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PERIODIC SOLUTIONS FOR THIRD ORDER DELAY

DIFFERENTIAL EQUATION IMPULSES WITH FREDHOLM

OPERATOR OF INDEX ZERO

S.BALAMURALITHARAN

Abstract. In this paper the periodic solutions for third order delay differen-

tial equation of the form

x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

is investigated. We derive a third order delay differential equation with Fred-

holm operator of index zero and periodic solution. We obtain the existence of

periodic solution and Mawhin’s continuation theorem. The delay conditions
for the Schwarz inequality of the periodic solutions are also obtained. An ex-

ample is also furnished which demonstrates validity of main result. Some new
positive periodic criteria are given. Therefore it has at least one 2π-periodic

solution.

1. Introduction

The theory of impulsive delay differential equations is promising as an impor-
tant role of investigation, since it is better than the corresponding theory of delay
differential equation without impulse effects. Furthermore, such equations may
demonstrate several real-world phenomena in physics,chemistry, biology, engineer-
ing, etc. In the last few years the theory of periodic solutions and delay differential
equations with impulses has been studied by many authors, respectively [3, 5, 7, 8].
There are several books and a lot of papers dealing with the periodic solution of
delay differential equations [1, 2, 4, 6, 9]. Periodic solutions of impulsive delay dif-
ferential equations is a new research area and there are many publications in this
field. The paper deals with impulsive equations with constant delay and Fredholm
operator of index zero. We obtain the theorems of existence of periodic solution
based on the following Mawhin’s continuation theorem.

Let PC(R,R) = {x : R → R, x(t) be continuous everywhere except for some tk
at which x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk)},
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PC1(R,R) = {x : R → R, x(t) is continuous everywhere except for some tk at
which x′(t+k ) and x′(t−k ) exist and x′(t−k ) = x′(tk)}.
PC2(R,R) = {x : R → R, x(t) is continuous everywhere except for some tk at
which x′′(t+k ) and x′′(t−k ) exist and x′′(t−k ) = x′′(tk)}.
Let X = {x(t) ∈ PC1(R,R), x(t+ T ) = x(t)} with norm ‖x‖ = max{|x|∞, |x′|∞},
where |x|∞ = supt∈[0,T ] |x(t)|,
Y = PC(R,R)×Rn×Rn, with norm ‖y‖ = max{|u|∞, |c|}, where u ∈ PC(R,R), c =
(c1, . . . c2n) ∈ Rn × Rn, |c| = max1≤k≤2n{|ck|}.
Z = PC(R,R)×Rn×Rn, with norm ‖z‖ = max{|v|∞, |d|}, where v ∈ PC(R,R), d =
(d1, . . . d2n) ∈ Rn × Rn, |d| = max1≤k≤2n{|dk|}.
Then X, Y and Z are Banach spaces. L : D(L) ⊂ X → Y and L : D(L) ⊂ Y → Z
are a Fredholm operator of index zero, where D(L) denotes the domain of L.
P : X → X,Q : Y → Y,R : Z → Z are projectors such that

ImP = kerL, kerQ = ImL, kerR = ImL,

X = kerL⊕ kerP, Y = ImL⊕ ImQ, Z = ImL⊕ ImR.

It continues that

L|D(L)∩kerP : D(L) ∩ kerP → ImL

is invertible and we assume the inverse of that map by Kp. Let Ω be an open

bounded subset of X, D(L)∩Ω 6= ∅, the map N : X → Y will be called L-compact
in Ω, if QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact.
Similarly it follows that

L|D(L)∩kerQ : D(L) ∩ kerQ→ ImL

is invertible and we assume the inverse of that map by Kq. Let Ω be an open

bounded subset of Y , D(L)∩Ω 6= ∅, the map N : Y → Z will be called L-compact
in Ω, if RN(Ω) is bounded and Kq(I −R)N : Ω→ Y is compact.

2. Preliminaries

This paper obtains the existence of periodic solutions for the third-order delay
differential equations with impulses

(2.1)

x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

∆x(tk) = Ik,

∆x′(tk) = Jk,

∆x′′(tk) = Kk.

where ∆x(tk) = x(t+k )−x(t−k ), x(t+k ) = limt→t+k
x(t), x(t−k ) = limt→t−k

x(t), x(t−k ) =

x(tk);
∆x′(tk) = x′(t+k )− x′(t−k ), x′(t+k ) = limt→t+k

x′(t), x′(t−k ) = limt→t−k
x′(t), x′(t−k ) =

x′(tk);
∆x′′(tk) = x′′(t+k ) − x′′(t−k ), x′′(t+k ) = limt→t+k

x′′(t), x′′(t−k ) = limt→t−k
x′′(t),

x′′(t−k ) = x′′(tk).

We assume that the following conditions:

(H1) f ∈ C(R2,R) and g(t + T, x) = g(t, x), h ∈ C(R,R), p, τ ∈ C(R,R) with
τ(t+ T ) = τ(t), p(t+ T ) = p(t);
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(H2) {tk} satisfies tk < tk+1 and limk→±∞ tk = ±∞, k ∈ Z,
Ik(x, y), Jk(x, y),Kk(x, y) ∈ C(R2,R), and there is a positive n such that
{tk} ∩ [0, T ] = {t1, t2, . . . , tn}, tk+n = tk + T ,
Ik+n(x, y) = Ik(x, y), Jk+n(x, y) = Jk(x, y),Kk+n(x, y) = Kk(x, y).

(H3) There are constants σ, β ≥ 0 such that

|f(t, x)| ≤ σ|x|, ∀(t, x) ∈ [0, T ]× R,(2.2)

xf(t, x) ≥ β|x|2, ∀(t, x) ∈ [0, T ]× R;(2.3)

(H4) There are constants σ, β ≥ 0 such that

|g(t, x)| ≤ σ|x|, ∀(t, x) ∈ [0, T ]× R,(2.4)

x2g(t, x) ≥ β|x|2, ∀(t, x) ∈ [0, T ]× R;(2.5)

(H5) there are constants βi ≥ 0 (i = 1, 2, 3) such that

|h(x)| ≥ β1 + β2|x|,(2.6)

|h(x)− h(y)| ≤ β3|x− y|;(2.7)

(H6) there are constants γi > 0 (i = 1, 2, 3), such that |
∫ x+λJk(x,y)
x

h(s)ds| ≤
|Jk(x, y)|(γ1 + γ2|x|+ γ3|Jk(x, y)|), ∀λ ∈ (0, 1);

(H7) there are constants ak, a
′
k, a
′′
k ≥ 0 such that |Kk(x, y)| ≤ ak|x|2 +a′k|x|+a′′k ;

(H8) zKk(x, y) ≤ 0 and there are constants bk ≥ 0 such that |Kk(x, y)| ≤ bk.

Lemma 2.1. Let L be a Fredholm operator of index zero and let N be L-compact
on Ω. We assume that the following conditions are satisfied:

(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(ii) RNx 6= 0, for all x ∈ ∂Ω ∩ kerL;

(iii) deg{KRNx,Ω
⋂

kerL, 0} 6= 0, where K : ImR→ kerL is an isomorphism.

Then the abstract equation Lx = Nx has at least one solution in Ω
⋂
D(L).

We assume the operators L : D(L) ⊂ X → Y and L : D(L) ⊂ Y → Z by

(2.8) Lx = (x′′′,∆x(t1), . . . ,∆x(tn),∆x′(t1), . . . ,∆x′(tn),∆x′′(t1), . . . ,∆x′′(tn)),

and N : X → Y , N : Y → Z by

Nx = (−f(t, x′′(t))− g(t, x′(t))− h(x(t− τ(t))) + p(t),

I1(x(t1)), . . . , In(x(tn)), J1(x′(t1)), . . . , Jn(x′(tn)),K1(x′′(t1)), . . . ,Kn(x′′(tn))).

(2.9)

Lemma 2.2. L is a Fredholm operator of index zero with

(2.10) kerL = {x(t) = c, t ∈ R},

and

ImL(y, z, a1, . . . , an, b1, . . . , bn)

=

∫ T

0

(y(s) + z(s))ds+

n∑
k=1

bk(T − tk) +

n∑
k=1

ak + x′(0)T = 0.
(2.11)

Let the linear operators P : X → X, Q : Y → Y and R : Z → Z be defined by

(2.12) Px = x(0),



PERIODIC SOLUTIONS FOR THIRD ORDER DELAY... 161

Q(y, a1, . . . , an, b1, . . . , bn)

=
2

T 2
[

∫ T

0

(T − s)y(s)ds+

n∑
k=1

bk(T − tk) +

n∑
k=1

ak + x′(0)T ], 0, . . . , 0),
(2.13)

and

R(z, a1, . . . , an, b1, . . . , bn)

=
2

T 2
[

∫ T

0

(T − s)z(s)ds+

n∑
k=1

bk(T − tk) +

n∑
k=1

ak + x′(0)T ], 0, . . . , 0).
(2.14)

Lemma 2.3. If α > 0, x(t) ∈ PC2(R,R) with x(t+ T ) = x(t), then

(2.15)

∫ T

0

∫ t

t−α
|x′(s)|2 ds dt = α

∫ T

0

|x′(t)|2dt

and

(2.16)

∫ T

0

∫ t+α

t

|x′(s)|2 ds dt = α

∫ T

0

|x′(t)|2dt.

Let

A1(t, α) =
∑

t−α≤tk≤t

ak, A2(t, α) =
∑

t≤tk≤t+α

ak,

B1(t, α) =
∑

t−α≤tk≤t

a′k, B2(t, α) =
∑

t≤tk≤t+α

a′k,

C1(t, α) =
∑

t−α≤tk≤t

a′′k , C2(t, α) =
∑

t≤tk≤t+α

a′′k ,

I1 =
(∫ T

0

A2
1(t, α)dt

)1/2
+
(∫ T

0

A2
2(t, α)dt

)1/2
,

I2 =
(∫ T

0

B2
1(t, α)dt

)1/2
+
(∫ T

0

B2
2(t, α)dt

)1/2
,

I3 =

∫ T

0

A2
1(t, α)dt+

∫ T

0

A2
2(t, α)dt,

I4 =

∫ T

0

A1(t, α)B1(t)dt+

∫ T

0

A2(t, α)B2(t)dt,

I5 =

∫ T

0

B2
1(t, α)dt+

∫ T

0

B2
2(t, α)dt

The following Lemma is important for us to the delay τ(t).

Lemma 2.4. Suppose τ(t) ∈ C(R,R) with τ(t + T ) = τ(t) and τ(t) ∈ [−α, α] for
all t ∈ [0, T ], x(t) ∈ PC1(R,R) with x(t+ T ) = x(t) and there is a positive n such
that {tk}∩ [0, T ] = {t1, t2, . . . , tn}, ∆x(tk) = λIk(x(tk), x′(tk)) for all λ ∈ (0, 1) and
tk+n = tk +T, Ik+n(x, y) = Ik(x, y). Furthermore there exist nonnegative constants
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ak, ak such that |Ik(x, y)| ≤ ak|x|+ a′k. Then∫ T

0

|x(t)− x(t− τ(t))|2dt

≤ 2α2

∫ T

0

|x′(t)|2dt+ 2αI1|x(t)|∞
(∫ T

0

|x′(t)|2dt
)1/2

+ 2αI2

(∫ T

0

|x′(t)|2dt
)1/2

+ I3|x(t)|2∞ + I4|x(t)|∞ + I5.

(2.17)

3. Main results

We establish the theorems of existence of periodic solution based on the following
two conditions.

Theorem 3.1. We assume that (H1)–(H8) hold. Then (3.3) has at least one T -
periodic solution and

n∑
k=1

ak < 1,(3.1)

[
γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)
]
M2 + β3

[
2|τ(t)|2∞

+ 2|τ(t)|∞I1(|τ(t)|∞)M + I3(|τ(t)|∞)M2
]1/2

< β,

(3.2)

where

M =
1

1−
∑n
k=1 ak

(
σ

β2T 1/2
+ T 1/2).

Proof. Consider the abstract equation Lx = λNx, with λ ∈ (0, 1), where L and N
are given by (2.8) and (2.9). Let

Ω1 = {x ∈ D(L) : kerL,Lx = λNx for some λ ∈ (0, 1)} .
For x ∈ Ω1, we get

(3.3) x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

Integrating the interval on [0, T ], using Schwarz inequality, we get

|
∫ T

0

h(x(t− τ(t))dt|

= |
∫ T

0

p(t)dt−
∫ T

0

f(t, x′′(t))dt−
∫ T

0

g(t, x′(t))dt+

n∑
k=1

Kk(x(tk), x′′(tk))|

≤ T |p(t)|∞ + σ

∫ T

0

|x′′(t)|dt+

n∑
k=1

bk

≤ σT 1/2
(∫ T

0

|x′′(t)|2dt
)1/2

+ T |p(t)|∞ +

n∑
k=1

bk.

From the above formula, there is a interval on t0 ∈ [0, T ] such that

|h(x(t0 − τ(t0))| ≤ σ

T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + |p(t)|∞ +
1

T

n∑
k=1

bk.
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From (2.6),we get

β1 + β2|x(t0 − τ(t0))| ≤ σ

T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + |p(t)|∞ +
1

T

n∑
k=1

bk.

Then

|x(t0 − τ(t0))| ≤ σ

β2T 1/2

(∫ T

0

|x′′(t)|2dt
)1/2

+ d,

where d =
(
||p(t)|∞+ 1

T

∑n
k=1 bk−β1|

)
/β2. So there is an integer m and an interval

t1 ∈ [0, T ] such that t0 − τ(t0) = mT + t1. Therefore

|x(t1)| = |x(t0 − τ(t0))| ≤ σ

β2T 1/2

(∫ T

0

|x′′(t)|2dt
)1/2

+ d,

x(t) = x(t1) +

∫ t

t1

x′′(s)ds+
∑

t1≤tk<t

Kk(x(tk), x′′(tk)).

Thus

|x(t)|∞ ≤ |x(t1)|+
∫ t

t1

|x′′(s)|ds+
∑

t1≤tk<t

|Kk(x(tk))|

≤ σ

β2T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + d+

∫ T

0

|x′′(t)|dt+

n∑
k=1

ak|x|∞ +

n∑
k=1

a′k +

n∑
k=1

a′′k

≤ |x|∞
n∑
k=1

ak + (
σ

β2T 1/2
+ T 1/2)

(∫ T

0

|x′′(t)|2dt
)1/2

+ d+

n∑
k=1

a′k +

n∑
k=1

a′′k .

It continues that

|x(t)|∞ ≤
d+

∑n
k=1 a

′′
k

1−
∑n
k=1 ak

+
1

1−
∑n
k=1 ak

(
σ

β2T 1/2
+ T 1/2)(

∫ T

0

|x′′(t)|2dt)1/2

= c1 +M(

∫ T

0

|x′′(t)|2dt)1/2,
(3.4)

where c1 is a positive constant. On the other hand, multiplying both side of (3.3)
by x′(t), we have∫ T

0

x′′′(t)x′′(t)dt+ λ

∫ T

0

f(t, x′′(t))x′(t)dt +λ

∫ T

0

g(t, x′(t))x′(t)dt+ λ

∫ T

0

h(t, x(t− τ(t))x′(t)dt

= λ

∫ T

0

p(t)x′(t)dt.

Since ∫ T

0

x′′′(t)x′′(t)dt = −1

2

n∑
i=1

[(x′′(t+k ))2 − (x′′(tk))2],
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Our assumption (H7) that

(x′(t+k ))2 − (x′(tk))2

= (x′(t+k ) + x′(tk))(x′(t+k )− (x′(tk))

= ∆x′(tk)(2x′(tk) + ∆x′(tk))

= λKk(x(tk), x′(tk))(2x′(tk) + λKk(x(tk), x′(tk))

= 2λKk(x(tk), x′(tk))x′(tk) + [λKk(x(tk), x′(tk))]2 ≤ b2k.

In (2.5), by use Schwarz inequality

β

∫ T

0

|x′′(t)|2dt

≤ −
∫ T

0

h(x(t− τ(t))x′(t)dt+

∫ T

0

p(t)x′(t)dt+
1

2

n∑
k=1

b2k

=

∫ T

0

[h(x(t)− h(x(t− τ(t))]x′(t)dt−
∫ T

0

h(x(t))x′(t)dt

+

∫ T

0

p(t)x′(t)dt+
1

2

n∑
i=1

b2k

≤
∫ T

0

|h(x(t))− h(x(t− τ(t))||x′(t)|dt+ |p(t)|∞
∫ T

0

|x′(t)|dt

+ |
∫ T

0

h(x(t))x′(t)dt|+ 1

2

n∑
i=1

b2k

≤
[( ∫ T

0

|h(x(t))− h(x(t− τ(t)))|2dt
)1/2

+ |p(t)|∞T 1/2
]( ∫ T

0

|x′(t)|2dt
)1/2

+ |
∫ T

0

h(x(t))x′(t)dt|+ 1

2

n∑
i=1

b2k.

(3.5)
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From (H5) and (H6), we get

|
∫ T

0

h(x(t))x′(t)dt|

= |
∫ x(t1)

x(0)

h(s)ds+

∫ x(t2)

x(t+1 )

h(s)ds+ · · ·+
∫ x(T )

x(t+n )

h(s)ds|

= |
∫ x(T )

x(0)

h(s)ds−
n∑
k=1

∫ x(t+k )

x(tk)

h(s)ds|

≤
n∑
k=1

|
∫ x(tk)+λKk(x(tk),x

′(tk))

x(tk)

h(s)ds|

≤
n∑
k=1

[|Kk(x(tk), x′(tk))|(γ1 + γ2|x(tk)|+ γ3|Kk(x(tk), x′(tk))|)]

≤ [γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)]|x(t)|2∞ + c2|x(t)|∞ + c3,

where c2, c3 are constants. From (3.4), we get

|
∫ T

0

h(x(t))x′(t)dt|

≤ [γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)]M2

∫ T

0

|x′(t)|2dt+ c4(

∫ T

0

|x′(t)|2dt)1/2 + c5,

(3.6)

where c4, c5 are constants. From Lemma 2.4, we get∫ T

0

|h(x(t)− h(x(t− τ(t)))|2dt

≤ β2
3

∫ T

0

|x(t)− x(t− τ(t))|2dt

≤ β2
3 [2|τ(t)|2∞

∫ T

0

|x′(t)|2dt+ 2|τ(t)|∞I1(|τ(t)|∞)|x(t)|∞
(∫ T

0

|x′(t)|2dt
)1/2

+ 2|τ(t)|∞I2(|τ(t)|∞)
(∫ T

0

|x′(t)|2dt
)1/2

+ I3(|τ(t)|∞)|x(t)|2∞

+ I4(|τ(t)|∞)|x(t)|∞ + I5(|τ(t)|∞)].

Substituting (3.4) into the above inequality, we get∫ T

0

|h(x(t)− h(x(t− τ(t)))|2dt

≤ β2
3 [2|τ(t)|2∞ + 2|τ(t)|∞I1(|τ(t)|∞)M

+ I3(|τ(t)|∞)M2]

∫ T

0

|x′(t)|2dt+ c6

(∫ T

0

|x′(t)|2dt
)1/2

+ c7,

where c6, c7 are constants. From above inequality

(3.7) (a+ b)1/2 ≤ a1/2 + b1/2 for a ≥ 0, b ≥ 0,
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we get(∫ T

0

|h(x(t))− h(x(t− τ(t)))|2dt
)1/2

≤ β3[2|τ(t)|2∞ + 2|τ(t)|∞I1(|τ(t)|∞)M

+ I3(|τ(t)|∞)M2]1/2
(∫ T

0

|x′(t)|2dt
)1/2

+ c
1/2
6

(∫ T

0

|x′(t)|2dt
)1/4

+ c
1/2
7 .

Substituting the above formula and (3.6) in (3.5), we get{
β − [γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)]M2 − β3[2|τ(t)|2∞

+ 2|τ(t)|∞I1(|τ(t)|∞)M + I3(|τ(t)|∞)M2]1/2
}∫ T

0

|x′(t)|2dt

≤ c8(

∫ T

0

|x′(t)|2dt) 3
4 + c9(

∫ T

0

|x′(t)|2dt)1/2 + c10,

where c8, c9, c10 are constants. There is a constant M1 > 0 such that

(3.8)

∫ T

0

|x′(t)|2dt ≤M1.

From (3.4), we get

|x(t)|∞ ≤ d+M(

∫ T

0

|x′(t)|2dt)1/2 ≤ d+M(M1)1/2.

Then there is a constant M2 > 0 such that |x(t)|∞ ≤ M2. Therefore, integrating
(3.3) on the interval [0, T ], using Schwarz inequality, we get∫ T

0

|x′′′(t)|dt =

∫ T

0

| − f(t, x′′(t))− g(t, x′(t))− h(x(t− τ(t))) + p(t)|dt

≤
∫ T

0

|f(t, x′′(t))|dt+

∫ T

0

|g(t, x′′(t))|dt+

∫ T

0

|h(x(t− τ(t)))|dt+

∫ T

0

|p(t)|dt

≤ σ
∫ T

0

|x′′(t)|dt+ hδT + T |p(t)|∞

≤ σT 1/2(

∫ T

0

|x′′(t)|2dt)1/2 + hδT + T |p(t)|∞

≤ σT 1/2(M1)1/2 + hδT + T |p(t)|∞,

where hδ = max|x|≤δ |g(x)|. Then there is a constant M3 > 0 such that

(3.9)

∫ T

0

|x′′(t)|dt ≤M3.

From (3.8),then there are t2 ∈ [0, T ] and c > 0 such that |x′(t2)| ≤ c for t ∈ [0, T ]

(3.10) |x′(t)|∞ ≤ |x′(t2)|+
∫ T

0

|x′′(t)|dt+

n∑
k=1

bk.

Then there is a constant M4 > 0 such that

(3.11) |x′(t)|∞ ≤M4.
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It follows that there is a constant I2 > max{M2,M4} such that ‖x‖ ≤ I2, Thus Ω1

is bounded.
Let Ω2 = {x ∈ kerL,RNx = 0}. If x ∈ Ω2, then x(t) = c ∈ R and satisfies

(3.12) RN(x, 0) = (− 2

T 2

∫ T

0

[f(t, 0) + g(t, 0) + h(c)− p(t)]dt, 0, . . . , 0) = 0.

we get

(3.13)

∫ T

0

[f(t, 0) + g(t, 0) + h(c)− p(t)]dt = 0.

In (3.13),there must be a interval t0 ∈ [0, T ] such that

(3.14) h(c) = −f(t0, 0)− g(t0, 0) + p(t0).

From (3.14) and assumption (H3), (H4), we get

(3.15) β1 + β2|c| ≤ |h(c)| ≤ |f(t0, 0)|+ |g(t0, 0)|+ |p(t0)| ≤ σ × 0 + |p(t)|∞.

Then

(3.16) |c| ≤ ||p(t)|∞ − β1|
β2

which implies Ω2 is bounded. Let Ω be a non-empty open bounded subset of X
such that Ω ⊃ Ω1 ∪ Ω2 ∪ Ω3, where Ω3 = {x ∈ X : |x| < ||p(t)|∞ − β1|/β2 + 1}.
By Lemmas 2.2, we can see that L is a Fredholm operator of index zero and N is
L-compact on Ω. Then by the above argument,

(i) Lx 6= λNx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(ii) RNx 6= 0 for all x ∈ ∂Ω ∩ kerL.

Finally we prove that (iii) of Lemma 2.1 is satisfied. We take H(x, µ) : Ω× [0, 1]→
X,

H(x, µ) = µx+
2(1− µ)

T 2

∫ T

0

[−f(t, x′′(t))− g(t, x′(t)) + h(x(t− τ(t)) + p(t)]dt.

From assumptions (H3) and (H4), we can easily verify H(x, µ) 6= 0, for all (x, µ) ∈
∂Ω ∩ kerL× [0, 1], which results in

deg{KRNx,Ω ∩ kerL, 0} = deg{H(x, 0),Ω ∩ kerL, 0}
= deg{H(x, 1),Ω ∩ kerL, 0} 6= 0,

where K(x, 0, . . . , 0) = x. Therefore, by Lemma 2.1, Equation (3.3) has at least
one T -periodic solution. �

Example 1. Consider the third order delay differential equation with impulses

(3.17)

x′′′(t) +
1

3
x′′(t) +

1

6
x′(t) +

1

21
x(t− 1

10
cos t) = sin t, t 6= k,

Ik(x, y) =
sin kπ

3

120
x+

y

1 + y2
,

Jk(x, y) = − 2x2y

1 + x4y2
,

Kk(x, y) = − 4x4y

1 + x8y2
,
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where tk = k, f(t, x) = 1
3x

2,g(t, x) = 1
6x, h(y) = 1

21y, p(t) = sin t, τ(t) = 1
10 cos t,

it is easy to see that |τ(t)|∞ = 1
10 , T = 2π, {k} ∩ [0, 2π] = {1, 2, 3, 4, 5, 6, 7, 8},

σ = β = 1
3 , β1 = 0, β2 = β3 = 1

21 . Since |Ik(x, y)| ≤ 1
120 |x|+

1
2 ,

|Jk(x, y)| ≤ 1,|
∫ x+Ik(x,y)
x

h(s)ds| ≤ |Ik(x, y)|( 1
21 |x|+

1
42 |Ik(x, y)|),

|Kk(x, y)| ≤ 1,|
∫ x+Jk(x,y)
x

h(s)ds| ≤ |Jk(x, y)|( 1
21 |x|+

1
42 |Jk(x, y)|),

then we take ak = 1
120 , a′k = 1

2 , b′k = 1 (k = 1, 2, 3, 4, 5, 6, 7, 8), γ1 = 0, γ2 = 1/21,
γ3 = 1/42.

8∑
k=1

ak =
1

20
< 1,

M =
1

1−
∑n
k=1 ak

(
σ

β2T 1/2
+ T 1/2) =

1

1− 1
20

(
1
3

1
21 (2π)1/2

+ (2π)1/2) < 8.

By Theorem 3.1, Equation (3.17) has at least one 2π-periodic solution.
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