

O; q̃m, h̃m, ãm

}
, respectively. Therefore, the motions L1/L2, L1/L3 and L3/L2

can be considered as dual hyperbolic spherical motions Σ1/Σ2, Σ1/Σ3 and Σ3/Σ2,
respectively.

Let Af and Am be a unit dual Lorentzian orthogonal matrices of type 3× 3 and
we can write

(6.1) Σ1 = AfΣ2, Σ1 = AmΣ3,
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where

Σ1 =

 q̃

h̃
ã

 , Σ2 =

 q̃f
h̃f
ãf

 , Σ3 =

 q̃m
h̃m
ãm


are dual column matrices. The elements of the matrices Af and Am are continuous
and differentiable functions of dual parameter t̄ = t + εt∗. In order to introduce
one parameter hyperbolic motion we assume that t∗ = 0.

Differential of the relative orthonormal coordinate frame Σ1 with respect to unit
dual fixed and moving hyperbolic spheres Σ2 and Σ3 are

(6.2) dΣ1f = dAfΣ2 = dAf (Af )−1Σ1, dΣ1m = dAmΣ3 = dAm(Am)−1Σ1.

By choosing Ω̃f = dAf (Af )−1, Ω̃m = dAm(Am)−1 Eq. (6.2) can be rewritten
as follows

(6.3) dΣ1f = Ω̃fΣ1, dΣ1m = Ω̃mΣ1

where Ω̃f and Ω̃m matrices are anti-symmetric in the sense of Lorentzian.
During the one parameter dual hyperbolic motion Σ3/Σ2 the differential velocity

vector of a fixed dual hyperbolic point X̃i = ~xi + ε~x∗i (1 ≤ i ≤ 3) on Σ3 is

(6.4)
dX̃

dt
= Ω̃× X̃

where Ω̃ = ~ω+ε~ω∗ is called the instantaneous dual hyperbolic Pfaffian vector of the
motion Σ3/Σ2. The Pfaffian dual vector Ω̃ of the motion Σ3/Σ2, at the instant t, is
like to the Darboux vector of space curves in the differential geometry. In this case
ω and ω∗ correspond to instantaneous rotational differential velocity vector and the
instantaneous translational differential velocity vector of corresponding hyperbolic

motion L3/L2, respectively. The dual number
∥∥∥Ω̃
∥∥∥ = Ω̄ = ω + εω∗ is said to be

dual angular speed of the one parameter dual hyperbolic motion Σ3/Σ2.
We consider the following identification

(6.5) Ω̄ =

 0 Ω̄3 −Ω̄2

Ω̄3 0 −Ω̄1

−Ω̄2 Ω̄1 0

⇔
 Ω̄1

Ω̄2

Ω̄3

 = Ω̃.

Lemma 6.1. For a one parameter dual hyperbolic spherical motion the following
conditions are provided:

(i) The skew-symmetric in the sense of Lorentzian matrix of type 3 × 3 deter-

mined by Ω̃m(t) = A−1A′ is called the moving polode.
(ii) The skew-symmetric in the sense of Lorentzian matrix of type 3× 3 deter-

mined by Ω̃f (t) = A′A−1 is called the fixed polode.

(iii) The moving and fixed polodes are related by Ω̃f (t) = adA(t)Ω̃m(t), where

adAΩ̃m = AΩ̃mA
−1.

(iv)
∥∥∥Ω̃f

∥∥∥ =
∥∥∥Ω̃m

∥∥∥.
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(v) q̃f (t) =
Ω̃f (t)

‖Ω̃f (t)‖ and q̃m(t) = Ω̃m(t)

‖Ω̃m(t)‖ are called the fixed axode and moving

axodes of the one parameter dual hyperbolic motion Σ3/Σ2, respectively.

(vi)
dq̃f
dt = adAdq̃m

dt ⇔
dq̃f
dt = Adq̃m

dt A
−1 [5].

During the dual hyperbolic motion Σ3/Σ2, the differentiable curve

(6.6) t ∈ R→ q̃m(t) ∈ Σ3

states a differentiable family of straight lines on the moving axode. Now give an
orthonormal moving frame along curve q̃m(t) ;

(6.7) q̃m = q̃m(t) (timelike), h̃m =

(
dq̃m
dt

)∥∥∥∥dq̃mdt
∥∥∥∥−1

, ãm = −q̃m × h̃m.

This frame is called the Blaschke frame, and the corresponding lines intersect at
the striction point of the axode q̃m = q̃m(t) . ãm and h̃m are described as the central
tangent and central normal of the timelike ruled surface q̃m = q̃m(t) , respectively.

Let Σm
1 be a dual unit hyperbolic sphere generated by the set

{
O; q̃m, h̃m, ãm

}
.

Therefore, the motion Σm
1 /Σ3 is given by

(6.8)

 dq̃m
dh̃m
dãm

 =

 0 k̄1m 0
k̄1m 0 k̄2m

0 −k̄2m 0

 q̃m
h̃m
ãm


where dual functions

(6.9) k̄1m = k1m + εk∗1m =

∥∥∥∥dq̃mdt
∥∥∥∥ , k̄2m = k2m + εk∗2m = −

det
(
q̃m,

dq̃m
dt ,

d2q̃m
dt2

)
k̄2

1m

are called Blaschke invarians of the moving axode. Striction curve is given by

(6.10)
dCm

dt
= k̄∗2mq̃m + k̄∗1mãm.

In this case dual functions in Eq. (6.9) abide by

(6.11) k̄1m = k1m + ε sinh σ̄m, k̄2m = k2m + ε cosh σ̄m

where σ̄m is the striction angle measuring the derivation of the generating lines of
q̃m(t) from the striciton curve. The distribution of timelike moving axode is

(6.12) λm =
k∗1m
k1m

=
sinh σ̄m
k1m

.

During the one parameter dual hyperbolic motion Σ3/Σ2, the ISA on fixed hy-
perbolic sphere Σ2 generates the fixed polode which accepts the Blaschke frame

(6.13) q̃f = q̃f (t)(timelike), h̃f =

(
dq̃f (t)

dt

)∥∥∥∥dq̃fdt
∥∥∥∥−1

, ãf = −q̃f × h̃f .

Similarly, the set
{
O; q̃f , h̃f , ãf

}
describes a unit dual hyperbolic sphere Σf

1 , and

the hyperbolic spherical motion Σf
1/Σ2 is given by
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(6.14)

 dq̃f
dh̃f
dãf

 =

 0 k̄1f 0
k̄1f 0 k̄2f

0 −k̄2f 0

 q̃f
h̃f
ãf


where the dual functions

(6.15) k̄1f = k1f + εk∗1f =

∥∥∥∥dq̃fdt
∥∥∥∥ , k̄2f = k2f + εk∗2f = −

det
(
q̃f ,

dq̃f
dt ,

d2q̃f
dt2

)
k̄2

1f

are the Blaschke invariants of fixed polode. Striction curve is given by

(6.16)
dCf

dt
= k̄∗2f q̃f + k̄∗1f ãf .

Likewise the dual functions in (6.15) are

(6.17) k̄1f = k1f + ε sinh σ̄f , k̄2f = k2f + ε cosh σ̄f ,

where σ̄f is the striction angle between the lines of q̃f (t) and the striction curve.
Therefore, the distribituon parameter of the fixed axode is

(6.18) λf =
k∗1f
k1f

=
sinh σ̄f
k1f

.

Theorem 6.2. Relations between Blaschke invariants of the timelike axodes are
given by the equalities

(6.19) k̄1m = k̄1f , k̄2m − k̄2f =
∥∥∥Ω̃
∥∥∥ .

Proof. Using (6.8) and (6.14) and Lemma (6.1) can be easily proved. �

Consequently, the following corollary can be given.

Corollary 6.3. During the one parameter hyperbolic spherical motion Σ3/Σ2, the
moving polode is contact with the fixed polode along ISA in the first order at any
instant t. The common distribution parameter of timelike axodes is

(6.20) λ := λm = λf =
k∗1
k1
.

Let Σ1 be unit dual hyperbolic sphere generated by the system{
O; q̃(timelike), h̃, ã

}
. In this system, ã(t) = a(t) + εa∗(t) is the common per-

pendicular of q̃(t) and q̃(t + dt) and ã(t) = a(t) + εa∗(t) = −q̃ × h̃ and; q̃, h̃ and
ã correspond to orthogonal lines in the Minkowski 3-space R3

1. Then, the deriva-
tive equations of the one parameter dual hyperbolic spherical motions Σ1/Σ3 and
Σ1/Σ2 are

(6.21)
dq̃

dt

∣∣∣∣
m

= C(M)q̃(t), q̃(t) =

 q̃

h̃
ã

 , C(M) =

 0 k̄1 0
k̄1 0 k̄2m

0 −k̄2m 0

 ,
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and

(6.22)
dq̃

dt

∣∣∣∣
f

= C(F )q̃(t), q̃(t) =

 q̃

h̃
ã

 , C(F ) =

 0 k̄1 0
k̄1 0 k̄2f

0 −k̄2f 0

 ,
respectively,where

(6.23) k̄1 = k1 + εk∗1 , k̄2m = k2m + εk∗2m, k̄2f = k2f + εk∗2f

are the Blaschke invariants of the one parameter dual hyperbolic spherical motion.

7. The approach to a timelike ruled surface with axodes

In this section, we introduce geometrical and kinematic meanings of dual invari-
ants of hyperbolic polodes. In order to this analysis we consider a timelike point X̃
on the unit dual hyperbolic sphere such that its coordinates are

(7.1) −X̄2
1 + X̄2

2 + X̄2
3 = −1, X̃ = XT q̃ X̃ =

 X̄1

X̄2

X̄3

 .
If X̃ is a function of t, the velocity of X̃ at the instant t with according to the

moving unit dual hyperbolic sphere Σ3 and fixed unit dual hyperbolic sphere Σ2

are

(7.2)
dX̃

dt

∣∣∣∣∣
m

=
dX̃T

dt
q̃ + X̃T dq̃

dt

∣∣∣∣
m

and

(7.3)
dX̃

dt

∣∣∣∣∣
f

=
dX̃T

dt
q̃ + X̃T dq̃

dt

∣∣∣∣
f

respectively. From (6.21) and (6.22), we get

(7.4)
dX̃

dt

∣∣∣∣∣
m

=

(
dX̃T

dt
+ X̃TC(M)

)
q̃

and

(7.5)
dX̃

dt

∣∣∣∣∣
f

=

(
dX̃T

dt
+ X̃TC(F )

)
q̃ .

If the line X̃ is fixed relative to the moving unit dual hyperbolic sphere, then

the derivative dX̃
dt

∣∣∣
m

= 0. That is we have

(7.6)
dX̃T

dt
= −X̃TC(M).
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Now, assume that X̃ is fixed according to the moving unit dual hyperbolic sphere
Σ3 and let us compute its velocity according to the fixed unit dual hyperbolic sphere
Σ2. Then we obtain equation

(7.7)
dX̃

dt
= X̃T (C(F )− C(M))q̃.

Let us define a matrix C(R) by

(7.8) C(R) = C(F )− C(M).

Then (7.7) can be rewritten as

(7.9)
dX̃

dt
= X̃T (C(R))q̃.

We have an axial dual vector D̃r = d+ εd∗ such that

(7.10) C(R)X̃ = D̃r × X̃.
Therefore (7.9) can be stated as

(7.11)
dX̃

dt
= D̃r × X̃, D̃r = D̃f − D̃m = −Ω̄q̃,

where
∥∥∥Ω̃
∥∥∥ = Ω̄ = ω + εω∗. Then from Theorem 6.2 and (7.11) we have

(7.12)
dX̃

dt
= (−X̄3Ω̄)h̃+ (X̄2Ω̄)ã.

From (7.11) and (7.12), it follows that the acceleration of X̃ is given by

(7.13)
d2X̃

dt2
= (−Ω̄k̄1X̄3)q̃ + (−Ω̄′X̄3 − Ω̄2X̄2)h̃+ (−Ω̄k̄1X̄1 + Ω̄′X̄2 − Ω̄2X̄3)ã.

8. Line complex during one parameter hyperbolic spherical motion

In this section, we investigate timelike ruled surface generated by the timelike line
X̃. Now we describe a frame moving along the curve X̃(t) on the unit hyberbolic
sphere Σ2. According to transference principle, this curve corresponds to a timelike
ruled surface in the fixed Lorentzian space L2. The Blaschke frame along X̃(t) is
defined as follows:

(8.1) Ẽ1 = X̃ = X̄1q̃ + X̄2h̃+ X̄3ã, (time)

(8.2) Ẽ2 =
X̃ ′∥∥∥X̃ ′∥∥∥ =

−X̄3h̃+ X̄2ã√
X̄2

2 + X̄2
3

(8.3) Ẽ3 = −(Ẽ1 × Ẽ2) = −

(
(1 + X̄2

1 )q̃ + X̄1X̄2h̃+ X̄1X̄3ã√
X̄2

2 + X̄2
3

)
.
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The unit dual timelike vector Ẽ1 is one-to-one correspondence with the directed
timelike line of the Minkowski 3-space IR3

1 and dual spacelike unit vectors Ẽ2, Ẽ3

are one-to-one correspondence with the directed spacelike lines of the Minkowski
3-space. The Blaschke derivative formulas are

(8.4)
d

dt

 Ẽ1

Ẽ2

Ẽ3

 =

 0 k̄1x 0
k̄1x 0 k̄2x

0 −k̄2x 0

 Ẽ1

Ẽ2

Ẽ3


where

(8.5)

k̄1x = k1x + εk∗1x =
∥∥∥dX̃

dt

∥∥∥ = Ω̄
√
X̄2

2 + X̄2
3 ,

k̄2x = k2x + εk∗2x = −det(X̃,X̃′,X̃′′)

(k̄1x)2
= −(Ω̄X̄1 + k̄1xX̄3

X̄2
2+X̄2

3
)

are Blaschke invariants of the timelike curve X̃(t).

Theorem 8.1. During the one parameter dual hyperbolic spherical motion Σ3/Σ2,
consider a set of lines are contact with the timelike moving axode and these lines
are generators of timelike ruled surfaces having the same distribution parameter in
the fixed Lorentzian space L2. Therefore this set of lines belongs to a quadratic line
complex.

Proof. The distribution parameter of the timelike ruled surface generated by the
line X̃ from (8.5) can be stated by

(8.6) λx =
k̄∗1x
k̄1x

=
x2x
∗
2 + x3x

∗
3 + h(x2

2 + x2
3)

(x2
2 + x2

3)
.

This equation can be applied to determine those lines of timelike moving axode
that trace timelike ruled surfaces having the same distribution parameter. This set
of timelike lines is called a line complex and is stated by the equation

(8.7) x2x
∗
2 + x3x

∗
3 + (h− λx)(x2

2 + x2
3) = 0.

This equation shows a quadratic line complex. �

Now let p(x, y, z) be the position vector of an arbitrary point on the timelike line

X̃. In order to introduce (8.7) If we use Lorentzian cross product then,

x∗ = p× x

(8.8) (x∗1, x
∗
2, x
∗
3) =

 ~e1 −~e2 −~e3

x y z
x1 x2 x3

 = (yx3 − zx2, xx3 − zx1, yx1 − xx2).

After that, substituting (8.8) into (8.7) we have

(8.9) x1x3y − x1x2z + (h− λx)(x2
2 + x2

3) = 0.



ONE PARAMETER DUAL HYPERBOLIC SPHERICAL MOTION 107

This equation represent that the timelike lines X̃ of timelike moving axode that
trace timelike ruled surfaces with the same distribution parameter lie on a plane
parallel to the ISA of the one parameter Lorentzian spatial motion L3/L2.

From (8.9), we have two different cases: In the case of λx = h the distribution
parameter is associated with the lines in planes passing through the ISA. In the case
of λx = 0, the timelike line X̃ of the timelike moving axode, generate a developable
timelike ruled surface, (8.9) reduces to

(8.10) x1x3y − x1x2z + h(x2
2 + x2

3) = 0.

Now, kinematic investigation of Blaschke frame is given by using Blaschke in-
variants k̄1x = k1x + εk∗1x and k̄2x = k2x + εk∗2x . To realize this, we define dual
vector

(8.11) D̃x = −k̄2xẼ1 − k̄1xẼ3

known as Darboux’s vector.
∥∥∥D̃∥∥∥ =

√
k̄2

1x − k̄2
2x = ωx + εω∗x is the angular speed

of timelike line Ẽ1 about the Darboux vector.

(8.12) ωx =
√
|k2

1x − k2
2x| , ω∗x =

k1xk
∗
1x − k2xk

∗
2x√

|k2
1x − k2

2x|
are the rotational angular speed and translational angular speed of timelike line
Ẽ1, respectively. The pitch of Ẽ1 along the Darboux vector is

(8.13) hx =
ω∗x
ωx

=
k1xk

∗
1x − k2xk

∗
2x

k2
1x − k2

2x

.

Disteli axis is axis of hyperbolic motion of the timelike line Ẽ1 and it’s defined
by

(8.14) Ũ =
D̃x∥∥∥D̃x

∥∥∥ =
−k̄2xẼ1 − k̄1xẼ3√

k̄2
1x − k̄2

2x

.

From (8.14), the Disteli axis is parallel to tangent plane of timelike ruled surface

X̃ = X̃(t), and is unit dual timelike vector. Then the ISA of one parameter
hyperbolic spherical motion Σ3/Σ2 and the Disteli axis lie on a single great dual

hyperbolic circle determined by the intersection of Ẽ1Ẽ3-plane and the unit dual
hyperbolic sphere Σ2. Now let ∆ = δ + εδ∗ be the dual hyperbolic angle between
the Disteli axis and the timelike line X̃; then we have

(8.15) Ũ = − cosh ∆ Ẽ1 − sinh ∆ Ẽ3,

where ∆ = δ+ εδ∗ is dual hyperbolic spherical radius of curvature. For differential
of (8.15) we have

(8.16) Ũ ′ = (−sinh∆ Ẽ1 − cosh ∆ Ẽ3)∆′ + (k̄2x sinh ∆− k̄1x cosh ∆)Ẽ2

and
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(8.17) coth ∆ =
k̄2x

k̄1x
.

This equation shows that the relationship between the dual hyperbolic spherical
curvature ρ̄ and the dual hyperbolic spherical radius of curvature is

(8.18) ρ̄ = ρ+ ερ∗ = coth ∆.

9. During one parameter hyperbolic spherical motion line
trajectories and Euler Savary formulae

In this section, by using dual hyperbolic angle we give a different method for
deriving a new Euler-Savary formula of Lorentzian spatial kinematics. This means
that we investigate an oriented timelike line in the moving Lorentzian space L3 with
a fixed hyperbolic angle with respect to a given timelike line in the fixed Lorentzian
space L2.

Theorem 9.1. Let Σ3/Σ2 be the one parameter dual hyperbolic motion. In this
case, the relation between the spherical radii of curvature of the pole curves is given
by

(9.1) (coth θ̄c − coth θ̄) sin φ̄ = ρ̄ =
Ω̄

k̄1
= coth γ̄f − coth γ̄m,

where γ̄f and γ̄m are the dual hyperbolic spherical curvatures, Ω̄ is the dual screw
velocity and k̄1m = k̄1f are dual invariants.

Proof. For instantaneous fixed timelike line X̃ of the hyperbolic motion Σ3/Σ2, we
present the dual hyperbolic angle θ̄ = θ+ εθ∗ and dual spacelike angle φ̄ = φ+ εφ∗

to determine the direction of timelike line X̃. Because X̃ is a unit dual timelike
vector, we can give the components of X̃ in the following form:

(9.2) X̃ = cosh θ̄q̃ + sinh θ̄L̃, L̃ = cos φ̄h̃+ sin φ̄ã.

The dual hyperbolic angle θ̄ = θ + εθ∗ describes the position of timelike line X̃
relative to the ISA of the one parameter dual hyperbolic spherical motion Σ3/Σ2.

A similar set of coordinates may be used to determine the timelike Disteli axis
Ũ of the timelike ruled surface X̃ = X̃(t). Since central normal Ẽ2 is also normal
to the timelike Disteli axis, it is determined by the same dual central angle ϕ̄ about
the ISA of the hyperbolic motion Σ3/Σ2. Describing its dual hyperbolic angle with
the ISA by θ̄c = θc + εθ∗c , we can write

(9.3) Ũ = cosh θ̄c q̃ + sinh θ̄c cos ϕ̄ h̃+ sinh θ̄c sin ϕ̄ ã.

From (9.2) and (9.3) we have

(9.4)
〈
X̃, Ũ

〉
= − cosh(θ̄c − θ̄).

This equation describes a hyperbolic circle on the dual hyperbolic unit sphere
Σ2 where (θ̄c − θ̄) a given dual hyperbolic spherical radius is and Ũ is a fixed dual
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Figure 1. The moved timelike line X̃ and its timelike Disteli axis Ũ

unit timelike vector which identifies the hyperbolic circle’s center. According to
E. Study’s map (9.4) defines the set of all oriented timelike lines X̃. Like this a
set of timelike lines depends on two parameters and is called linear timelike line
congruence. Since osculating hyperbolic circle should have contact of at least second
order with the curve, timelike Disteli axis Ũ and (θ̄c − θ̄) remain constant up to
second order at t = t0, that is

(9.5)
d(θ̄c − θ̄)

dt

∣∣∣∣
t=t0

= 0,
dŨ

dt

∣∣∣∣∣
t=t0

= 0

and

(9.6)
d2(θ̄c − θ̄)

dt2

∣∣∣∣
t=t0

= 0,
d2Ũ

dt2

∣∣∣∣∣
t=t0

= 0.

From differentiation of (9.4) and equation (9.5) we have

(9.7)

〈
dX̃

dt
, Ũ

〉
= 0.

We have second order

(9.8)

〈
d2X̃

dt2
, Ũ

〉
= 0.

We substitute from (7.13) and (9.3) into (9.8) and obtain:
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(9.9) (coth θ̄c − coth θ̄) sin φ̄ =
Ω̄

k̄1
.

This equation is dual hyperbolic Euler-Savary equation of one parameter dual
hyperbolic spherical motion Σ3/Σ2 [24]. By using (8.18) we can rewrite Euler-
Savary equation the form as desired

(9.10) (coth θ̄c − coth θ̄) sin φ̄ = ρ̄.

If this equation separate real and dual part then we have

(9.11) (coth θc − coth θ) sinφ = ρ

and

(9.12) (coth θc − coth θ)φ∗ cosφ−
(

θ∗c
sinh2 θc

− θ∗

sinh2 θ

)
sinφ = ρ∗.

Lorentzian Euler-Savary Eq. (9.11) together with (9.12) is called Disteli formulae
of axode of dual hyperbolic spherical motion. (9.11) is Euler-Savary equation for
axode of real hyperbolic spherical motion in the Lorentzian space. In order to Eq.
(9.12) simplified to reduce by using (9.11) we have

(9.13) ρφ∗ cotφ−
(

θ∗c
sinh2 θc

− θ∗

sinh2 θ

)
sinφ = ρ∗.

�

10. Example

In this section we display the use of dual Lorentzian vectors for denoting the ISA
of the one parameter dual hyperbolic spherical motion Σ3/Σ2. The one parameter
dual hyperbolic spherical motion Σ3/Σ2 can be denoted analytically by the matrix
equation

(10.1) x̃f (t) = A(t)x̃m(t) + m̃f (t) , x̃m(t) = A−1(t)x̃f (t) + m̃m(t)

where x̃f , x̃m are vectors of a same point, with respect to the orthonormal frames of
the moving space and fixed space, respectively, and m̃f , m̃m and A are differentiable
functions of a dual parameter t̄ = t+εt∗ , since we study one parameter hyperbolic
spherical motion we consider the case t∗ = 0. Also we know that

(10.2) m̃f = −Am̃m , m̃m = −A−1 m̃f

where A and A−1 matrices are anti-symmetric in the sense of Lorentzian.
The velocity of a fixed point x̃m ∈ Σ3 is

(10.3) x̃′f = A′x̃m + m̃′f .

From (10.1) we get

(10.4) x̃′f = A′A−1x̃f + (m̃′f −A′A−1m̃f ).
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If we consider matrix ω = A′A−1 is anti-symmetric in the sense of Lorentzian,
then Eq. (10.4) can be rewritten in the form

(10.5) x̃′f = ω x̃f + (m̃′f − ω m̃f ).

As a consequence of this equation, there is a dual vector

(10.6) Ω̃(t) = ω(t) + ε ω∗(t)

such that

(10.7) ωxf = ω × xf ; ω∗ = (m′ − ω ×m).

Now we give a simple example using by above statement. First we consider
the one parameter dual hyperbolic spherical motion Σ3/Σ2 denoting by the dual
Lorentzian orthogonal matrix

(10.8) A = R1 ·R2 =

 cosh2 φ − sinhφ − coshφ sinhφ

− sinhφ coshφ coshφ sinh2 φ
− sinhφ 0 coshφ


such that

(10.9) R1 =

 cosh θ̄ − sinh θ̄ 0
− sinh θ̄ cosh θ̄ 0
0 0 1

 , R2 =

 cosh φ̄ 0 − sinh φ̄
0 1 0
− sinh φ̄ 0 cosh φ̄


where we assume that θ̄ = φ̄, θ∗ = φ∗ = 0. Also we consider an anti-symmetric in
the sense of Lorentzian matrix

(10.10) m(φ) =

 0 0 µ sinhφ
0 0 −µ coshφ
µ sinhφ µ coshφ 0

 ,

where we assume that µ > 1. Since q̃, q̃m, q̃f are timelike vectors we can write

(10.11) m(φ) =

 µ coshφ
µ sinhφ
0

 .

If we substitute the (10.8) and (10.10) in (10.7), we have

(10.12) ω(φ) =

 − sinhφ
− coshφ
1

 , ω∗(φ) =

 2µ sinhφ
2µ coshφ
µ

 .

Therefore the dual hyperbolic Pfaffian dual vector Ω̃ at the instant φ of the one
parameter dual hyperbolic spherical motion Σ3/Σ2 is
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(10.13) Ω̃(φ) = ω (φ) + εω∗(φ) =

 − sinhφ+ 2εµ sinhφ
− coshφ+ 2εµ coshφ
1 + εµ

 .

Fixed axode is given by

(10.14) q̃f (φ) =
Ω̃∥∥∥Ω̃
∥∥∥ =

1√
2− 2εµ

 − sinhφ+ 2εµ sinhφ
− coshφ+ 2εµ coshφ
1 + εµ

 .

Moving polode on Σ3 is denoted by

(10.15) Ωm =
dM−1

dφ
·M ; M = (A+ εmA)

where

M =

 cosh2 φ+ εµ(− sinh2 φ) − sinhφ − sinhφ coshφ+ εµ(sinhφ coshφ)

− sinhφ coshφ+ εµ(sinhφ coshφ) coshφ sinh2 φ− εµ(cosh2 φ)
− sinhφ εµ coshφ

 .

Therefore the moving axode is given by

(10.16) q̃m(φ) =
Ω̃m∥∥∥Ω̃m

∥∥∥ =
1√

2− 2εµ

 sinhφ
1− εµ
− coshφ

 .

Now we introduce the Blaschke invariants of the fixed axode q̃ = q̃f (φ). For the
one parameter hyperbolic spherical motion Σ3/Σ2, from (10.14), we can give

(10.17) Ω̃f (φ) = Ω̄ q̃(φ); Ω̄ =
√

2− 2εµ.

For differential of (10.17) with respect to φ, we have

(10.18)
dΩ̃f

dφ
= Ω̃′f = Ω̄′q̃ + k̄1Ω̄h̃

and by writing the (6.22) in the differentiation of (10.18)we obtain

(10.19) Ω̃′′f = (Ω̄′′ + k̄2
1Ω̄)q̃ + (2k̄1Ω̄′ + k̄′1Ω̄)h̃+ (k̄1Ω̄k̄2f )ã.

Further, if we consider Lorentzian vectorial product of (10.18) and (10.19) we
find

(10.20) Ω̃f (φ)× Ω̃′f (φ) = −k̄1Ω̄2ã.

And then by using following Lorentzian property

(10.21)∥∥∥Ω̃f (φ)× Ω̃′f (φ)
∥∥∥ = −

〈
Ω̃f (φ), Ω̃f (φ)

〉〈
Ω̃′f (φ), Ω̃′f (φ)

〉
+
(〈

Ω̃f (φ), Ω̃′f (φ)
〉)2
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we find that

(10.22) −
〈
Ω̄q̃, Ω̄q̃

〉 〈
Ω̄′q̃ + k̄1Ω̄h̃ , Ω̄′q̃ + k̄1Ω̄h̃

〉
+
(〈

Ω̄q̃, Ω̄′q̃ + k̄1Ω̄h̃
〉)2

= k̄2
1Ω̄4.

Finally, we have

(10.23) det(Ω̃f , Ω̃
′
f , Ω̃

′′
f ) = k̄2

1Ω̄3k̄2f .

From (10.13) we can give

(10.24) Ω̃′f (φ) =

 − coshφ+ 2εµ coshφ
− sinhφ+ 2εµ sinhφ
0


and

(10.25) Ω̃′′f (φ) =

 − sinhφ+ 2εµ sinhφ
− coshφ+ 2εµ coshφ
0

 .

From (10.13) and (10.14) we obtain

(10.26)
〈

Ω̃f (φ), Ω̃′f (φ)
〉

= 0

and so

(10.27)
(〈

Ω̃f (φ), Ω̃′f (φ)
〉)2

= 0.

Besides, we have

(10.28)
〈

Ω̃′f (φ), Ω̃′f (φ)
〉

= −1 + 4εµ.

Substituting the (10.13), (10.27) and (10.28) in (10.22), we find

(10.29) −(2− 2εµ)(−1 + 4εµ) = k̄2
1Ω̄4.

If we separate the real and dual parts the (10.29), we have

(10.30) k1 = ± 1√
2
, k∗1 = −3

√
2µ

4
.

By using (6.20) we find that the common distribution parameter of the axodes
is given by

(10.31) λ =
3µ

2
.

From (10.13), (10.23), (10.24) and (10.25), we find that

(10.32) det(Ω̃f , Ω̃
′
f , Ω̃

′′
f ) = 1− 3εµ = k̄2

1Ω̄3k̄2f .
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If we separate that the real and dual parts of above equations, we have

(10.33) k2f =

√
2

2
, k∗2f = µ

3
√

2

4
.

By means of (6.19) and (10.33) we get

(10.34) k2m =
3
√

2

2
, k∗2m = µ

√
2

4
.

Therefore we obtain real and dual parts of the integral invariants of the axodes.

11. Conclusion

In this paper, we have introduced one parameter dual hyperbolic spherical mo-
tions in the dual Lorentzian space. By considering Disteli axis on the Blaschke
frame we have obtained Euler Savary formulae of dual hyperbolic spherical mo-
tions. At the end of study, for given orthogonal rotation matrices in the sense of
dual Lorentzian type 3 × 3, we have found real and dual invariants of fixed and
moving axodes.
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Yüzeyler Geometrisi”, Celal Bayar Üniversitesi Yayınları, Yayın No: 0006, 2012.
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