Konuralp Journal of Mathematics Volume 4 No. 2 pp. 132–148 (2016) ©KJM

ON THE PARANORMED TAYLOR SEQUENCE SPACES

HACER BILGIN ELLIDOKUZOĞLU AND SERKAN DEMIRIZ

ABSTRACT. In this paper, the sequence spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ of nonabsolute type which are the generalization of the Maddox sequence spaces have been introduced and it is proved that the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ are linearly isomorphic to spaces $c_0(p)$, c(p) and $\ell(p)$, respectively. Furthermore, the $\alpha -, \beta -$ and γ -duals of the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ have been computed and their bases have been constructed and some topological properties of these spaces have been investigated. Besides this, the class of matrices $(t_0^r(p) : \mu)$ has been characterized, where μ is one of the sequence spaces ℓ_{∞}, c and c_0 and derives the other characterizations for the special cases of μ .

1. INTRODUCTION

By w, we shall denote the space of all real-valued sequences. Any vector subspace of w is called a sequence space. We shall write ℓ_{∞} , c and c_0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ_1 and ℓ_p , we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, where 1 .

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \to \mathbb{R}$ such that $g(\theta) = 0, g(x) = g(-x)$ and scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α 's in \mathbb{R} and all x's in X, where θ is the zero vector in the linear space X.

Assume here and after that (p_k) be a bounded sequences of strictly positive real numbers with $\sup p_k = H$ and $L = \max\{1, H\}$. Then, the linear spaces $\ell_{\infty}(p), c(p), c_0(p)$ and $\ell(p)$ were defined by Maddox [12] (see also Simons [14] and

²⁰⁰⁰ Mathematics Subject Classification. 46A45, 40C05, 46B20.

Key words and phrases. Taylor sequence spaces, matrix domain, matrix transformations.

Nakano [13]) as follows:

$$\ell_{\infty}(p) = \{x = (x_k) \in w : \sup_{k \in \mathbb{N}} |x_k|^{p_k} < \infty\},\$$

$$c(p) = \{x = (x_k) \in w : \lim_{k \to \infty} |x_k - l|^{p_k} = 0 \text{ for some } l \in \mathbb{R}\},\$$

$$c_0(p) = \{x = (x_k) \in w : \lim_{k \to \infty} |x_k|^{p_k} = 0\},\$$

$$\ell(p) = \left\{x = (x_k) \in w : \sum_k |x_k|^{p_k} < \infty\right\},\$$

which are the complete spaces paranormed by

$$g_1(x) = \sup_{k \in \mathbb{N}} |x_k|^{p_k/L} \iff \inf p_k > 0 \text{ and } g_2(x) = \left(\sum_k |x_k|^{p_k}\right)^{1/L},$$

respectively. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By \mathcal{F} and \mathbb{N}_k , we shall denote the collection of all finite subsets of \mathbb{N} and the set of all $n \in \mathbb{N}$ such that $n \geq k$, respectively. We shall assume throughout that $p_k^{-1} + (p'_k)^{-1} = 1$ provided $1 < \inf p_k \leq H < \infty$.

Let λ, μ be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$, the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ , where

(1.1)
$$(Ax)_n = \sum_k a_{nk} x_k, \ (n \in \mathbb{N}).$$

By $(\lambda : \mu)$, we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right-hand side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \mu$. A sequence x is said to be A-summable to α if Ax converges to α which is called the A-limit of x.

2. The Sequence Spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ of Non-Absolute Type

In this section, we define the sequence spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$, and prove that $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ are the complete paranormed linear spaces.

For a sequence space λ , the matrix domain λ_A of an infinite matrix A is defined by

(2.1)
$$X_A = \{ x = (x_k) \in w : Ax \in X \}.$$

In [5], Choudhary and Mishra have defined the sequence space $\ell(p)$ which consists of all sequences such that S-transforms are in $\ell_{(p)}$, where $S = (s_{nk})$ is defined by

$$s_{nk} = \begin{cases} 1 & , & 0 \le k \le n, \\ 0 & , & k > n. \end{cases}$$

Başar and Altay [3] have studied the space bs(p) which is formerly defined by Başar in [4] as the set of all series whose sequences of partial sums are in $\ell_{\infty}(p)$.

More recently, Altay and Başar have studied the sequence spaces $r^t(p), r^t_{\infty}(p)$ in [1] and $r^t_c(p), r^t_0(p)$ in [2] which are derived by the Riesz means from the sequence spaces $\ell(p), \ell_{\infty}(p), c(p)$ and $c_0(p)$ of Maddox, respectively.

With the notation of (2.1), the spaces $\overline{\ell(p)}$, bs(p), $r^t(p)$, $r^t_{\infty}(p)$, $r^t_c(p)$ and $r^t_0(p)$ may be redefined by

$$\overline{\ell(p)} = [\ell(p)]_S, bs(p) = [\ell_{\infty}(p)]_S, r^t(p) = [\ell(p)]_R^t$$
$$r^t_{\infty}(p) = [\ell_{\infty}(p)]_R^t, r^t_c(p) = [c(p)]_R^t, r^t_0(p) = [c_0(p)]_R^t$$

In [6], Demiriz and Çakan have defined the sequence spaces $e_0^r(u, p)$ and $e_c^r(u, p)$ which consists of all sequences such that $E^{r,u}$ - transforms are in $c_0(p)$ and c(p), respectively $E^{r,u} = \{e_{nk}^r(u)\}$ is defined by

$$e_{nk}^{r}(u) = \begin{cases} \binom{n}{k}(1-r)^{n-k}r^{k}u_{k} & , & (0 \le k \le n), \\ 0 & , & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$ and 0 < r < 1.

In [9], the Taylor sequence spaces t_0^r and t_c^r of non-absolute type, which are the matrix domains of Taylor mean T^r of order r in the sequence spaces c_0 and c, respectively, are introduced, some inclusion relations and Schauder basis for the spaces t_0^r and t_c^r are given, and the $\alpha -, \beta -$ and $\gamma -$ duals of those spaces are determined. The main purpose of this paper is to introduce the sequence spaces $t_0^r(p), t_c^r(p)$ and $t^r(p)$ of nonabsolute type which are the set of all sequences whose T^r -transforms are in the spaces $c_0(p), c(p)$ and $\ell(p)$, respectively; where T^r denotes the matrix $T^r = \{t_{nk}^r\}$ defined by

$$t_{nk}^{r} = \begin{cases} \binom{k}{n} (1-r)^{n+1} r^{k-n} &, \quad (k \ge n), \\ 0 &, \quad (0 \le k < n) \end{cases}$$

where 0 < r < 1. Also, we have constructed the basis and computed the $\alpha -, \beta$ and γ -duals and investigated some topological properties of the spaces $t_0^r(p), t_c^r(p)$ and $t^r(p)$.

Following Choudhary and Mishra [5], Başar and Altay [3], Altay and Başar [1, 2], Demiriz [6], Kirişçi [9], we define the sequence spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$, as the sets of all sequences such that T^r -transforms of them are in the spaces $c_0(p), c(p)$ and $\ell(p)$, respectively, that is,

$$t_0^r(p) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left| \sum_{k=n}^\infty \binom{k}{n} (1-r)^{n+1} r^{k-n} x_k \right|^{p_n} = 0 \right\},$$
$$t_c^r(p) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left| \sum_{k=n}^\infty \binom{k}{n} (1-r)^{n+1} r^{k-n} x_k - l \right|^{p_n} = 0 \text{ for some } l \in \mathbb{R} \right\}$$

and

$$t^{r}(p) = \left\{ x = (x_{k}) \in w : \sum_{n} \left| \sum_{k=n}^{\infty} \binom{k}{n} (1-r)^{n+1} r^{k-n} x_{k} \right|^{p_{n}} < \infty \right\}.$$

In the case $(p_n) = e = (1, 1, 1, ...)$, the sequence spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ are, respectively, reduced to the sequence spaces t_0^r and t_c^r which are introduced by Kirişçi [9] and $t^r(p)$ is reduced to the sequence space t_p^r . With the notation of (2.1), we may redefine the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ as follows:

(2.2)
$$t_0^r(p) = [c_0(p)]_{T^r}, \ t_c^r(p) = [c(p)]_{T^r} \text{ and } t^r(p) = [\ell(p)]_{T^r}.$$

Define the sequence $y = \{y_k(r)\}$, which will be frequently used, as the T^r -transform of a sequence $x = (x_k)$, i.e.,

(2.3)
$$y_k(r) := \sum_{k=n}^{\infty} \binom{k}{n} (1-r)^{n+1} r^{k-n} x_k \text{ for all } k \in \mathbb{N}.$$

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. $t_0^r(p)$ and $t_c^r(p)$ are the complete linear metric space paranormed by g, defined by

$$g(x) = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k/L}.$$

Also, $t_p^r(p)$ is the complete linear metric space paranormed by h, defined by

(2.4)
$$h(x) = \left(\sum_{k=0}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k} \right)^{1/M}.$$

Proof. Since the proof is similar for $t_0^r(p)$ and $t_c^r(p)$, we give the proof only for the space $t_0^r(p)$. The linearity of $t_0^r(p)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the following inequalities which are satisfied for $x, z \in t_0^r(p)$ (see Maddox [11, p.30])

$$\sup_{n \in \mathbb{N}} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} (x_j + z_j) \right|^{p_k/L}$$

$$(2.5) \leq \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k/L} + \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} z_j \right|^{p_k/L}$$

and for any $\alpha \in \mathbb{R}$ (see [14])

(2.6)
$$|\alpha|^{p_k} \le \max\{1, |\alpha|^L\}.$$

It is clear that $g(\theta) = 0$ and g(x) = g(-x) for all $x \in t_0^r(p)$. Again the inequalities (2.5) and (2.6) yield the subadditivity of g and

$$g(\alpha x) \le \max\{1, |\alpha|^L\}g(x).$$

Let $\{x^n\}$ be any sequence of the points $x^n \in t_0^r(p)$ such that $g(x^n - x) \to 0$ and (α_n) also be any sequence of scalars such that $\alpha_n \to \alpha$. Then, since the inequality

$$g(x^n) \le g(x) + g(x^n - x)$$

holds by the subadditivity of $g, \{g(x^n)\}$ is bounded and we thus have

$$g(\alpha^{n}x^{n} - \alpha x) = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} (\alpha^{n}x_{j}^{n} - \alpha x_{j}) \right|^{p_{k}/L}$$

$$\leq |\alpha_{n} - \alpha|g(x^{n}) + |\alpha|g(x^{n} - x),$$

which tends to zero as $n \to \infty$. This means that the scalar multiplication is continuous. Hence, g is paranorm on the space $t_0^r(p)$.

It remains to prove the completeness of the space $t_0^r(p)$. Let $\{x^i\}$ be any Cauchy sequence in the space $t_0^r(p)$, where $x^i = \{x_0^{(i)}, x_1^{(i)}, x_2^{(i)}, \ldots\}$. Then, for a given $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that

$$g(x^i - x^j) < \frac{\epsilon}{2}$$

for all $i, j > n_0(\epsilon)$. Using the definition of g we obtain for each fixed $k \in \mathbb{N}$ that

(2.7)
$$|(T^r x^i)_k - (T^r x^j)_k|^{p_k/L} \le \sup_{k \in \mathbb{N}} |(T^r x^i)_k - (T^r x^j)_k|^{p_k/L} < \frac{\epsilon}{2}$$

for every $i, j > n_0(\epsilon)$ which leads to the fact that $\{(T^r x^0)_k, (T^r x^1)_k, (T^r x^2)_k, \ldots\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(T^r x^i)_k \to (T^r x)_k$ as $i \to \infty$. Using these infinitely many limits $(T^r x)_0, (T^r x)_1, \ldots$, we define the sequence $\{(T^r x)_0, (T^r x)_1, \ldots\}$. From (2.7) with $j \to \infty$, we have

(2.8)
$$|(T^r x^i)_k - (T^r x)_k|^{p_k/L} \le \frac{\epsilon}{2} \ (i, j > n_0(\epsilon))$$

for every fixed $k \in \mathbb{N}$. Since $x^i = \{x_k^{(i)}\} \in t_0^r(p)$ for each $i \in \mathbb{N}$, there exists $k_0(\epsilon) \in \mathbb{N}$ such that

$$|(T^r x^i)_k|^{p_k/L} < \frac{\epsilon}{2}$$

for every $k \ge k_0(\epsilon)$ and for each fixed $i \in \mathbb{N}$. Therefore, taking a fixed $i > n_0(\epsilon)$ we obtain by (2.8) and (2.9) that

$$|(T^{r}x)_{k}|^{p_{k}/L} \leq |(T^{r}x)_{k} - (T^{r}x^{i})_{k}|^{p_{k}/L} + |(T^{r}x^{i})_{k}|^{p_{k}/L} < \frac{\epsilon}{2}$$

for every $k > k_0(\epsilon)$. This shows that $x \in t_0^r(p)$. Since $\{x^i\}$ was an arbitrary Cauchy sequence, the space $t_0^r(p)$ is complete and this concludes the proof.

Now, $t^r(p)$ is the complete linear metric space paranormed by h defined by (2.4). It is easy to see that the space $t^r(p)$ is linear with respect to the coordinate-wise addition and scalar multiplication. Therefore, we first show that it is a paranormed space with the paranorm h defined by (2.4).

It is clear that
$$h(\theta) = 0$$
 where $\theta = (0, 0, 0, ...)$ and $h(x) = h(-x)$ for all $x \in t^r(p)$.

Let $x, y \in t^r(p)$; then by Minkowski's inequality we have

$$h(x+y) = \left(\sum_{k=0}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} (x_j+y_j)\right|^{p_k} \right)^{1/M}$$

$$= \left(\sum_{k=0}^{\infty} \left[\left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} (x_j+y_j)\right|^{p_k/M} \right]^M \right)^{1/M}$$

$$\leq \left(\sum_{k=0}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j\right|^{p_k} \right)^{1/M}$$

$$+ \left(\sum_{k=0}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} y_j\right|^{p_k} \right)^{1/M}$$

$$(2.10) = h(x) + h(y)$$

Let $\{x^n\}$ be any sequence of the points $x^n \in t^r(p)$ such that $h(x^n - x) \to 0$ and (λ_n) also be any sequence of scalars such that $\lambda_n \to \lambda$. We observe that

(2.11)
$$\begin{aligned} h(\lambda^n x^n - \lambda x) &\leq h[(\lambda^n - \lambda)(x^n - x)] \\ &+ h[\lambda(x^n - x)] \\ &+ h[(\lambda^n - \lambda)x]. \end{aligned}$$

It follows from $\lambda^n \to \lambda(n \to \infty)$ that $|\lambda^n - \lambda| < 1$ for all sufficiently large n; hence

(2.12)
$$\lim_{n \to \infty} h[(\lambda_n - \lambda)(x^n - x)] \le \lim_{n \to \infty} h(x^n - x) = 0.$$

Furthermore, we have

(2.13)
$$\lim_{n \to \infty} h[\lambda(x^n - x)] \le \max\{1, |\lambda|^M\} \lim_{n \to \infty} h(x^n - x) = 0.$$

Also, we have

(2.14)
$$\lim_{n \to \infty} h[(\lambda_n - \lambda)x)] \le \lim_{n \to \infty} |\lambda_n - \lambda| h(x) = 0.$$

Then, we obtain from (2.11), (2.12), (2.13) and (2.14) that $h(\lambda^n x^n - \lambda x) \to 0$, as $n \to \infty$. This shows that h is a paranorm on $t^r(p)$.

Furthermore, if h(x) = 0, then $\left(\sum_{k=0}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j\right|^{p_k}\right)^{1/M} = 0$. Therefore $\left|\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j\right|^{p_k} = 0$ for each $k \in \mathbb{N}$. Since 0 < r < 1, we have ${j \choose k} (1-r)^{k+1} r^{j-k} > 0$. Then, we obtain $x_k = 0$ for all $k \in \mathbb{N}$. That is, $x = \theta$. This shows that h is a total paranorm.

Now, we show that $t^r(p)$ is complete. Let $\{x^n\}$ be any Cauchy sequence in the space $t^r(p)$, where $x^n = \{x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, \ldots\}$. Then, for a given $\epsilon > 0$, there exists a positive integer $n_0(\epsilon)$ such that $h(x^n - x^m) < \epsilon$ for all $n, m > n_0(\epsilon)$. Since for

each fixed $k \in \mathbb{N}$ that

(2.15)
$$|(T^{r}x^{n})_{k} - (T^{r}x^{m})_{k}| \leq \left[\sum_{k} |(T^{r}x^{n})_{k} - (T^{r}x^{m})_{k}|^{p_{k}}\right]^{\frac{1}{M}} = h(x^{n} - x^{m}) < \epsilon$$

for every $n, m > n_0(\epsilon)$, $\{(T^r x^0)_k, (T^r x^1)_k, (T^r x^2)_k, ...\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(T^r x^n)_k \to (T^r x)_k$ as $n \to \infty$. Using these infinitely many limits $(T^r x)_0, (T^r x)_1, ...,$ we define the sequence $\{(T^r x)_0, (T^r x)_1, ...\}$. For each $K \in \mathbb{N}$ and $n, m > n_0(\epsilon)$

(2.16)
$$\left[\sum_{k=0}^{K} |(T^r x^n)_k - (T^r x^m)_k|^{p_k}\right]^{\frac{1}{M}} \le h(x^n - x^m) < \epsilon.$$

By letting $m, K \to \infty$, we have for $n > n_0(\epsilon)$ that

(2.17)
$$h(x^n - x) = \left[\sum_k |(T^r x^n)_k - (T^r x)_k|^{p_k}\right]^{\frac{1}{M}} < \epsilon.$$

This shows that $x^n - x \in t^r(p)$. Since $t^r(p)$ is a linear space, we conclude that $x \in t^r(p)$; it follows that $x^n \to x$, as $n \to \infty$ in $t^r(p)$, thus we have shown that $t^r(p)$ is complete.

Note that the absolute property does not hold on the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$, since there exists at least one sequence in the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ and such that $g(x) \neq g(|x|)$, where $|x| = (|x_k|)$. This says that $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ are the sequence spaces of non-absolute type.

Theorem 2.2. The sequence spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ of non-absolute type are linearly isomorphic to the spaces $c_0(p)$, c(p) and $\ell(p)$, respectively, where $0 < p_k \le H < \infty$.

Proof. To avoid repetition of similar statements, we give the proof only for $t_0^r(p)$. We should show the existence of a linear bijection between the spaces $t_0^r(p)$ and $c_0(p)$. With the notation of (2.3), define the transformation T from $t_0^r(p)$ and $c_0(p)$ by $x \mapsto y = Tx$. The linearity of T is trivial. Furthermore, it is obvious that $x = \theta$ whenever $Tx = \theta$, and hence T is injective.

Let $y \in c_0(p)$ and define the sequence

$$x_k(r) := \sum_{j=k}^{\infty} {j \choose k} (-r)^{j-k} (1-r)^{-(j+1)} y_j; \quad k \in \mathbb{N}.$$

Then, we have

$$g(x) = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k/L} = \sup_{k \in \mathbb{N}} |y_k|^{p_k/L} = g_1(y) < \infty.$$

Thus, we have that $x \in t_0^r(p)$ and consequently T is surjective. Hence, T is a linear bijection and this says that the spaces $t_0^r(p)$ and $c_0(p)$ are linearly isomorphic, as was desired.

Theorem 2.3. Convergence in $t^r(p)$ is stronger than coordinate-wise convergence.

Proof. First we show that $h(x^n - x) \to 0$, as $n \to \infty$ implies $x_k^n \to x_k$; as $n \to \infty$ for every $k \in \mathbb{N}$. We fix k, then we have

(2.18)

$$\lim_{n \to \infty} \left| \sum_{n=k}^{\infty} \binom{n}{k} (1-r)^{k+1} r^{n-k} [x_k^{(n)} - x_k] \right|^{p_k} \\
\leq \lim_{n \to \infty} \sum_k \left| \sum_{n=k}^{\infty} \binom{n}{k} (1-r)^{k+1} r^{n-k} [x_k^{(n)} - x_k] \right|^{p_k} \\
= \lim_{n \to \infty} [h(x^n - x)]^M = 0.$$

Hence, we have for k = 0 that

$$\lim_{n \to \infty} \left| \sum_{n=0}^{\infty} (1-r) r^n [x_0^{(n)} - x_0] \right| = 0$$

which gives the fact that $|x_0^{(n)} - x_0| \to 0$, as $n \to \infty$. Similarly, for each $k \in \mathbb{N}$, we have $x_k^n \to x_k$; as $n \to \infty$.

A sequence space λ with a linear topology is called a K-space provided each of the maps $p_i : \lambda \to \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$, where \mathbb{C} denotes the complex field. A K-space λ is called an FK-space provided λ is complete linear metric space. An FK-space whose topology is normable is called a BK-space. Given a BK-space $\lambda \supset \phi$, we denote the *n* th section of a sequence $x = (x_k) \in \lambda$ by $x^{[n]} := \sum_{k=0}^n x_k e^{(k)}$, and we say that $x = (x_k)$ has the property AK if $\lim_{n\to\infty} ||x - x^{[n]}||_{\lambda} = 0$. If AK property holds for every $x \in \lambda$, then we say that the space λ is called AK-space (cf. [7]). Now, we may give the following. \Box

Theorem 2.4. The space $t^r(p)$ has AK.

Proof. For each $x = (x_k) \in t^r(p)$, we put

(2.19)
$$x^{\langle m \rangle} = \sum_{k=0}^{m} x_k e^{(k)}, \forall m \in \{1, 2, \ldots\}.$$

Let $\epsilon > 0$ and $x \in t^r(p)$ be given. Then, there is $N = N(\epsilon) \in \mathbb{N}$ such that

(2.20)
$$\sum_{k=N}^{\infty} \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k} < \epsilon^M.$$

Then we have for all $m \geq N$,

$$h(x - x^{}) = h\left(x - \sum_{k=0}^{m} x_k e^{(k)}\right)$$

$$= \left(\sum_{k=m+1}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1 - r)^{k+1} r^{j-k} x_j\right|^{p_k}\right)^{1/M}$$

$$\leq \left(\sum_{k=N}^{\infty} \left|\sum_{j=k}^{\infty} {j \choose k} (1 - r)^{k+1} r^{j-k} x_j\right|^{p_k}\right)^{1/M} < \epsilon.$$

This shows that $x = \sum_k x_k e^{(k)}$.

Now, we have to show that this representation is unique. We assume that $x = \sum_k \lambda_k e^{(k)}$. Then for each k,

$$\left(\left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} \lambda_j - \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k} \right)^{1/M} \\
\leq \left(\sum_k \left| \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} \lambda_j - \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j \right|^{p_k} \right)^{1/M} \\
(2.22) = h(x-x) = 0$$

Hence, $\sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} \lambda_j = \sum_{j=k}^{\infty} {j \choose k} (1-r)^{k+1} r^{j-k} x_j$ for each j. Then, $\lambda_j = x_j$ for each j. Therefore, the representation is unique.

3. The Basis for the Spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$

Let (λ, h) be a paranormed space. Recall that a sequence (b_k) of the elements of λ is called a basis for λ if and only if, for each $x \in \lambda$, there exists a unique sequence (α_k) of scalars such that

$$h\left(x - \sum_{k=0}^{n} \alpha_k b_k\right) \to 0 \text{ as } n \to \infty.$$

The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , and written as $x = \sum \alpha_k b_k$. Since it is known that the matrix domain λ_A of a sequence space λ has a basis if and only if λ has a basis whenever $A = (a_{nk})$ is a triangle (cf. [8, Remark 2.4]), we have the following. Because of the isomorphism T is onto, defined in the proof of Theorem 2.2, the inverse image of the basis of those spaces $c_0(p)$, c(p) and $\ell(p)$ are the basis of the new spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$, respectively. Therefore, we have the following:

Theorem 3.1. Let $\lambda_k(r) = (T^r x)_k$ for all $k \in \mathbb{N}$ and $0 < p_k \leq H < \infty$. Define the sequence $b^{(k)}(r) = \{b^{(k)}(r)\}_{k \in \mathbb{N}}$ of the elements of the space $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ by

$$b^{(k)}(r) = \begin{cases} \binom{k}{n} (1-r)^{-(k+1)} (-r)^{k-n} & , & k \ge n \\ 0 & , & 0 \le k < n \end{cases}$$

for every fixed $k \in \mathbb{N}$. Then

(a): The sequence $\{b^{(k)}(r)\}_{k\in\mathbb{N}}$ is a basis for the space $t_0^r(p)$, and any $x \in t_0^r(p)$ has a unique representation of the form

$$x = \sum_{k} \lambda_k(r) b^{(k)}(r),$$

(b): The set $e, b^{(1)}(r), b^{(2)}(r), \dots$ is a basis for the space $t_c^r(p)$, and any $x \in t_c^r(p)$ has a unique representation of the form

$$x = le + \sum_{k} [\lambda_k(r) - l] b^{(k)}(r),$$

where $l = \lim_{k \to \infty} (T^r x)_k$.

(c): The sequence $\{b^{(k)}(r)\}_{k\in\mathbb{N}}$ is a basis for the space $t^r(p)$, and any $x \in t^r(p)$ has a unique representation of the form

$$x = \sum_{k} \lambda_k(r) b^{(k)}(r).$$

4. The $\alpha - \beta - \beta$ and $\gamma - D$ Duals of the Spaces $t_0^r(p), t_c^r(p)$ and $t^r(p)$

In this section, we state and prove the theorems determining the $\alpha -, \beta -$ and γ -duals of the sequence spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ of non-absolute type.

We shall firstly give the definition of $\alpha -, \beta -$ and γ -duals of sequence spaces and after quoting the lemmas which are needed in proving the theorems given in Section 4.

The set $S(\lambda, \mu)$ defined by

(4.1)
$$S(\lambda, \mu) = \{ z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x = (x_k) \in \lambda \}$$

is called the multiplier space of the sequence spaces λ and μ . One can easily observe for a sequence space ν with $\lambda \supset \nu \supset \mu$ that the inclusions

$$S(\lambda,\mu) \subset S(\nu,\mu)$$
 and $S(\lambda,\mu) \subset S(\lambda,\nu)$

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence space λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} are defined by

$$\lambda^{\alpha} = S(\lambda, \ell_1), \lambda^{\beta} = S(\lambda, cs) \text{ and } \lambda^{\gamma} = S(\lambda, bs).$$

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe-Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space, respectively.

For to give the alpha-, beta- and gamma-duals of the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$ of non-absolute type, we need the following Lemma:

Lemma 4.1. [7] Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold

(4.2)
(i):
$$A \in (c_o(p) : \ell(q))$$
 if and only if

$$\sup_{K \in \mathcal{F}} \sum_n \left| \sum_{k \in K} a_{nk} M^{-1/p_k} \right|^{q_n} < \infty, \quad \exists M \in \mathbb{N}_2$$

(ii):
$$A \in (c(p) : \ell(q))$$
 if and only if (4.2) holds and

(4.3)
$$\sum_{n} \left| \sum_{k} a_{nk} \right|^{q_{n}} < \infty.$$

(iii):
$$A \in (c_0(p) : c(q))$$
 if and only if
(4.4) $\sup_{n \in \mathbb{N}} \sum_k |a_{nk}| M^{-1/p_k} < \infty, \exists M \in \mathbb{N}_2,$
(4.5) $\exists (\alpha_k) \subset \mathbb{R} \ni \lim_{n \to \infty} |a_{nk} - \alpha_k|^{q_n} = 0$ for all $k \in \mathbb{N},$
(4.6) $\exists (\alpha_k) \subset \mathbb{R} \ni \sup_{n \in \mathbb{N}} N^{1/q_n} \sum_k |a_{nk} - \alpha_k| M^{-1/p_k} < \infty, \exists M \in \mathbb{N}_2 \text{ and } \forall N \in \mathbb{N}_1.$

(iv):
$$A \in (c(p) : c(q))$$
 if and only if (4.4), (4.5), (4.6) hold and
(4.7) $\exists \alpha \in \mathbb{R} \ni \lim_{n \to \infty} |\sum_{k} a_{nk} - \alpha|^{q_n} = 0.$

(v): $A \in (c_o(p) : \ell_{\infty}(q))$ if and only if

(4.8)
$$\sup_{n \in \mathbb{N}} \left(\sum_{k} |a_{nk}| M^{-1/p_k} \right)^{q_n} < \infty, \ \exists M \in \mathbb{N}_2.$$

(vi): $A \in (\ell(p) : \ell_1)$ if and only if (a): Let $0 < p_k \le 1$ for all $k \in \mathbb{N}$. Then

(4.9)
$$\sup_{N\in\mathcal{F}}\sup_{k\in\mathbb{N}}\left|\sum_{n\in N}a_{nk}\right|^{p_{k}}<\infty.$$

(b): Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, there exists an integer M > 1 such that

(4.10)
$$\sup_{N\in\mathcal{F}}\sum_{k}\left|\sum_{n\in N}a_{nk}M^{-1}\right|^{p_{k}}<\infty.$$

Lemma 4.2. [10] Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold

(i):
$$A \in (\ell(p) : \ell_{\infty})$$
 if and only if
(a): Let $0 < p_k \le 1$ for all $k \in \mathbb{N}$. Then,

(4.11)
$$\sup_{n,k\in\mathbb{N}}|a_{nk}|^{p_k}<\infty.$$

(b): Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, there exists an integer M > 1 such that

(4.12)
$$\sup_{n \in \mathbb{N}} \sum_{k} \left| a_{nk} M^{-1} \right|^{p'_{k}} < \infty.$$

(ii): Let $0 < p_k \le H < \infty$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(p) : c)$ if and only if (4.11) and (4.12) hold, and

(4.13)
$$\lim_{n \to \infty} a_{nk} = \beta_k, \ \forall k \in \mathbb{N}.$$

Theorem 4.1. Let $K \in \mathcal{F}$ and $K^* = \{k \in \mathbb{N} : n \ge k\} \cap K$ for $K \in \mathcal{F}$. Define the sets $T_1^r(p)$, T_2^r , $T_3(p)$ and $T_4(p)$ as follows:

$$T_1^r(p) = \bigcup_{M>1} \left\{ a = (a_k) \in w : \sup_{K \in \mathcal{F}} \sum_n \left| \sum_{k \in K^*} c_{nk} M^{-1/p_k} \right|^{q_n} < \infty \right\},$$

$$T_2^r = \left\{ a = (a_k) \in w : \sum_n \left| \sum_{k=0}^n c_{nk} \right| \text{ exists for each } n \in \mathbb{N} \right\},$$

$$T_3(p) = \bigcup_{M>1} \left\{ a = (a_k) \in w : \sup_{N \in \mathcal{F}} \sum_k \left| \sum_{n \in N} c_{nk} M^{-1} \right|^{p'_k} < \infty, \right\},$$

$$T_4(p) = \left\{ a = (a_k) \in w : \sup_{N \in \mathcal{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in N} c_{nk} \right|^{p_k} < \infty \right\},$$

where the matrix $C(r) = (c_{nk}^r)$ defined by

(4.14)
$$c_{nk}^r = \begin{cases} \binom{k}{n} (-r)^{k-n} (1-r)^{-(k+1)} a_n & , \quad (k \ge n), \\ 0 & , \quad (0 \le k < n). \end{cases}$$

Then, $[t_0^r(p)]^{\alpha} = T_1^r(p)$, $[t_c^r(p)]^{\alpha} = T_1^r(p) \cap T_2^r$ and

(4.15)
$$[t^r(p)]^{\alpha} = \begin{cases} T_3(p) &, \quad 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_4(p) &, \quad 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases}$$

Proof. We chose the sequence $a = (a_k) \in w$. We can easily derive that with the (2.3) that

(4.16)
$$a_n x_n = \sum_{k=n}^{\infty} \binom{k}{n} (-r)^{k-n} (1-r)^{-(k+1)} a_n y_k = (C^r y)_n, \ (n \in \mathbb{N}).$$

for all $k, n \in \mathbb{N}$, where $C^r = (c_{nk}^r)$ defined by (4.14). It follows from (4.16) that $ax = (a_n x_n) \in \ell_1$ whenever $x \in t_0^r(p)$ if and only if $Cy \in \ell_1$ whenever $y \in c_0(p)$. This means that $a = (a_n) \in [t_0^r(p)]^{\alpha}$ if and only if $C \in (c_0(p) : \ell_1)$. Then, we derive by (4.2) with $q_n = 1$ for all $n \in \mathbb{N}$ that $[t_0^r(p)]^{\alpha} = T_1^r(p)$.

Using the (4.3) with $q_n = 1$ for all $n \in \mathbb{N}$ and (4.16), the proof of the $[t_c^r(p)]^{\alpha} = T_1^r(p) \cap T_2$ can also be obtained in a similar way. Also, using the (4.9),(4.10) and (4.16), the proof of the

$$[t^r(p)]^{\alpha} = \begin{cases} T_3(p) &, \quad 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_4(p) &, \quad 0 < p_k \le 1, \forall k \in \mathbb{N}, \end{cases}$$

can also be obtained in a similar way.

Theorem 4.2. The matrix $D(r) = (d_{nk}^r)$ is defined by

(4.17)
$$d_{nk}^r = \begin{cases} \sum_{k=0}^n \binom{n}{k} (-r)^{n-k} (1-r)^{-(n+1)} a_k & , & (0 \le k \le n) \\ 0 & , & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$. Define the sets $T_5^r(p)$, T_6^r , T_7^r , $T_8(p)$, $T_9(p)$ and $T_{10}(p)$ as follows:

$$\begin{split} T_{5}^{r}(p) &= \bigcup_{M>1} \left\{ a = (a_{k}) \in w : \sum_{k} \left| d_{nk}^{r} M^{-1/p_{k}} \right| < \infty \right\}, \\ T_{6}^{r} &= \left\{ a = (a_{k}) \in w : \lim_{n \to \infty} |d_{nk}^{r}| \; exists \; for \; each \; k \in \mathbb{N} \right\}, \\ T_{7}^{r} &= \left\{ a = (a_{k}) \in w : \lim_{n \to \infty} \sum_{k=0}^{n} |d_{nk}^{r}| \; exists \right\}, \\ T_{8}(p) &= \bigcup_{M>1} \left\{ a = (a_{k}) \in w : \sup_{n \in \mathbb{N}} \sum_{k} |d_{nk} M^{-1}|^{p_{k}'} < \infty \right\}, \\ T_{9}(p) &= \left\{ a = (a_{k}) \in w : d_{nk} < \infty \right\}, \\ T_{10}(p) &= \left\{ a = (a_{k}) \in w : \sup_{n,k \in \mathbb{N}} |d_{nk}|^{p_{k}} < \infty \right\}. \end{split}$$

 $\begin{aligned} Then, \ [t_0^r(p)]^\beta &= T_5^r(p) \cap T_6^r, \ [t_c^r(p)]^\beta &= [t_0^r(p)]^\beta \cap T_7^r \ and \\ (4.18) \qquad [t^r(p)]^\beta &= \begin{cases} T_8(p) \cap T_9(p) &, \ 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_9(p) \cap T_{10}(p) &, \ 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases} \end{aligned}$

Proof. We give the proof again only for the space $t_0^r(p)$. Consider the equation

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} \left[\sum_{k=j}^{\infty} \binom{k}{j} (-r)^{k-j} (1-r)^{-(k+1)} y_k \right] a_k$$

$$(4.19) = \sum_{k=0}^{n} \left[\sum_{j=0}^{k} \binom{k}{j} (-r)^{k-j} (1-r)^{-(k+1)} a_j \right] y_k = (D^r y)_n$$

where $D^r = (d_{nk}^r)$ defined by (4.17). Thus, we decude from (4.19) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in t_0^r(p)$ if and only if $D^r y \in c$ whenever $y = (y_k) \in c_0(p)$. That is to say that $a = (a_k) \in [t_0^r(p)]^\beta$ if and only if $D^r \in (c_0(p) : c)$. Therefore, we derive from (4.4),(4.5) and (4.6) with $q_n = 1$ for all $n \in \mathbb{N}$ that $[t_0^r(p)]^\beta = T_5^r(u, p) \cap T_6^r(u)$.

Using the (4.4),(4.5), (4.6) and (4.7) with $q_n = 1$ for all $n \in \mathbb{N}$ and (4.19), the proofs of the $[t_c^r(p)]^\beta = [t_0^r(p)]^\beta \cap T_7^r$ can also be obtained in a similar way. Also, using the (4.11),(4.12), (4.13) and (4.19), the proofs of the

$$[t^r(p)]^{\beta} = \begin{cases} T_8(p) \cap T_9(p) &, \quad 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_9(p) \cap T_{10}(p) &, \quad 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases}$$

can also be obtained in a similar way.

Theorem 4.3. Define the set $T_6^r(u)$ by

$$T_{11}^{r}(u) = \left\{ a = (a_k) \in w : \left\{ \sum_{j=0}^{k} \binom{k}{j} (-r)^{k-j} (1-r)^{-(k+1)} a_j \right\} \in bs \right\}.$$

Then, $[t_0^r(p)]^{\gamma} = T_5^r(p) \cap T_6^r$, $[t_c^r(p)]^{\gamma} = [t_0^r(p)]^{\gamma} \cap T_{11}^r$ and

$$[t^r(p)]^{\gamma} = \begin{cases} T_8(p) &, \quad 1 < p_k \le H < \infty, \forall k \in \mathbb{N}, \\ T_{10}(p) &, \quad 0 < p_k \le 1, \forall k \in \mathbb{N}. \end{cases}$$

Proof. This is obtained in the similar way used in the proof of Theorem 4.2. \Box

5. Certain Matrix Mappings on the Sequence Spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$

In this section, we characterize some matrix mappings on the spaces $t_0^r(p)$, $t_c^r(p)$ and $t^r(p)$.

We known that, if $t_0^r(p) \cong c_0(p)$, $t_c^r(p) \cong c(p)$ and $t^r(p) \cong \ell(p)$, we can say: The equivalence " $x \in t_0^r(p)$, $t_c^r(p)$ or $t^r(p)$ if and only if $y \in c_0(p)$, c(p) or $\ell(p)$ " holds.

In what follows, for brevity, we write,

$$\tilde{a}_{nk} := \sum_{k=0}^{n} \binom{n}{k} (-r)^{n-k} (1-r)^{-(n+1)} a_{nk}$$

for all $k, n \in \mathbb{N}$.

Theorem 5.1. Suppose that the entries of the infinite matrices $A = (a_{nk})$ and $E = (e_{nk})$ are connected with the relation

(5.1)
$$e_{nk} := \tilde{a}_{nk}$$

for all $k, n \in \mathbb{N}$ and μ be any given sequence space. Then,

$$\square$$

- (i): $A \in (t_0^r(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_0^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in (c_0(p) : \mu)$.
- (ii): $A \in (t_c^r(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_c^r(0)\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in (c(p) : \mu)$.
- (iii): $A \in (t^r(p) : \mu)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in (\ell(p) : \mu)$.

Proof. We prove only part of (i). Let μ be any given sequence space. Suppose that (5.1) holds between $A = (a_{nk})$ and $E = (e_{nk})$, and take into account that the spaces $t_0^r(p)$ and $c_0(p)$ are linearly isomorphic.

Let $A \in (t_0^r(p) : \mu)$ and take any $y = (y_k) \in c_0(p)$. Then ET(r) exists and $\{a_{nk}\}_{k\in\mathbb{N}} \in T_5^r(p) \cap T_6^r$ which yields that $\{e_{nk}\}_{k\in\mathbb{N}} \in c_0(p)$ for each $n \in \mathbb{N}$. Hence, Ey exists and thus

$$\sum_{k} e_{nk} y_k = \sum_{k} a_{nk} x_k$$

for all $n \in \mathbb{N}$.

We have that Ey = Ax which leads us to the consequence $E \in (c_0(p) : \mu)$.

Conversely, let $\{a_{nk}\}_{k\in\mathbb{N}} \in \{t_0^r(p)\}^\beta$ for each $n \in \mathbb{N}$ and $E \in (c_0(p) : \mu)$ hold, and take any $x = (x_k) \in t_0^r(p)$. Then, Ax exists. Therefore, we obtain from the equality

$$\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \left[\sum_{j=0}^k \binom{j}{k} (-r)^{j-k} (1-r)^{-(j+1)} a_{nj} \right] y_k$$

for all $n \in \mathbb{N}$, that Ey = Ax and this shows that $A \in (t_0^r(p) : \mu)$. This completes the proof of part of (i).

Theorem 5.2. Suppose that the elements of the infinite matrices $A = (a_{nk})$ and $B = (b_{nk})$ are connected with the relation

(5.2)
$$b_{nk} := \sum_{j=n}^{\infty} {j \choose n} (1-r)^{n+1} r^{(j-n)} a_{jk} \text{ for all } k, n \in \mathbb{N}.$$

Let μ be any given sequence space. Then,

- (i): $A \in (\mu : t_0^r(p))$ if and only if $B \in (\mu : c_0(p))$.
- (ii): $A \in (\mu : t_c^r(p))$ if and only if $B \in (\mu : c(p))$.
- (iii): $A \in (\mu : t^r(p))$ if and only if $B \in (\mu : \ell(p))$.

Proof. We prove only part of (i). Let $z = (z_k) \in \mu$ and consider the following equality.

$$\sum_{k=0}^{m} b_{nk} z_k = \sum_{j=n}^{\infty} \binom{j}{n} (1-r)^{n+1} r^{j-n} \left(\sum_{k=0}^{m} a_{jk} z_k \right) \quad \text{for all } m, n \in \mathbb{N}$$

which yields as $m \to \infty$ that $(Bz)_n = \{T(r)(Az)\}_n$ for all $n \in \mathbb{N}$. Therefore, one can observe from here that $Az \in t_0^r(p)$ whenever $z \in \mu$ if and only if $Bz \in c_0(p)$ whenever $z \in \mu$. This completes the proof of part of (i).

Of course, Theorems 5.1 and 5.2 have several consequences depending on the choice of the sequence space μ . Whence by Theorem 5.1 and Theorem 5.2, the necessary and sufficient conditions for $(t_0^r(p):\mu)$, $(\mu:t_0^r(p))$, $(t_c^r(p):\mu)$, $(\mu:t_c^r(p))$ and $(t^r(p):\mu)$, $(\mu:t^r(p))$ may be derived by replacing the entries of C and A by those of the entries of $E = C\{T(r)\}^{-1}$ and B = T(r)A, respectively; where

the necessary and sufficient conditions on the matrices E and B are read from the concerning results in the existing literature.

The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces of Maddox are determined by Grosse-Erdmann [7]. Let N and K denote the finite subset of \mathbb{N} , L and M also denote the natural numbers. Prior to giving the theorems, let us suppose that (q_n) is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

(5.3)
$$\lim_{n} |a_{nk}|^{q_n} = 0, \text{ for all } k$$

(5.4)
$$\forall L, \exists M \ni \sup_{n} L^{1/q_n} \sum_{k} |a_{nk}| M^{-1/p_k} < \infty,$$

(5.5)
$$\sup_{n} |\sum_{k} a_{nk}|^{q_n} < \infty,$$

(5.6)
$$\lim_{n} |\sum_{k} a_{nk}|^{q_n} = 0,$$

(5.7)
$$\forall L, \sup_{n} \sup_{k \in K_1} |a_{nk}L^{1/q_n}|^{p_k} < \infty,$$

(5.8)
$$\forall L, \exists M \ni \sup_{n} \sum_{k \in K_2} |a_{nk}L^{1/q_n}M^{-1}|^{p'_k} < \infty,$$

(5.9)
$$\forall M, \lim_{n} (\sum_{k} |a_{nk} M^{1/p_k})^{q_n} = 0,$$

(5.10)
$$\forall M, \sup_{n} \sum_{k} |a_{nk}| M^{1/p_k} < \infty,$$

(5.11)
$$\forall M, \exists (\alpha_k) \ni \lim_n (\sum_k |a_{nk} - \alpha_k| M^{1/p_k})^{q_n} = 0,$$

(5.12)
$$\forall M, \sup_{K} \sum_{n} |\sum_{k \in K} a_{nk} M^{1/p_k}|^{q_n} < \infty$$

Lemma 5.1. Let $A = (a_{nk})$ be an infinite matrix. Then

(i):
$$A = (a_{nk}) \in (c_0(p) : \ell_{\infty}(q))$$
 if and only if (4.8) holds.
(ii): $A = (a_{nk}) \in (c(p) : \ell_{\infty}(q))$ if and only if (4.8) and (5.5) hold.
(iii): $A = (a_{nk}) \in (\ell(p) : \ell_{\infty})$ if and only if (4.11) and (4.12) hold.
(iv): $A = (a_{nk}) \in (c_0(p) : c(q))$ if and only if (4.4), (4.5) and (4.6) hold.
(v): $A = (a_{nk}) \in (c(p) : c(q))$ if and only if (4.4), (4.5), (4.6) and (4.7) hold
(vi): $A = (a_{nk}) \in (\ell(p) : c)$ if and only if (4.11), (4.12) and (4.13) hold.
(vii): $A = (a_{nk}) \in (c_0(p) : c_0(q))$ if and only if (5.3) and (5.4) hold.
(viii): $A = (a_{nk}) \in (c(p) : c_0(q))$ if and only if (5.3), (5.4) and (5.6) hold.
(ix): $A = (a_{nk}) \in (\ell_{\infty}(p) : c_0(q))$ if and only if (5.9) holds.
(xi): $A = (a_{nk}) \in (\ell_{\infty}(p) : c_0(q))$ if and only if (5.10) and (5.11) hold.
(xii): $A = (a_{nk}) \in (\ell_{\infty}(p) : \ell(q))$ if and only if (5.12) holds.
(xiii): $A = (a_{nk}) \in (c_0(p) : \ell(q))$ if and only if (4.2) holds.
(xiii): $A = (a_{nk}) \in (c_0(p) : \ell(q))$ if and only if (4.2) holds.

Corollary 5.1. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A \in (t_0^r(p) : \ell_{\infty}(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_0^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.8) holds with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(ii): $A \in (t_0^r(p) : c_0(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_0^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3) and (5.4) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(iii): $A \in (t_0^r(p) : c(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_0^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.4), (4.5) and (4.6) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

Corollary 5.2. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A \in (t_c^r(p) : \ell_{\infty}(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_c^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.8) and (5.5) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(ii): $A \in (t_c^r(p) : c_0(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_c^r(p)\}^\beta$ for all $n \in \mathbb{N}$ and (5.3), (5.4) and (5.6) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(iii): $A \in (t_c^r(p) : c(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t_c^r(p)\}^\beta$ for all $n \in \mathbb{N}$ and (4.4), (4.5), (4.6) and (4.7) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

Corollary 5.3. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A \in (t^r(p) : \ell_{\infty})$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.11) and (4.12) hold with \tilde{a}_{nk} instead of a_{nk} .

(ii): $A \in (t^r(p) : c_0(q))$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (5.3), (5.7) and (5.8) hold with \tilde{a}_{nk} instead of a_{nk} with q = 1.

(iii): $A \in (t^r(p) : c)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{t^r(p)\}^{\beta}$ for all $n \in \mathbb{N}$ and (4.11), (4.12) and (4.13) hold with \tilde{a}_{nk} instead of a_{nk} .

Corollary 5.4. Let $A = (a_{nk})$ be an infinite matrix and b_{nk} be defined by (5.2). Then, following statements hold:

- (i): $A \in (\ell_{\infty}(q) : t_0^r(p))$ if and only if (5.9) holds with b_{nk} instead of a_{nk} with q = 1.
- (ii): $A \in (c_0(q) : t_0^r(p))$ if and only if (5.3) and (5.4) hold with b_{nk} instead of a_{nk} with q = 1.

(iii): $A \in (c(q) : t_0^r(p))$ if and only if (5.3), (5.4) and (5.6) holds with b_{nk} instead of a_{nk} with q = 1.

Corollary 5.5. Let $A = (a_{nk})$ be an infinite matrix and b_{nk} be defined by (5.2). Then, following statements hold:

- (i): $A \in (\ell_{\infty}(q) : t_c^r(p))$ if and only if (5.10) and (5.11) hold with b_{nk} instead of a_{nk} with q = 1.
- (ii): $A \in (c_0(q) : t_c^r(p))$ if and only if (4.4), (4.5) and (4.6) hold with b_{nk} instead of a_{nk} with q = 1.

(iii): $A \in (c(q) : t_c^r(p))$ if and only if (4.4), (4.5), (4.6) and (4.7) hold with b_{nk} instead of a_{nk} with q = 1.

Corollary 5.6. Let $A = (a_{nk})$ be an infinite matrix and b_{nk} be defined by (5.2). Then, following statements hold:

- (i): $A \in (\ell_{\infty}(q) : t^{r}(p))$ if and only if (5.12) holds with b_{nk} instead of a_{nk} with q = 1.
- (ii): $A \in (c_0(q) : t^r(p))$ if and only if (4.2) holds with b_{nk} instead of a_{nk} with q = 1.
- (iii): $A \in (c(q) : t^r(p))$ if and only if (4.2) and (4.4) hold with b_{nk} instead of a_{nk} with q = 1.

References

- B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
- B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
- [3] F. Başar, B. Altay, Matrix mappings on the space bs(p) and its α-, β- and γ-duals, Aligarh Bull. Math., 21(1), 79-91 (2002).
- [4] F. Başar, Infinite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).
- [5] B. Choudhary, S. K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5), 291-301 (1993).
- [6] S. Demiriz, C. Çakan, On Some New Paranormed Euler Sequence Spaces and Euler Core, Acta Math. Sin.(Eng. Ser.), 26(7), 1207-1222 (2010).
- K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180, 223-238 (1993).
- [8] A. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
- [9] M. Kirişci, On the Taylor sequence spaces of nonabsulate type which include the spaces c_0 and c. J. Math. Anal., 6(2), 22-35 (2015).
- [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc.Camb. Phil. Soc., 68, 99-104 (1970).
- [11] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
- [12] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phios. Soc., 64, 335-340 (1968).
- [13] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad., 27(2), 508-512 (1951).
- [14] S. Simons, The sequence spaces $\ell(p_v)$ and $m(p_v)$. Proc. London Math. Soc., 15(3), 422-436 (1965).

Recep Tayyip Erdoğan University, Science and Art Faculty, Department of Mathematics, Rize-TURKEY

E-mail address: hacer.bilgin@erdogan.edu.tr

GAZIOSMANPAȘA UNIVERSITY, SCIENCE AND ART FACULTY, DEPARTMENT OF MATHEMATICS, TOKAT-TURKEY

E-mail address: serkandemiriz@gmail.com